Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (976)

Search Parameters:
Keywords = new power system stability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2378 KiB  
Article
Discrete Unilateral Constrained Extended Kalman Filter in an Embedded System
by Leonardo Herrera and Rodrigo Méndez-Ramírez
Sensors 2025, 25(15), 4636; https://doi.org/10.3390/s25154636 - 26 Jul 2025
Viewed by 161
Abstract
Since its publication in the 1960s, the Kalman Filter (KF) has been a powerful tool in optimal state estimation. However, the KF and most of its variants have mainly focused on the state estimation of smooth systems. In this work, we propose a [...] Read more.
Since its publication in the 1960s, the Kalman Filter (KF) has been a powerful tool in optimal state estimation. However, the KF and most of its variants have mainly focused on the state estimation of smooth systems. In this work, we propose a new algorithm called the Discrete Unilateral Constrained Extended Kalman Filter (DUCEKF) that expands the capabilities of the Extended Kalman Filter (EKF) to a class of hybrid mechanical systems known as systems with unilateral constraints. Such systems are non-smooth in position and discontinuous in velocity. Lyapunov stability theory is invoked to establish sufficient conditions for the estimation error stability of the proposed algorithm. A comparison of the proposed algorithm with the EKF is conducted in simulation through a case study to demonstrate the superiority of the DUCEKF for the state estimation tasks in this class of systems. Simulations and an experiment were developed in this case study to validate the performance of the proposed algorithm. The experiment was conducted using electronic hardware that consists of an Embedded System (ES) called “Mikromedia for dsPIC33EP” and an external DAC-12 Click board, which includes a Digital-to-Analog Converter (DAC) from Texas Instruments. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

25 pages, 4048 KiB  
Article
Grid Stability and Wind Energy Integration Analysis on the Transmission Grid Expansion Planned in La Palma (Canary Islands)
by Raúl Peña, Antonio Colmenar-Santos and Enrique Rosales-Asensio
Processes 2025, 13(8), 2374; https://doi.org/10.3390/pr13082374 - 26 Jul 2025
Viewed by 356
Abstract
Island electrical networks often face stability and resilience issues due to their weakly meshed structure, which lowers system inertia and compromises supply continuity. This challenge is further intensified by the increasing integration of renewable energy sources, promoted by decarbonization goals, whose intermittent and [...] Read more.
Island electrical networks often face stability and resilience issues due to their weakly meshed structure, which lowers system inertia and compromises supply continuity. This challenge is further intensified by the increasing integration of renewable energy sources, promoted by decarbonization goals, whose intermittent and variable nature complicates grid stability management. To address this, Red Eléctrica de España—the transmission system operator of Spain—has planned several improvements in the Canary Islands, including the installation of new wind farms and a second transmission circuit on the island of La Palma. This new infrastructure will complement the existing one and ensure system stability in the event of N-1 contingencies. This article evaluates the stability of the island’s electrical network through dynamic simulations conducted in PSS®E, analyzing four distinct fault scenarios across three different grid configurations (current, short-term upgrade and long-term upgrade with wind integration). Generator models are based on standard dynamic parameters (WECC) and calibrated load factors using real data from the day of peak demand in 2021. Results confirm that the planned developments ensure stable system operation under severe contingencies, while the integration of wind power leads to a 33% reduction in diesel generation, contributing to improved environmental and operational performance. Full article
Show Figures

Figure 1

8 pages, 1122 KiB  
Proceeding Paper
Recent Developments in Four-In-Wheel Electronic Differential Systems in Electrical Vehicles
by Anouar El Mourabit and Ibrahim Hadj Baraka
Comput. Sci. Math. Forum 2025, 10(1), 17; https://doi.org/10.3390/cmsf2025010017 - 25 Jul 2025
Viewed by 16
Abstract
This manuscript investigates the feasibility of Four-In-Wheel Electronic Differential Systems (4 IW-EDSs) within contemporary electric vehicles (EVs), emphasizing their benefits for stability regulation predicated on steering angles. Through an extensive literature review, we conduct a comparative analysis of various in-wheel-motor models in terms [...] Read more.
This manuscript investigates the feasibility of Four-In-Wheel Electronic Differential Systems (4 IW-EDSs) within contemporary electric vehicles (EVs), emphasizing their benefits for stability regulation predicated on steering angles. Through an extensive literature review, we conduct a comparative analysis of various in-wheel-motor models in terms of power output, efficiency, and torque characteristics. Furthermore, we explore the distinctions between IW-EDSs and steer-by-wire systems, as well as conventional systems, while evaluating recent research findings to determine their implications for the evolution of electric mobility. Moreover, this paper addresses the necessity for fault-tolerant methodologies to boost reliability in practical applications. The findings yield valuable insights into the challenges and impacts associated with the implementation of differential steering control in four-wheel independent-drive electric vehicles. This study aims to explore the interaction between these systems, optimize torque distribution, and discover the most ideal control strategy that will improve maneuverability, stability, and energy efficiency, thereby opening up new frontiers in the development of next-generation electric vehicles with unparalleled performance and safety features. Full article
Show Figures

Figure 1

37 pages, 1099 KiB  
Review
Application Advances and Prospects of Ejector Technologies in the Field of Rail Transit Driven by Energy Conservation and Energy Transition
by Yiqiao Li, Hao Huang, Shengqiang Shen, Yali Guo, Yong Yang and Siyuan Liu
Energies 2025, 18(15), 3951; https://doi.org/10.3390/en18153951 - 24 Jul 2025
Viewed by 283
Abstract
Rail transit as a high-energy consumption field urgently requires the adoption of clean energy innovations to reduce energy consumption and accelerate the transition to new energy applications. As an energy-saving fluid machinery, the ejector exhibits significant application potential and academic value within this [...] Read more.
Rail transit as a high-energy consumption field urgently requires the adoption of clean energy innovations to reduce energy consumption and accelerate the transition to new energy applications. As an energy-saving fluid machinery, the ejector exhibits significant application potential and academic value within this field. This paper reviewed the recent advances, technical challenges, research hotspots, and future development directions of ejector applications in rail transit, aiming to address gaps in existing reviews. (1) In waste heat recovery, exhaust heat is utilized for propulsion in vehicle ejector refrigeration air conditioning systems, resulting in energy consumption being reduced by 12~17%. (2) In vehicle pneumatic pressure reduction systems, the throttle valve is replaced with an ejector, leading to an output power increase of more than 13% and providing support for zero-emission new energy vehicle applications. (3) In hydrogen supply systems, hydrogen recirculation efficiency exceeding 68.5% is achieved in fuel cells using multi-nozzle ejector technology. (4) Ejector-based active flow control enables precise ± 20 N dynamic pantograph lift adjustment at 300 km/h. However, current research still faces challenges including the tendency toward subcritical mode in fixed geometry ejectors under variable operating conditions, scarcity of application data for global warming potential refrigerants, insufficient stability of hydrogen recycling under wide power output ranges, and thermodynamic irreversibility causing turbulence loss. To address these issues, future efforts should focus on developing dynamic intelligent control technology based on machine learning, designing adjustable nozzles and other structural innovations, optimizing multi-system efficiency through hybrid architectures, and investigating global warming potential refrigerants. These strategies will facilitate the evolution of ejector technology toward greater intelligence and efficiency, thereby supporting the green transformation and energy conservation objectives of rail transit. Full article
(This article belongs to the Special Issue Advanced Research on Heat Exchangers Networks and Heat Recovery)
Show Figures

Figure 1

22 pages, 1896 KiB  
Article
Physics-Constrained Diffusion-Based Scenario Expansion Method for Power System Transient Stability Assessment
by Wei Dong, Yue Yu, Lebing Zhao, Wen Hua, Ying Yang, Bowen Wang, Jiawen Cao and Changgang Li
Processes 2025, 13(8), 2344; https://doi.org/10.3390/pr13082344 - 23 Jul 2025
Viewed by 209
Abstract
In transient stability assessment (TSA) of power systems, the extreme scarcity of unstable scenario samples often leads to misjudgments of fault risks by assessment models, and this issue is particularly pronounced in new-type power systems with high penetration of renewable energy sources. To [...] Read more.
In transient stability assessment (TSA) of power systems, the extreme scarcity of unstable scenario samples often leads to misjudgments of fault risks by assessment models, and this issue is particularly pronounced in new-type power systems with high penetration of renewable energy sources. To address this, this paper proposes a physics-constrained diffusion-based scenario expansion method. It constructs a hierarchical conditional diffusion framework embedded with transient differential equations, combines a spatiotemporal decoupling analysis mechanism to capture grid topological and temporal features, and introduces a transient energy function as a stability boundary constraint to ensure the physical rationality of generated scenarios. Verification on the modified IEEE-39 bus system with a high proportion of new energy sources shows that the proposed method achieves an unstable scenario recognition rate of 98.77%, which is 3.92 and 2.65 percentage points higher than that of the Synthetic Minority Oversampling Technique (SMOTE, 94.85%) and Generative Adversarial Networks (GANs, 96.12%) respectively. The geometric mean achieves 99.33%, significantly enhancing the accuracy and reliability of TSA, and providing sufficient technical support for identifying the dynamic security boundaries of power systems. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

22 pages, 1475 KiB  
Systematic Review
A Systematic Review of Grid-Forming Control Techniques for Modern Power Systems and Microgrids
by Paul Arévalo, Carlos Ramos and Agostinho Rocha
Energies 2025, 18(14), 3888; https://doi.org/10.3390/en18143888 - 21 Jul 2025
Viewed by 329
Abstract
Looking toward the future, governments around the world have started to change their energy mix due to climate change. The new energy mix will consist mainly of Inverter-Based Resources (IBRs), such as wind and solar power. This transition from a synchronous to a [...] Read more.
Looking toward the future, governments around the world have started to change their energy mix due to climate change. The new energy mix will consist mainly of Inverter-Based Resources (IBRs), such as wind and solar power. This transition from a synchronous to a non-synchronous grid introduces new challenges in stability, resilience, and synchronization, necessitating advanced control strategies. Among these, Grid-Forming (GFM) control techniques have emerged as an effective solution for ensuring stable operations in microgrids and large-scale power systems with high IBRs integration. This paper presents a systematic review of GFM control techniques, focusing on their principles and applications. Using the PRISMA 2020 methodology, 75 studies published between 2015 and 2025 were synthesized to evaluate the characteristics of GFM control strategies. The review organizes GFM strategies, evaluates their performance under varying operational scenarios, and emphasizes persistent challenges like grid stability, inertia emulation, and fault ride-through capabilities. Furthermore, this study examines real-world implementations of GFM technology in modern power grids. Notable projects include the UK’s National Grid Pathfinder Program, which integrates GFM inverters to enhance stability, and Australia’s Hornsdale Power Reserve, where battery energy storage with GFM capabilities supports grid frequency regulation. Full article
(This article belongs to the Topic Modern Power Systems and Units)
Show Figures

Figure 1

44 pages, 5275 KiB  
Review
The Power Regulation Characteristics, Key Challenges, and Solution Pathways of Typical Flexible Resources in Regional Energy Systems
by Houze Jiang, Shilei Lu, Boyang Li and Ran Wang
Energies 2025, 18(14), 3830; https://doi.org/10.3390/en18143830 - 18 Jul 2025
Viewed by 432
Abstract
The low-carbon transition of the global energy system is an urgent necessity to address climate change and meet growing energy demand. As a major source of energy consumption and emissions, buildings play a key role in this transition. This study systematically analyzes the [...] Read more.
The low-carbon transition of the global energy system is an urgent necessity to address climate change and meet growing energy demand. As a major source of energy consumption and emissions, buildings play a key role in this transition. This study systematically analyzes the flexible resources of building energy systems and vehicle-to-grid (V2G) interaction technologies, and mainly focuses on the regulation characteristics and coordination mechanisms of distributed energy supply (renewable energy and multi-energy cogeneration), energy storage (electric/thermal/cooling), and flexible loads (air conditioning and electric vehicles) within regional energy systems. The study reveals that distributed renewable energy and multi-energy cogeneration technologies form an integrated architecture through a complementary “output fluctuation mitigation–cascade energy supply” mechanism, enabling the coordinated optimization of building energy efficiency and grid regulation. Electricity and thermal energy storage serve as dual pillars of flexibility along the “fast response–economic storage” dimension. Air conditioning loads and electric vehicles (EVs) complement each other via thermodynamic regulation and Vehicle-to-Everything (V2X) technologies, constructing a dual-dimensional regulation mode in terms of both power and time. Ultimately, a dynamic balance system integrating sources, loads, and storage is established, driven by the spatiotemporal complementarity of multi-energy flows. This paper proposes an innovative framework that optimizes energy consumption and enhances grid stability by coordinating distributed renewable energy, energy storage, and flexible loads across multiple time scales. This approach offers a new perspective for achieving sustainable and flexible building energy systems. In addition, this paper explores the application of demand response policies in building energy systems, analyzing the role of policy incentives and market mechanisms in promoting building energy flexibility. Full article
Show Figures

Figure 1

18 pages, 1724 KiB  
Article
Transient Stability Assessment of Power Systems Built upon Attention-Based Spatial–Temporal Graph Convolutional Networks
by Yu Nan, Weiping Niu, Yong Chang, Zhenzhen Kong and Huichao Zhao
Energies 2025, 18(14), 3824; https://doi.org/10.3390/en18143824 - 18 Jul 2025
Viewed by 299
Abstract
Rapid and accurate transient stability assessment (TSA) is crucial for ensuring secure and stable operation in power systems. However, existing methods fail to adequately exploit the spatiotemporal characteristics in power grid transient data, which constrains the evaluation performance of models. This paper proposes [...] Read more.
Rapid and accurate transient stability assessment (TSA) is crucial for ensuring secure and stable operation in power systems. However, existing methods fail to adequately exploit the spatiotemporal characteristics in power grid transient data, which constrains the evaluation performance of models. This paper proposes a TSA method built upon an Attention-Based Spatial–Temporal Graph Convolutional Network (ASTGCN) model. First, a spatiotemporal attention module is used to aggregate and extract the spatiotemporal correlations of the transient process in the power system. A spatiotemporal convolution module is then employed to effectively capture the spatial features and temporal evolution patterns of transient stability data. In addition, an adaptive focal loss function is designed to enhance the fitting of unstable samples and increase the weight of misclassified samples, thereby improving global accuracy and reducing the occurrence of missed instability samples. Finally, the simulation results from the New England 10-machine 39-bus system and the NPCC 48-machine 140-bus system validate the effectiveness of the proposed methodology. Full article
Show Figures

Figure 1

23 pages, 3337 KiB  
Article
Optimization of Economic Space: Algorithms for Controlling Energy Storage in Low-Voltage Networks
by Marcin Rabe, Tomasz Norek, Agnieszka Łopatka, Jarosław Korpysa, Veselin Draskovic, Andrzej Gawlik and Katarzyna Widera
Energies 2025, 18(14), 3756; https://doi.org/10.3390/en18143756 - 16 Jul 2025
Viewed by 227
Abstract
With the increasing penetration of renewables, the importance of electrical energy storage (EES) for power supply stabilization is growing. The intermittency of renewable energy sources remains the main issue limiting their rapid integration; however, the development of high-capacity batteries capable of storing large [...] Read more.
With the increasing penetration of renewables, the importance of electrical energy storage (EES) for power supply stabilization is growing. The intermittency of renewable energy sources remains the main issue limiting their rapid integration; however, the development of high-capacity batteries capable of storing large quantities of energy offers a way to address this challenge. This article presents and describes dedicated algorithms for controlling the EES system to enable the provision of individual system services. Five services are planned for implementation: RES power stabilization; voltage regulation using active and reactive power; reactive power compensation; power stabilization of unstable loads; and power reduction on demand. The aim of this paper is to develop new, dedicated energy storage control algorithms for delivering these specific services. Additionally, the voltage regulation algorithm includes two operating modes: short-term regulation (voltage fluctuation stabilization) and long-term regulation (triggered by an operator signal). Full article
(This article belongs to the Special Issue Sustainable Energy & Society—2nd Edition)
Show Figures

Figure 1

20 pages, 3151 KiB  
Article
Distributed Power, Energy Storage Planning, and Power Tracking Studies for Distribution Networks
by Xiaoming Zhang and Jiaming Liu
Electronics 2025, 14(14), 2833; https://doi.org/10.3390/electronics14142833 - 15 Jul 2025
Viewed by 259
Abstract
In recent years, global energy transition has pushed distributed generation (DG) to the forefront in relation to new energy development. Most existing studies focus on DG or energy storage planning but lack co-optimization and power tracking analysis. To address this problem, a multi-objective [...] Read more.
In recent years, global energy transition has pushed distributed generation (DG) to the forefront in relation to new energy development. Most existing studies focus on DG or energy storage planning but lack co-optimization and power tracking analysis. To address this problem, a multi-objective genetic algorithm-based collaborative planning method for photovoltaic (PV) and energy storage is proposed. On this basis, power flow tracking technology is further introduced to conduct a detailed analysis of distributed energy power allocation, providing support for system operation optimization and responsibility sharing. To verify the validity of the model, a 14-node distribution network is used as an example. Voltage stability, PV consumption rate, and economy are taken as objective functions. By solving the three scenarios, it is determined that the introduction of energy storage increases the PV consumption rate from 85.6% to 96.3%; the average network loss for the whole day increases from 1.81 MW to 2.40 MW. Utilizing power tracking techniques, various causes were analyzed; it was found that the placement of energy storage leads to a multidirectional and repetitive flow of power. Full article
Show Figures

Figure 1

30 pages, 4318 KiB  
Article
AI-Enhanced Photovoltaic Power Prediction Under Cross-Continental Dust Events and Air Composition Variability in the Mediterranean Region
by Pavlos Nikolaidis
Energies 2025, 18(14), 3731; https://doi.org/10.3390/en18143731 - 15 Jul 2025
Viewed by 209
Abstract
Accurate short-term forecasting of photovoltaic power generation is vital for the operational stability of isolated energy systems, especially in regions with increasing renewable energy penetration. This study presents a novel AI-based forecasting framework applied to the island of Cyprus. Using machine learning methods, [...] Read more.
Accurate short-term forecasting of photovoltaic power generation is vital for the operational stability of isolated energy systems, especially in regions with increasing renewable energy penetration. This study presents a novel AI-based forecasting framework applied to the island of Cyprus. Using machine learning methods, particularly regression trees, the proposed approach evaluates the impact of key environmental variables on PV performance, with an emphasis on atmospheric dust transport and air composition variability. A distinguishing feature of this work is the integration of cross-continental dust events and diverse atmospheric parameters into a structured forecasting model. A new clustering methodology is introduced to classify these inputs and analyze their correlation with PV output, enabling improved feature selection for model training. Importantly, all input parameters are sourced from publicly accessible, internet-based platforms, facilitating wide reproducibility and operational application. The obtained results demonstrate that incorporating dust deposition and air composition features significantly enhances forecasting accuracy, particularly during severe dust episodes. This research not only fills a notable gap in the PV forecasting literature but also provides a scalable model for other dust-prone regions transitioning to high levels of solar energy integration. Full article
Show Figures

Figure 1

26 pages, 736 KiB  
Review
Review of Advances in Renewable Energy-Based Microgrid Systems: Control Strategies, Emerging Trends, and Future Possibilities
by Kayode Ebenezer Ojo, Akshay Kumar Saha and Viranjay Mohan Srivastava
Energies 2025, 18(14), 3704; https://doi.org/10.3390/en18143704 - 14 Jul 2025
Viewed by 409
Abstract
This paper gives a thorough overview of the technological advancements in microgrid systems, focusing on the Internet of Things (IoT), predictive analytics, real-time monitoring, architectures, control strategies, benefits, and drawbacks. It highlights their importance in boosting system security, guaranteeing real-time control, and increasing [...] Read more.
This paper gives a thorough overview of the technological advancements in microgrid systems, focusing on the Internet of Things (IoT), predictive analytics, real-time monitoring, architectures, control strategies, benefits, and drawbacks. It highlights their importance in boosting system security, guaranteeing real-time control, and increasing energy efficiency. Accordingly, researchers have embraced the involvement of many control capacities through voltage and frequency stability, optimal power sharing, and system optimization in response to the progressively complex and expanding power systems in recent years. Advanced control techniques have garnered significant interest among these management strategies because of their high accuracy and efficiency, flexibility and adaptability, scalability, and real-time predictive skills to manage non-linear systems. This study provides insight into various facets of microgrids (MGs), literature review, and research gaps, particularly concerning their control layers. Additionally, the study discusses new developments like Supervisory Control and Data Acquisition (SCADA), blockchain-based cybersecurity, smart monitoring systems, and AI-driven control for MGs optimization. The study concludes with recommendations for future research, emphasizing the necessity of stronger control systems, cutting-edge storage systems, and improved cybersecurity to guarantee that MGs continue to be essential to the shift to a decentralized, low-carbon energy future. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

25 pages, 2183 KiB  
Article
Research on Decision of Echelon Utilization of Retired Power Batteries Under Government Regulation
by Xudong Deng, Xiaoyu Zhang, Yong Wang and Lihui Wang
World Electr. Veh. J. 2025, 16(7), 390; https://doi.org/10.3390/wevj16070390 - 10 Jul 2025
Viewed by 310
Abstract
With the rapid development of new energy vehicles, the echelon utilization of power batteries has become a key pathway to promoting efficient resource recycling and environmental sustainability. To address the limitation of the existing studies that overlook the dynamic strategic interactions among multiple [...] Read more.
With the rapid development of new energy vehicles, the echelon utilization of power batteries has become a key pathway to promoting efficient resource recycling and environmental sustainability. To address the limitation of the existing studies that overlook the dynamic strategic interactions among multiple stakeholders, this paper constructs a tripartite evolutionary game model involving the government, battery recycling enterprises, and consumers. By incorporating consumers’ battery usage levels into the strategy space, the model captures the behavioral evolution of all these parties under bounded rationality. Numerical simulations are conducted to analyze the impact of government incentives and penalties, consumer usage behaviors, and enterprise recycling modes on system stability. The results show that a “low-subsidy, high-penalty” mechanism can more effectively guide enterprises to prioritize echelon utilization and that moderate consumer usage significantly improves battery reuse efficiency. This study enriches the application of the evolutionary game theory in the field of battery recycling and provides quantitative evidence and practical insights for policy formulation. Full article
Show Figures

Figure 1

62 pages, 4192 KiB  
Review
Advancements in Magnetorheological Foams: Composition, Fabrication, AI-Driven Enhancements and Emerging Applications
by Hesamodin Khodaverdi and Ramin Sedaghati
Polymers 2025, 17(14), 1898; https://doi.org/10.3390/polym17141898 - 9 Jul 2025
Viewed by 532
Abstract
Magnetorheological (MR) foams represent a class of smart materials with unique tunable viscoelastic properties when subjected to external magnetic fields. Combining porous structures with embedded magnetic particles, these materials address challenges such as leakage and sedimentation, typically encountered in conventional MR fluids while [...] Read more.
Magnetorheological (MR) foams represent a class of smart materials with unique tunable viscoelastic properties when subjected to external magnetic fields. Combining porous structures with embedded magnetic particles, these materials address challenges such as leakage and sedimentation, typically encountered in conventional MR fluids while offering advantages like lightweight design, acoustic absorption, high energy harvesting capability, and tailored mechanical responses. Despite their potential, challenges such as non-uniform particle dispersion, limited durability under cyclic loads, and suboptimal magneto-mechanical coupling continue to hinder their broader adoption. This review systematically addresses these issues by evaluating the synthesis methods (ex situ vs. in situ), microstructural design strategies, and the role of magnetic particle alignment under varying curing conditions. Special attention is given to the influence of material composition—including matrix types, magnetic fillers, and additives—on the mechanical and magnetorheological behaviors. While the primary focus of this review is on MR foams, relevant studies on MR elastomers, which share fundamental principles, are also considered to provide a broader context. Recent advancements are also discussed, including the growing use of artificial intelligence (AI) to predict the rheological and magneto-mechanical behavior of MR materials, model complex device responses, and optimize material composition and processing conditions. AI applications in MR systems range from estimating shear stress, viscosity, and storage/loss moduli to analyzing nonlinear hysteresis, magnetostriction, and mixed-mode loading behavior. These data-driven approaches offer powerful new capabilities for material design and performance optimization, helping overcome long-standing limitations in conventional modeling techniques. Despite significant progress in MR foams, several challenges remain to be addressed, including achieving uniform particle dispersion, enhancing viscoelastic performance (storage modulus and MR effect), and improving durability under cyclic loading. Addressing these issues is essential for unlocking the full potential of MR foams in demanding applications where consistent performance, mechanical reliability, and long-term stability are crucial for safety, effectiveness, and operational longevity. By bridging experimental methods, theoretical modeling, and AI-driven design, this work identifies pathways toward enhancing the functionality and reliability of MR foams for applications in vibration damping, energy harvesting, biomedical devices, and soft robotics. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

25 pages, 7697 KiB  
Article
Wind-Speed Prediction in Renewable-Energy Generation Using an IHOA
by Guoxiong Lin, Yaodan Chi, Xinyu Ding, Yao Zhang, Junxi Wang, Chao Wang, Ying Song and Yang Zhao
Sustainability 2025, 17(14), 6279; https://doi.org/10.3390/su17146279 - 9 Jul 2025
Viewed by 268
Abstract
Accurate wind-speed prediction plays an important role in improving the operation stability of wind-power generation systems. However, the inherent complexity of meteorological dynamics poses a major challenge to forecasting accuracy. In order to overcome these limitations, we propose a new hybrid framework, which [...] Read more.
Accurate wind-speed prediction plays an important role in improving the operation stability of wind-power generation systems. However, the inherent complexity of meteorological dynamics poses a major challenge to forecasting accuracy. In order to overcome these limitations, we propose a new hybrid framework, which combines variational mode decomposition (VMD) for signal processing, enhanced quantum particle swarm optimization (e-QPSO), an improved walking optimization algorithm (IHOA) for feature selection and the long short-term memory (LSTM) network, and which finally establishes a reliable prediction architecture. The purpose of this paper is to optimize VMD by using the e-QPSO algorithm to improve the problems of excessive filtering or error filtering caused by parameter problems in VMD, as the noise signal cannot be filtered completely, and the number of sources cannot be accurately estimated. The IHOA algorithm is used to find the optimal hyperparameters of LSTM to improve the learning efficiency of neurons and improve the fitting ability of the model. The proposed e-QPSO-VMD-IHOA-LSTM model is compared with six established benchmark models to verify its predictive ability. The effectiveness of the model is verified by experiments using the hourly wind-speed data measured in four seasons in Changchun in 2023. The MAPE values of the four datasets were 0.0460, 0.0212, 0.0263, and 0.0371, respectively. The results show that e-QPSO-VMD effectively processes the data and avoids the problem of error filtering, while IHOA effectively optimizes the LSTM parameters and improves prediction performance. Full article
Show Figures

Figure 1

Back to TopTop