In Situ Synthesis of Co3O4 Nanoparticles on N-Doped Biochar as High-Performance Oxygen Reduction Reaction Electrocatalysts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Electrocatalysts Characterization
2.2. ORR Performance
Catalyst | Eonset/V vs. RHE | jL/mA cm−2 | n | Reference |
---|---|---|---|---|
N-CC@Co3O4_1 | 0.85 | −2.92 | 3.73 | This work |
N-CC@Co3O4_2 | 0.84 | −3.45 | 3.50 | This work |
N-CC@Co3O4_3 | 0.82 | −3.16 | 3.42 | This work |
Co3O4@bio-C | 0.86 | −5.20 | 3.86 | [25] |
Co/Co3O4@NC | 0.94 | −4.78 | 3.82 | [13] |
Co3O4/OPAC | 0.76 | −2.49 | 2.46 | [76] |
Co3O4/NCMT-800 | 0.91 | −4.50 | 3.95 | [26] |
Co3O4/NHPC | 0.96 | −6.0 | 3.91 | [12] |
Co/N3S3-GF | 0.87 | −3.98 | ~ 4.0 | [29] |
Co3O4@GF_O3 | 0.82 | −2.70 | 3.5 | [27] |
Co3O4@GF_KMnO4 | 0.79 | −2.50 | 3.1 | [27] |
N-rGO/CNT/Co3O4 | 0.87 | ~−4.0 | ~4.0 | [28] |
Co3O4/CW | 0.89 | −4.79 | ~4 | [77] |
Co3O4/N-rGO | --- | ~−2.5 | 2.9–3.4 | [78] |
3. Experimental
3.1. Materials and Chemicals
3.2. Electrocatalysts Preparation
3.2.1. Preparation of the Biochar (CC)
3.2.2. N-Doping of CC (N-CC)
3.2.3. Preparation of N-CC@Co3O4 Composites
3.3. Characterization Techniques
3.4. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qasem, N.A.A.; Abdulrahman, G.A.Q. A Recent Comprehensive Review of Fuel Cells: History, Types, and Applications. Int. J. Energy Res. 2024, 2024, 36. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; Elsaid, K.; Wilberforce, T.; Kamil, M.; Sayed, E.T.; Olabi, A. Environmental aspects of fuel cells: A review. Sci. Total Environ. 2021, 752, 16. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.X.; Tu, Z.K.; Chan, S.H. Recent development of hydrogen and fuel cell technologies: A review. Energy Rep. 2021, 7, 8421–8446. [Google Scholar] [CrossRef]
- Yao-Lin, A.; Du, Z.Y.; Ze, H.J.; Wang, X.T.; Zhang, Y.; Zhang, H.; Zheng, Q.N.; Dong, J.C.; Tian, J.H.; Li, J.F. Understanding the molecular mechanism of oxygen reduction reaction using in-situ Raman spectroscopy. Curr. Opin. Electrochem. 2023, 42, 12. [Google Scholar] [CrossRef]
- Borup, R.; Meyers, J.; Pivovar, B.; Kim, Y.S.; Mukundan, R.; Garland, N.; Myers, D.; Wilson, M.; Garzon, F.; Wood, D.; et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 2007, 107, 3904–3951. [Google Scholar] [CrossRef]
- Ma, R.G.; Lin, G.X.; Zhou, Y.; Liu, Q.; Zhang, T.; Shan, G.C.; Yang, M.H.; Wang, J.C. A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. npj Comput. Mater. 2019, 5, 15. [Google Scholar] [CrossRef]
- Raj, C.R.; Samanta, A.; Noh, S.H.; Mondal, S.; Okajima, T.; Ohsaka, T. Emerging new generation electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 2016, 4, 11156–11178. [Google Scholar] [CrossRef]
- Wang, X.Q.; Li, Z.J.; Qu, Y.T.; Yuan, T.W.; Wang, W.Y.; Wu, Y.; Li, Y.D. Review of Metal Catalysts for Oxygen Reduction Reaction: From Nanoscale Engineering to Atomic Design. Chem 2019, 5, 1486–1511. [Google Scholar] [CrossRef]
- Mladenovic, D.; Mladenovic, A.; Santos, D.M.F.; Yurtcan, A.B.; Miljanic, S.; Mentus, S.; Sljukic, B. Transition metal oxides for bifunctional ORR/OER electrocatalysis in unitized regenerative fuel cells. J. Electroanal. Chem. 2023, 946, 17. [Google Scholar] [CrossRef]
- Xue, Y.J.; Sun, S.S.; Wang, Q.; Dong, Z.H.; Liu, Z.P. Transition metal oxide-based oxygen reduction reaction electrocatalysts for energy conversion systems with aqueous electrolytes. J. Mater. Chem. A 2018, 6, 10595–10626. [Google Scholar] [CrossRef]
- Xiao, J.W.; Kuang, Q.; Yang, S.H.; Xiao, F.; Wang, S.; Guo, L. Surface Structure Dependent Electrocatalytic Activity of Co3O4 Anchored on Graphene Sheets toward Oxygen Reduction Reaction. Sci. Rep. 2013, 3, 8. [Google Scholar] [CrossRef]
- Guan, J.L.; Zhang, Z.P.; Ji, J.; Dou, M.L.; Wang, F. Hydrothermal Synthesis of Highly Dispersed Co3O4 Nanoparticles on Biomass-Derived Nitrogen-Doped Hierarchically Porous Carbon Networks as an Efficient Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions. ACS Appl. Mater. Interfaces 2017, 9, 30662–30669. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.L.; Wang, Y.M.; Xiao, Z.X.; Li, M.T.; Ding, Y.L.; Qi, M.L. Electrocatalytic oxygen reduction by a Co/Co3O4@N-doped carbon composite material derived from the pyrolysis of ZIF-67/poplar flowers. RSC Adv. 2021, 11, 2693–2700. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Choi, B.; Kim, Y.B. Development of Highly Active Bifunctional Electrocatalyst Using Co3O4 on Carbon Nanotubes for Oxygen Reduction and Oxygen Evolution. Sci. Rep. 2018, 8, 10. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.; Lim, J.S.; Kim, J.H.; Joo, S.H. Heteroatom-doped carbon-based oxygen reduction electrocatalysts with tailored four-electron and two-electron selectivity. Chem. Commun. 2021, 57, 7350–7361. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Bai, Y.; Liu, M.Q.; Li, Y.; Yang, H.Y.; Wang, X.R.; Wu, C. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy Environ. Sci. 2021, 14, 2036–2089. [Google Scholar] [CrossRef]
- Wu, B.; Meng, H.B.; Morales, D.M.; Zeng, F.; Zhu, J.J.; Wang, B.; Risch, M.; Xu, Z.C.J.; Petit, T. Nitrogen-Rich Carbonaceous Materials for Advanced Oxygen Electrocatalysis: Synthesis, Characterization, and Activity of Nitrogen Sites. Adv. Funct. Mater. 2022, 32, 36. [Google Scholar] [CrossRef]
- Rocha, I.M.; Soares, O.; Fernandes, D.M.; Freire, C.; Figueiredo, J.L.; Pereira, M.F.R. N-doped Carbon Nanotubes for the Oxygen Reduction Reaction in Alkaline Medium: Synergistic Relationship between Pyridinic and Quaternary Nitrogen. ChemistrySelect 2016, 1, 2522–2530. [Google Scholar] [CrossRef]
- Sheng, Z.H.; Shao, L.; Chen, J.J.; Bao, W.J.; Wang, F.B.; Xia, X.H. Catalyst-Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis. ACS Nano 2011, 5, 4350–4358. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.H.; Wang, D.W.; Su, D.S.; Gentle, I.R. A Discussion on the Activity Origin in Metal-Free Nitrogen-Doped Carbons For Oxygen Reduction Reaction and their Mechanisms. ChemSusChem 2015, 8, 2772–2788. [Google Scholar] [CrossRef]
- Quílez-Bermejo, J.; Morallón, E.; Cazorla-Amorós, D. Metal-free heteroatom-doped carbon-based catalysts for ORR: A critical assessment about the role of heteroatoms. Carbon 2020, 165, 434–454. [Google Scholar] [CrossRef]
- Guo, D.H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.Y.; Wang, D.; Ge, L.P.; Xiao, L.H.; Zhang, H.Y.; Liu, L.L.; Zhang, J.Q.; An, M.Z.; Yang, P.X. Enriched graphitic N in nitrogen-doped graphene as a superior metal-free electrocatalyst for the oxygen reduction reaction. New J. Chem. 2018, 42, 19665–19670. [Google Scholar] [CrossRef]
- Wang, N.; Lu, B.Z.; Li, L.G.; Niu, W.H.; Tang, Z.H.; Kang, X.W.; Chen, S.W. Graphitic Nitrogen Is Responsible for Oxygen Electroreduction on Nitrogen-Doped Carbons in Alkaline Electrolytes: Insights from Activity Attenuation Studies and Theoretical Calculations. ACS Catal. 2018, 8, 6827–6836. [Google Scholar] [CrossRef]
- Wu, Y.L.; Chen, Y.L.; Wang, H.Q.; Wang, C.M.; Wang, A.S.; Zhao, S.; Li, X.Y.; Sun, D.F.; Jiang, J.Z. Efficient ORR electrocatalytic activity of peanut shell-based graphitic carbon microstructures. J. Mater. Chem. A 2018, 6, 12018–12028. [Google Scholar] [CrossRef]
- Wang, B.; Xu, L.; Liu, G.P.; Zhang, P.F.; Zhu, W.S.; Xia, J.X.; Li, H.M. Biomass willow catkin-derived Co3O4/N-doped hollow hierarchical porous carbon microtubes as an effective tri-functional electrocatalyst. J. Mater. Chem. A 2017, 5, 20170–20179. [Google Scholar] [CrossRef]
- Araújo, M.P.; Nunes, M.; Rocha, I.M.; Pereira, M.F.R.; Freire, C. Co3O4 Nanoparticles Anchored on Selectively Oxidized Graphene Flakes as Bifunctional Electrocatalysts for Oxygen Reactions. ChemistrySelect 2018, 3, 10064–10076. [Google Scholar] [CrossRef]
- Lu, H.Y.; Huang, Y.P.; Yan, J.J.; Fan, W.; Liu, T.X. Nitrogen-doped graphene/carbon nanotube/Co3O4 hybrids: One-step synthesis and superior electrocatalytic activity for the oxygen reduction reaction. RSC Adv. 2015, 5, 94615–94622. [Google Scholar] [CrossRef]
- Fernandes, D.M.; Mathumba, P.; Fernandes, A.J.S.; Iwuoha, E.I.; Freire, C. Towards efficient oxygen reduction reaction electrocatalysts through graphene doping. Electrochim. Acta 2019, 319, 72–81. [Google Scholar] [CrossRef]
- Ramos, R.; Abdelkader-Fernandez, V.K.; Matos, R.; Peixoto, A.F.; Fernandes, D.M. Metal-Supported Biochar Catalysts for Sustainable Biorefinery, Electrocatalysis, and Energy Storage Applications: A Review. Catalysts 2022, 12, 207. [Google Scholar] [CrossRef]
- Premarathna, K.S.D.; Rajapaksha, A.U.; Sarkar, B.; Kwon, E.E.; Bhatnagar, A.; Ok, Y.S.; Vithanage, M. Biochar-based engineered composites for sorptive decontamination of water: A review. Chem. Eng. J. 2019, 372, 536–550. [Google Scholar] [CrossRef]
- Huang, S.; Ding, Y.; Li, Y.; Han, X.; Xing, B.; Wang, S. Nitrogen and Sulfur Co-doped Hierarchical Porous Biochar Derived from the Pyrolysis of Mantis Shrimp Shell for Supercapacitor Electrodes. Energy Fuels 2021, 35, 1557–1566. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; Salama, M.F.; El-Banna, H.A. Shrimp’s waste: Chemical composition, nutritional value and utilization. Food Nahr. 1999, 43, 418–423. [Google Scholar] [CrossRef]
- Gao, F.; Xie, Y.Q.; Zang, Y.H.; Zhou, G.; Qu, J.Y.; Wu, M.B. A sustainable strategy to prepare porous carbons with tailored pores from shrimp shell for use as supercapacitor electrode materials. New Carbon Mater. 2022, 37, 750–751. [Google Scholar] [CrossRef]
- Gao, F.; Qu, J.Y.; Geng, C.; Shao, G.H.; Wu, M.B. Self-templating synthesis of nitrogen-decorated hierarchical porous carbon from shrimp shell for supercapacitors. J. Mater. Chem. A 2016, 4, 7445–7452. [Google Scholar] [CrossRef]
- Vicente, F.A.; Ventura, S.P.M.; Passos, H.; Dias, A.; Torres-Acosta, M.A.; Novak, U.; Likozar, B. Crustacean waste biorefinery as a sustainable cost-effective business model. Chem. Eng. J. 2022, 442, 13. [Google Scholar] [CrossRef]
- Mathew, G.M.; Mathew, D.C.; Sukumaran, R.K.; Sindhu, R.; Huang, C.C.; Binod, P.; Sirohi, R.; Kim, S.H.; Pandey, A. Sustainable and eco-friendly strategies for shrimp shell valorization. Environ. Pollut. 2020, 267, 15. [Google Scholar] [CrossRef]
- Li, Z.L.; Deng, L.B.; Kinloch, I.A.; Young, R.J. Raman spectroscopy of carbon materials and their composites: Graphene, nanotubes and fibres. Prog. Mater. Sci. 2023, 135, 58. [Google Scholar] [CrossRef]
- Xu, J.; Liu, J.W.; Ling, P.; Zhang, X.; Xu, K.; He, L.M.; Wang, Y.; Su, S.; Hu, S.; Xiang, J. Raman spectroscopy of biochar from the pyrolysis of three typical Chinese biomasses: A novel method for rapidly evaluating the biochar property. Energy 2020, 202, 10. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Basko, D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.C.; Xu, H.; Wang, X.W.; Huang, Y.X.; Chan-Park, M.B.; Zhang, H.; Wang, L.H.; Huang, W.; Chen, P. 3D Graphene-Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection. ACS Nano 2012, 6, 3206–3213. [Google Scholar] [CrossRef] [PubMed]
- Qiu, T.; Yang, J.G.; Bai, X.J.; Wang, Y.L. The preparation of synthetic graphite materials with hierarchical pores from lignite by one-step impregnation and their characterization as dye absorbents. RSC Adv. 2019, 9, 12737–12746. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.Y.; Ikeya, K.; Watanabe, A. Size distribution of carbon layer planes in biochar from different plant type of feedstock with different heating temperatures. Chemosphere 2016, 163, 252–258. [Google Scholar] [CrossRef]
- Gbenebor, O.P.; Adeosun, S.O.; Lawal, G.I.; Jun, S.; Olaleye, S.A. Acetylation, crystalline and morphological properties of structural polysaccharide from shrimp exoskeleton. Eng. Sci. Technol. 2017, 20, 1155–1165. [Google Scholar] [CrossRef]
- Liu, J.; Yang, X.Y.; Liu, H.H.; Jia, X.P.; Bao, Y.C. Mixed biochar obtained by the co-pyrolysis of shrimp shell with corn straw: Co-pyrolysis characteristics and its adsorption capability. Chemosphere 2021, 282, 13. [Google Scholar] [CrossRef] [PubMed]
- Reis, M.C.; Sousa, M.F.B.; Alobaid, F.; Bertran, C.A.; Wang, Y. A two-fluid model for calcium carbonate precipitation in highly supersaturated solutions. Adv. Powder Technol. 2018, 29, 1571–1581. [Google Scholar] [CrossRef]
- Mujtaba, J.; Sun, H.Y.; Huang, G.Y.; Molhave, K.; Liu, Y.G.; Zhao, Y.Y.; Wang, X.; Xu, S.M.; Zhu, J. Nanoparticle Decorated Ultrathin Porous Nanosheets as Hierarchical Co3O4 Nanostructures for Lithium Ion Battery Anode Materials. Sci. Rep. 2016, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.M.; Hussain, S.T.; Ali, S.; Ahmad, N.; Ali, N.; Munawar, K.S. Synthesis of carbon nanotubes anchored with mesoporous Co3O4 nanoparticles as anode material for lithium-ion batteries. Electrochim. Acta 2013, 105, 481–488. [Google Scholar] [CrossRef]
- Leng, X.N.; Wei, S.F.; Jiang, Z.H.; Lian, J.S.; Wang, G.Y.; Jiang, Q. Carbon-Encapsulated Co3O4 Nanoparticles as Anode Materials with Super Lithium Storage Performance. Sci. Rep. 2015, 5, 11. [Google Scholar] [CrossRef]
- Prabaharan, D.D.M.; Sadaiyandi, K.; Mahendran, M.; Sagadevan, S. Precipitation method and characterization of cobalt oxide nanoparticles. Appl. Phys. A-Mater. Sci. Process. 2017, 123, 6. [Google Scholar] [CrossRef]
- Marques, I.S.; Jarrais, B.; Ramos, R.; Abdelkader-Fernandez, V.K.; Yaremchenko, A.; Freire, C.; Fernandes, D.M.; Peixoto, A.F. Nitrogen-doped biochar-supported metal catalysts: High efficiency in both catalytic transfer hydrogenation of furfural and electrocatalytic oxygen reactions. Catal. Today 2023, 418, 13. [Google Scholar] [CrossRef]
- Puziy, A.M.; Poddubnaya, O.I.; Socha, R.P.; Gurgul, J.; Wisniewski, M. XPS and NMR studies of phosphoric acid activated carbons. Carbon 2008, 46, 2113–2123. [Google Scholar] [CrossRef]
- Matos, R.; Nunes, M.S.; Kuzniarska-Biernacka, I.; Rocha, M.; Guedes, A.; Estrada, A.C.; Lopes, J.L.; Trindade, T.; Freire, C. Graphene@Metal Sulfide/Oxide Nanocomposites as Novel Photo-Fenton-like Catalysts for 4-Nitrophenol Degradation. Eur. J. Inorg. Chem. 2021, 2021, 4915–4928. [Google Scholar] [CrossRef]
- Jarrais, B.; Guedes, A.; Freire, C. Heteroatom-Doped Carbon Nanomaterials as Metal-Free Catalysts for the Reduction of 4-Nitrophenol. ChemistrySelect 2018, 3, 1737–1748. [Google Scholar] [CrossRef]
- Braga, R.; Fernandes, D.M.; Adán-Más, A.; Silva, T.M.; Montemor, M.F. The Role of the Precursor on the Electrochemical Performance of N,S Co-Doped Graphene Electrodes in Aqueous Electrolytes. Batteries 2023, 9, 168. [Google Scholar] [CrossRef]
- Fernandes, D.M.; Novais, H.C.; Bacsa, R.; Serp, P.; Bachiller-Baeza, B.; Rodríguez-Ramos, I.; Guerrero-Ruiz, A.; Freire, C. Polyoxotungstate@Carbon Nanocomposites As Oxygen Reduction Reaction (ORR) Electrocatalysts. Langmuir 2018, 34, 6376–6387. [Google Scholar] [CrossRef] [PubMed]
- Moulder, J.F.; Chastain, J. Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Physical Electronics Division, Perkin-Elmer Corporation: Waltham, MA, USA, 1992. [Google Scholar]
- Gopinath, C.S.; Hegde, S.G.; Ramaswamy, A.V.; Mahapatra, S. Photoernission studies of polymorphic CaCO3 materials. Mater. Res. Bull. 2002, 37, 1323–1332. [Google Scholar] [CrossRef]
- Wen, Y.Y.; Wang, B.; Huang, C.C.; Wang, L.Z.; Hulicova-Jurcakova, D. Synthesis of Phosphorus-Doped Graphene and its Wide Potential Window in Aqueous Supercapacitors. Chem. Eur. J. 2015, 21, 80–85. [Google Scholar] [CrossRef]
- Luo, Y.; Gu, K.K.; Yang, T.Y.; Zhang, M.Z. Synthesis of porous nanosheet Co3O4 with two pairs of redox peaks for high performance as a battery electrode. J. Energy Storage 2019, 21, 362–369. [Google Scholar] [CrossRef]
- Fan, X.; Ohlckers, P.; Chen, X.Y. Tunable Synthesis of Hollow Co3O4 Nanoboxes and Their Application in Supercapacitors. Appl. Sci. 2020, 10, 1208. [Google Scholar] [CrossRef]
- Morais, R.G.; Rey-Raap, N.; Figueiredo, J.L.; Pereira, M.F.R. Glucose-derived carbon materials with tailored properties as electrocatalysts for the oxygen reduction reaction. Beilstein J. Nanotechnol. 2019, 10, 1089–1102. [Google Scholar] [CrossRef] [PubMed]
- Nunes, M.; Fernandes, D.M.; Morales, M.V.; Rodriguez-Ramos, I.; Guerrero-Ruiz, A.; Freire, C. Cu and Pd nanoparticles supported on a graphitic carbon material as bifunctional HER/ORR electrocatalysts. Catal. Today 2020, 357, 279–290. [Google Scholar] [CrossRef]
- Bouleau, L.; Pérez-Rodríguez, S.; Quílez-Bermejo, J.; Izquierdo, M.T.; Xu, F.; Fierro, V.; Celzard, A. Best practices for ORR performance evaluation of metal-free porous carbon electrocatalysts. Carbon 2022, 189, 349–361. [Google Scholar] [CrossRef]
- Shinagawa, T.; Garcia-Esparza, A.T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 21. [Google Scholar] [CrossRef]
- Ferrero, G.A.; Preuss, K.; Fuertes, A.B.; Sevilla, M.; Titirici, M.M. The influence of pore size distribution on the oxygen reduction reaction performance in nitrogen doped carbon microspheres. J. Mater. Chem. A 2016, 4, 2581–2589. [Google Scholar] [CrossRef]
- Park, J.; Nabae, Y.; Hayakawa, T.; Kakimoto, M.A. Highly Selective Two-Electron Oxygen Reduction Catalyzed by Mesoporous Nitrogen-Doped Carbon. ACS Catal. 2014, 4, 3749–3754. [Google Scholar] [CrossRef]
- Albashir, A.I.M.; Lu, X.Y.; Dai, X.Y.; Qi, W. Effects of porous structure and oxygen functionalities on electrochemical synthesis of hydrogen peroxide on ordered mesoporous carbon. Comm. Chem. 2024, 7, 8. [Google Scholar] [CrossRef]
- Liu, Y.; Li, K.X.; Ge, B.C.; Pu, L.T.; Liu, Z.Q. Influence of Micropore and Mesoporous in Activated Carbon Air-cathode Catalysts on Oxygen Reduction Reaction in Microbial Fuel Cells. Electrochim. Acta 2016, 214, 110–118. [Google Scholar] [CrossRef]
- Liu, X.J.; Culhane, C.; Li, W.Y.; Zou, S.Z. Spinach-Derived Porous Carbon Nanosheets as High-Performance Catalysts for Oxygen Reduction Reaction. ACS Omega 2020, 5, 24367–24378. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Liu, X.L.; Ye, G.H.; Gao, X.H.; Zhuang, Z.H.; Li, P.; Xiang, D.; Li, X.K.; Clayborne, A.Z.; Zhou, X.G.; et al. Balancing the Micro-Mesoporosity for Activity Maximization of N-Doped Carbonaceous Electrocatalysts for the Oxygen Reduction Reaction. ChemSusChem 2019, 12, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.T.; Wang, W.; Asif, M.; Yu, Y.; Wang, Z.Y.; Wang, J.L.; Liu, H.F.; Xiao, J.W. Cobalt ion-coordinated self-assembly synthesis of nitrogen-doped ordered mesoporous carbon nanosheets for efficiently catalyzing oxygen reduction. Nanoscale 2017, 9, 15534–15541. [Google Scholar] [CrossRef] [PubMed]
- Ning, X.M.; Li, Y.H.; Ming, J.Y.; Wang, Q.; Wang, H.J.; Cao, Y.H.; Peng, F.; Yang, Y.H.; Yu, H. Electronic synergism of pyridinic- and graphitic-nitrogen on N-doped carbons for the oxygen reduction reaction. Chem. Sci. 2019, 10, 1589–1596. [Google Scholar] [CrossRef]
- Faisal, S.N.; Haque, E.; Noorbehesht, N.; Zhang, W.M.; Harris, A.T.; Church, T.L.; Minett, A.I. Pyridinic and graphitic nitrogen-rich graphene for high-performance supercapacitors and metal-free bifunctional electrocatalysts for ORR and OER. RSC Adv. 2017, 7, 17950–17958. [Google Scholar] [CrossRef]
- Liang, J.Y.; Yuan, Q.H. Effects of graphitic- and pyridinic-N co-doping on structure regulation and ORR activity of N-doped graphene. Appl. Surf. Sci. 2024, 648, 8. [Google Scholar] [CrossRef]
- Vazhayil, A.; Ashok, S.; Majumder, S.; Jeffery, A.A.; Altaf, M.; Ahn, Y.H.; Thomas, N. Orange peel derived activated carbon supported Ni-Co3O4 as an efficient electrocatalyst for oxygen evolution and reduction reaction in alkaline media. Mater. Chem. Phys. 2024, 328, 15. [Google Scholar] [CrossRef]
- Qian, C.; Guo, X.M.; Zhang, W.; Yang, H.X.; Qian, Y.; Xu, F.; Qian, S.L.; Lin, S.L.; Fan, T.X. Co3O4 nanoparticles on porous bio-carbon substrate as catalyst for oxygen reduction reaction. Microporous Mesoporous Mat. 2019, 277, 45–51. [Google Scholar] [CrossRef]
- Zhang, T.T.; He, C.S.; Sun, F.Z.; Ding, Y.Q.; Wang, M.C.; Peng, L.; Wang, J.H.; Lin, Y.Q. Co3O4 nanoparticles anchored on nitrogen-doped reduced graphene oxide as a multifunctional catalyst for H2O2 reduction, oxygen reduction and evolution reaction. Sci. Rep. 2017, 7, 11. [Google Scholar] [CrossRef]
- Nunes, M.; Fernandes, D.M.; Morales, M.V.; Rodríguez-Ramos, I.; Guerrero-Ruiz, A.; Freire, C. Cu-based N-doped/undoped graphene nanocomposites as electrocatalysts for the oxygen reduction. J. Appl. Electrochem. 2019, 49, 693–703. [Google Scholar] [CrossRef]
- Hoang, S.; Guo, S.W.; Hahn, N.T.; Bard, A.J.; Mullins, C.B. Visible Light Driven Photoelectrochemical Water Oxidation on Nitrogen-Modified TiO2 Nanowires. Nano Lett. 2012, 12, 26–32. [Google Scholar] [CrossRef] [PubMed]
Material | Raman Shift (cm−1) | ID/IG | |
---|---|---|---|
D Band | G Band | ||
CC | 1362.15 | 1582.88 | 1.25 |
N-CC | 1354.52 | 1577.33 | 1.26 |
N-CC@Co3O4_1 | 1354.29 | 1583.06 | 1.16 |
N-CC@Co3O4_2 | 1358.14 | 1587.14 | 1.12 |
N-CC@Co3O4_3 | 1355.07 | 1581.20 | 1.21 |
Material | At % | ||||||
---|---|---|---|---|---|---|---|
C 1s | N 1s | O 1s | S 2p | P 2p | Ca 2p | Co 2p | |
CC | 90.55 | 2.99 | 4.95 | 1.01 | 0.50 | --- | --- |
N-CC | 87.24 | 6.87 | 4.59 | 0.15 | 0.77 | 0.38 | --- |
N-CC@Co3O4_1 | 69.45 | 5.72 | 17.90 | --- | 1.12 | 0.48 | 5.33 |
N-CC@Co3O4_2 | 66.77 | 5.85 | 19.56 | --- | 0.93 | 0.54 | 6.36 |
N-CC@Co3O4_3 | 47.17 | 3.48 | 34.56 | --- | --- | --- | 14.79 |
Catalyst | Eonset/V vs. RHE | jL/mA cm−2 | n | TS/mV dec−1 |
---|---|---|---|---|
CC | 0.78 | −3.11 | 2.83 | 74 |
N-CC | 0.85 | −3.31 | 3.30 | 125 |
N-CC@Co3O4_1 | 0.85 | −2.92 | 3.73 | 64 |
N-CC@Co3O4_2 | 0.84 | −3.45 | 3.50 | 35 |
N-CC@Co3O4_3 | 0.82 | −3.16 | 3.42 | 44 |
Co3O4 | 0.64 | −1.69 | --- | 115 |
Pt/C | 0.93 | −4.62 | 3.58 | 91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matos, R.; Manuel, J.V.; Fernandes, A.J.S.; Abdelkader-Fernández, V.K.; Peixoto, A.F.; Fernandes, D.M. In Situ Synthesis of Co3O4 Nanoparticles on N-Doped Biochar as High-Performance Oxygen Reduction Reaction Electrocatalysts. Catalysts 2024, 14, 951. https://doi.org/10.3390/catal14120951
Matos R, Manuel JV, Fernandes AJS, Abdelkader-Fernández VK, Peixoto AF, Fernandes DM. In Situ Synthesis of Co3O4 Nanoparticles on N-Doped Biochar as High-Performance Oxygen Reduction Reaction Electrocatalysts. Catalysts. 2024; 14(12):951. https://doi.org/10.3390/catal14120951
Chicago/Turabian StyleMatos, Renata, Jorge V. Manuel, António J. S. Fernandes, Victor K. Abdelkader-Fernández, Andreia F. Peixoto, and Diana M. Fernandes. 2024. "In Situ Synthesis of Co3O4 Nanoparticles on N-Doped Biochar as High-Performance Oxygen Reduction Reaction Electrocatalysts" Catalysts 14, no. 12: 951. https://doi.org/10.3390/catal14120951
APA StyleMatos, R., Manuel, J. V., Fernandes, A. J. S., Abdelkader-Fernández, V. K., Peixoto, A. F., & Fernandes, D. M. (2024). In Situ Synthesis of Co3O4 Nanoparticles on N-Doped Biochar as High-Performance Oxygen Reduction Reaction Electrocatalysts. Catalysts, 14(12), 951. https://doi.org/10.3390/catal14120951