Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (325)

Search Parameters:
Keywords = neutral zone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 11831 KiB  
Article
How Can We Achieve Carbon Neutrality During Urban Expansion? An Empirical Study from Qionglai City, China
by Xinmei Wang, Dinghua Ou, Chang Shu, Yiliang Liu, Zijia Yan, Maocuo La and Jianguo Xia
Land 2025, 14(8), 1689; https://doi.org/10.3390/land14081689 - 21 Aug 2025
Viewed by 181
Abstract
While technologies like renewable energy and low-carbon transportation are known to mitigate carbon emissions from urban expansion, achieving carbon neutrality during this process remains a critical unresolved challenge. This issue is particularly pressing for developing countries striving to balance urbanization with carbon reduction. [...] Read more.
While technologies like renewable energy and low-carbon transportation are known to mitigate carbon emissions from urban expansion, achieving carbon neutrality during this process remains a critical unresolved challenge. This issue is particularly pressing for developing countries striving to balance urbanization with carbon reduction. Taking Qionglai City as a case study, this study simulated the territorial spatial functional patterns (TSFPs) and carbon emission distribution for 2025 and 2030. Based on the key drivers of carbon emissions from urban expansion identified through the Geographical and Temporal Weighted Regression (GTWR) model, carbon-neutral pathways were designed for two scenarios: urban expansion scenarios under historical evolution patterns (Scenario I) and urban expansion scenarios optimized under carbon neutrality targets (Scenario II). The results indicate that (1) urban space is projected to expand from 6094.73 hm2 in 2020 to 6249.77 hm2 in 2025 and 6385.75 hm2 in 2030; (2) total carbon emissions are forecasted to reach 1.25 × 106 t (metric tons) and 1.40 × 106 t in 2025 and 2030, respectively, exhibiting a spatial pattern of “high in the central-eastern regions, low in the west”; (3) GDP, Net Primary Productivity (NPP), and the number of fuel vehicles are the dominant drivers of carbon emissions from urban expansion; and (4) a four-pronged strategy, optimizing urban green space vegetation types, replacing fuel vehicles with new energy vehicles, controlling carbon emissions per GDP, and purchasing carbon credits, proves effective. Scenario II presents the optimal pathway: carbon neutrality in the expansion zone can be achieved by 2025 using the first three measures (e.g., optimizing 66.73 hm2 of green space, replacing 800 fuel vehicles, and maintaining emissions at 0.21 t/104 CNY per GDP). By 2030, carbon neutrality can be achieved by implementing all four measures (e.g., optimizing 67.57 hm2 of green space, replacing 1470 fuel vehicles, and achieving 0.15 t/104 CNY per GDP). This study provides a methodological basis for local governments to promote low-carbon urban development and offers practical insights for developing nations to reconcile urban expansion with carbon neutrality goals. Full article
Show Figures

Figure 1

27 pages, 6232 KiB  
Article
Insights from Earth Map: Unraveling Environmental Dynamics in the Euphrates–Tigris Basin
by Ayhan Ateşoğlu, Mustafa Hakkı Aydoğdu, Kasım Yenigün, Alfonso Sanchez-Paus Díaz, Giulio Marchi and Fidan Şevval Bulut
Sustainability 2025, 17(16), 7513; https://doi.org/10.3390/su17167513 - 20 Aug 2025
Viewed by 288
Abstract
The Euphrates–Tigris Basin is experiencing significant environmental transformations due to climate change, Land Use and Land Cover Change (LULCC), and anthropogenic pressures. This study employs Earth Map, an open-access remote sensing platform, to comprehensively assess climate trends, vegetation dynamics, water resource variability, and [...] Read more.
The Euphrates–Tigris Basin is experiencing significant environmental transformations due to climate change, Land Use and Land Cover Change (LULCC), and anthropogenic pressures. This study employs Earth Map, an open-access remote sensing platform, to comprehensively assess climate trends, vegetation dynamics, water resource variability, and land degradation across the basin. Key findings reveal a geographic shift toward aridity, with declining precipitation in high-altitude headwater regions and rising temperatures exacerbating water scarcity. While cropland expansion and localized improvements in land productivity were observed, large areas—particularly in hyperarid and steppe zones—show early signs of degradation, increasing the risk of dust source expansion. LULCC analysis highlights substantial wetland loss, irreversible urban growth, and agricultural encroachment into fragile ecosystems, with Iraq experiencing the most pronounced transformations. Climate projections under the SSP245 and SSP585 scenarios indicate intensified warming and aridity, threatening hydrological stability. This study underscores the urgent need for integrated water management, Land Degradation Neutrality (LDN), and climate-resilient policies to safeguard the basin’s ecological and socioeconomic resilience. Earth Map is a vital tool for monitoring environmental changes, offering rapid insights for policymakers and stakeholders in this data-scarce region. Future research should include higher-resolution datasets and localized socioeconomic data to improve adaptive strategies. Full article
(This article belongs to the Special Issue Drinking Water, Water Management and Environment)
Show Figures

Figure 1

22 pages, 4101 KiB  
Article
Investigation into the Impact of Enclosure Retrofit on Thermal Comfort in Semi-Open University Space
by Jian Ge, Jiahong Zhao, Ziyu Wu and Honghu Zhang
Buildings 2025, 15(16), 2883; https://doi.org/10.3390/buildings15162883 - 14 Aug 2025
Viewed by 174
Abstract
The retrofit of semi-open transitional spaces in university buildings is essential for enhancing both thermal comfort and energy efficiency. However, most studies have focused on conventional indoor environments, overlooking the unique thermal characteristics of semi-open spaces and their impact on occupant comfort. This [...] Read more.
The retrofit of semi-open transitional spaces in university buildings is essential for enhancing both thermal comfort and energy efficiency. However, most studies have focused on conventional indoor environments, overlooking the unique thermal characteristics of semi-open spaces and their impact on occupant comfort. This study integrated field measurements, occupant surveys, and AirPak simulations to develop a three-tier evaluation framework covering environmental parameters, subjective thermal perception, and simulation-based validation. Focusing on teaching buildings at Zhejiang University’s Zijingang Campus, the analysis revealed that the retrofit increased the daily mean air temperature by 2.1 °C and decreased the relative humidity by 3.6% in winter. The peak thermal comfort indices PET and PMV improved by 4.4 °C and 0.98, respectively, with a neutral PET identified at 13.3 °C. PMV showed a stronger correlation with TSV (p = 0.94, R2 = 0.81) than PET. Simulations further validated the retrofit’s effectiveness in stabilizing the indoor thermal environment and reducing airflow discomfort. These findings provide both theoretical insights and practical guidance for the climate-responsive, energy-efficient retrofitting of campus buildings in hot summer and cold winter (HSCW) zones. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 8682 KiB  
Article
Urban Carbon Metabolism Optimization Based on a Source–Sink–Flow Framework at the Functional Zone Scale
by Cui Wang, Liuchang Xu, Xingyu Xue and Xinyu Zheng
Land 2025, 14(8), 1600; https://doi.org/10.3390/land14081600 - 6 Aug 2025
Viewed by 374
Abstract
Carbon flow tracking and spatial pattern optimization at the scale of urban functional zones are key scientific challenges in achieving carbon neutrality. However, due to the complexity of carbon metabolism processes within urban functional zones, related studies remain limited. To address these scientific [...] Read more.
Carbon flow tracking and spatial pattern optimization at the scale of urban functional zones are key scientific challenges in achieving carbon neutrality. However, due to the complexity of carbon metabolism processes within urban functional zones, related studies remain limited. To address these scientific challenges, this study, based on the “source–sink–flow” ecosystem services framework, develops an integrated analytical approach at the scale of urban functional zones. The carbon balance is quantified using the CASA model in combination with multi-source data. A network model is employed to trace carbon flow pathways, identify critical nodes and interruption points, and optimize the urban spatial pattern through a low-carbon land use structure model. The research results indicate that the overall carbon balance in Hangzhou exhibits a spatial pattern of “deficit in the center and surplus in the periphery.” The main urban area shows a significant carbon deficit and relatively poor connectivity in the carbon flow network. Carbon sequestration services primarily flow from peripheral areas (such as Fuyang and Yuhang) with green spaces and agricultural functional zones toward high-emission residential–commercial and commercial–public functional zones in the central area. However, due to the interruption of multiple carbon flow paths, the overall carbon flow transmission capacity is significantly constrained. Through spatial optimization, some carbon deficit nodes were successfully converted into carbon surplus nodes, and disrupted carbon flow edges were repaired, particularly in the main urban area, where 369 carbon flow edges were restored, resulting in a significant improvement in the overall transmission efficiency of the carbon flow network. The carbon flow visualization and spatial optimization methods proposed in this paper provide a new perspective for urban carbon metabolism analysis and offer theoretical support for low-carbon city planning practices. Full article
(This article belongs to the Special Issue The Second Edition: Urban Planning Pathways to Carbon Neutrality)
Show Figures

Figure 1

37 pages, 7429 KiB  
Article
Study on the Influence of Window Size on the Thermal Comfort of Traditional One-Seal Dwellings (Yikeyin) in Kunming Under Natural Wind
by Yaoning Yang, Junfeng Yin, Jixiang Cai, Xinping Wang and Juncheng Zeng
Buildings 2025, 15(15), 2714; https://doi.org/10.3390/buildings15152714 - 1 Aug 2025
Viewed by 337
Abstract
Under the dual challenges of global energy crisis and climate change, the building sector, as a major carbon emitter consuming 33% of global primary energy, has seen its energy efficiency optimization become a critical pathway towards achieving carbon neutrality goals. The Window-to-Wall Ratio [...] Read more.
Under the dual challenges of global energy crisis and climate change, the building sector, as a major carbon emitter consuming 33% of global primary energy, has seen its energy efficiency optimization become a critical pathway towards achieving carbon neutrality goals. The Window-to-Wall Ratio (WWR), serving as a core parameter in building envelope design, directly influences building energy consumption, with its optimized design playing a decisive role in balancing natural daylighting, ventilation efficiency, and thermal comfort. This study focuses on the traditional One-Seal dwellings (Yikeyin) in Kunming, China, establishing a dynamic wind field-thermal environment coupled analysis framework to investigate the impact mechanism of window dimensions (WWR and aspect ratio) on indoor thermal comfort under natural wind conditions in transitional climate zones. Utilizing the Grasshopper platform integrated with Ladybug, Honeybee, and Butterfly plugins, we developed parametric models incorporating Kunming’s Energy Plus Weather meteorological data. EnergyPlus and OpenFOAM were employed, respectively, for building heat-moisture balance calculations and Computational Fluid Dynamic (CFD) simulations, with particular emphasis on analyzing the effects of varying WWR (0.05–0.20) on temperature-humidity, air velocity, and ventilation efficiency during typical winter and summer weeks. Key findings include, (1) in summer, the baseline scenario with WWR = 0.1 achieves a dynamic thermal-humidity balance (20.89–24.27 °C, 65.35–74.22%) through a “air-permeable but non-ventilative” strategy, though wing rooms show humidity-heat accumulation risks; increasing WWR to 0.15–0.2 enhances ventilation efficiency (2–3 times higher air changes) but causes a 4.5% humidity surge; (2) winter conditions with WWR ≥ 0.15 reduce wing room temperatures to 17.32 °C, approaching cold thresholds, while WWR = 0.05 mitigates heat loss but exacerbates humidity accumulation; (3) a symmetrical layout structurally constrains central ventilation, maintaining main halls air changes below one Air Change per Hour (ACH). The study proposes an optimized WWR range of 0.1–0.15 combined with asymmetric window opening strategies, providing quantitative guidance for validating the scientific value of vernacular architectural wisdom in low-energy design. Full article
Show Figures

Figure 1

19 pages, 6898 KiB  
Article
Integrated Application of Radon Measurement and Conventional Electrical Prospecting in Geothermal Exploration: A Case Study of Lantian Section, Ningdu, Jiangxi Province
by Yingying Zhang, Gongxin Chen, Hailong Ye and Ximin Bai
Geosciences 2025, 15(8), 286; https://doi.org/10.3390/geosciences15080286 - 31 Jul 2025
Viewed by 301
Abstract
As a pivotal clean energy source with considerable reserves, geothermal water plays an indispensable role in diminishing reliance on fossil fuels and accomplishing carbon neutrality. This study employed conventional electrical prospecting and radon gas surveys in the Lantian area of Ningdu, aimed at [...] Read more.
As a pivotal clean energy source with considerable reserves, geothermal water plays an indispensable role in diminishing reliance on fossil fuels and accomplishing carbon neutrality. This study employed conventional electrical prospecting and radon gas surveys in the Lantian area of Ningdu, aimed at curtailing geothermal development costs by precise targeting of resource locations. The investigations successfully delineated fracture structures within the Lantian region. Distinct anomalies were identified in the electrical profiling along Survey Lines 1, 2, and 4, with the most pronounced features observed on Line 4. Accordingly, characteristic peak anomalies were exhibited by the radon gas measurement profiles S1, S2, and S4 corresponding to Lines 1, 2, and 4, respectively. The synergistic interpretation of resistivity and radon survey data recognized two primary fracture zones: the NE-trending zone F1 and the NEE-trending zone F2. This integrated approach not only ascertained the efficacy of the radon gas measurement, but also lays a robust basis for future geothermal water exploration targeting. Full article
Show Figures

Figure 1

24 pages, 7393 KiB  
Article
Thermodynamic Modeling Constrains the Alteration and Mineralization Patterns of the Pulang Porphyry Cu-Au Deposits in Eastern Tibet
by Shaoying Zhang, Wenyan He, Huaqing Wang and Yiwu Xiao
Minerals 2025, 15(8), 780; https://doi.org/10.3390/min15080780 - 25 Jul 2025
Viewed by 394
Abstract
Thermodynamic simulations of fluid–rock interactions provide valuable insights into mineral deposit formation mechanisms. This study investigates the Pulang porphyry Cu-Au deposit in the Sanjiang Tethys Orogen, employing both Gibbs energy minimization (GEM) and the Law of mass action (LMA) method to understand alteration [...] Read more.
Thermodynamic simulations of fluid–rock interactions provide valuable insights into mineral deposit formation mechanisms. This study investigates the Pulang porphyry Cu-Au deposit in the Sanjiang Tethys Orogen, employing both Gibbs energy minimization (GEM) and the Law of mass action (LMA) method to understand alteration overprinting and metal precipitation. The modeling results suggest that the ore-forming fluid related to potassic alteration was initially oxidized (ΔFMQ = +3.54~+3.26) with a near-neutral pH (pH = 5.0~7.0). Continued fluid–rock interactions, combined with the input of reduced groundwater, resulted in a decrease in both pH (4.8~6.1) and redox potential (ΔFMQ~+1), leading to the precipitation of propylitic alteration minerals and pyrrhotite. As temperature further decreased, fluids associated with phyllic alteration showed a slight increase in pH (5.8~6.0) and redox potential (ΔFMQ = +2). The intense superposition of propylitic and phyllic alteration on the potassic alteration zone is attributed to the rapid temperature decline in the magmatic–hydrothermal system, triggering fluid collapse and reflux. Mo, mainly transported as HMoO4 and MoO4−2, precipitated in the high-temperature range; Cu, carried primarily by CuCl complexes (CuCl4−3, CuCl2, CuCl), precipitated over intermediate to high temperatures; and Au, transported as Au-S complexes (Au(HS)2, AuHS), precipitated from intermediate to low temperatures. This study demonstrates that fluid–rock interactions alone can account for the observed sequence of alteration and mineralization in porphyry systems. Full article
Show Figures

Figure 1

29 pages, 2105 KiB  
Article
The Impact of Rural Digital Economy Development on Agricultural Carbon Emission Efficiency: A Study of the N-Shaped Relationship
by Yong Feng, Shuokai Wang and Fangping Cao
Agriculture 2025, 15(15), 1583; https://doi.org/10.3390/agriculture15151583 - 23 Jul 2025
Viewed by 342
Abstract
This study investigates the impact of rural digital economy development on agricultural carbon emission efficiency, aiming to elucidate the intrinsic mechanisms and pathways through which digital technology enables low-carbon transformation in agriculture, thereby contributing to the achievement of agricultural carbon neutrality goals. Based [...] Read more.
This study investigates the impact of rural digital economy development on agricultural carbon emission efficiency, aiming to elucidate the intrinsic mechanisms and pathways through which digital technology enables low-carbon transformation in agriculture, thereby contributing to the achievement of agricultural carbon neutrality goals. Based on provincial-level panel data from China spanning 2011 to 2022, this study examines the relationship between the rural digital economy and agricultural carbon emission efficiency, along with its underlying mechanisms, using bidirectional fixed effects models, mediation effect analysis, and Spatial Durbin Models. The results indicate the following: (1) A significant N-shaped-curve relationship exists between rural digital economy development and agricultural carbon emission efficiency. Specifically, agricultural carbon emission efficiency exhibits a three-phase trajectory of “increase, decrease, and renewed increase” as the rural digital economy advances, ultimately driving a sustained improvement in efficiency. (2) Industrial integration acts as a critical mediating mechanism. Rural digital economy development accelerates the formation of the N-shaped curve by promoting the integration between agriculture and other sectors. (3) Spatial spillover effects significantly influence agricultural carbon emission efficiency. Due to geographical proximity, regional diffusion, learning, and demonstration effects, local agricultural carbon emission efficiency fluctuates with changes in neighboring regions’ digital economy development levels. (4) The relationship between rural digital economy development and agricultural carbon emission efficiency exhibits a significant inverted N-shaped pattern in regions with higher marketization levels, planting-dominated areas of southeast China, and digital economy demonstration zones. Further analysis reveals that within rural digital economy development, production digitalization and circulation digitalization demonstrate a more pronounced inverted N-shaped relationship with agricultural carbon emission efficiency. This study proposes strategic recommendations to maximize the positive impact of the rural digital economy on agricultural carbon emission efficiency, unlock its spatially differentiated contribution potential, identify and leverage inflection points of the N-shaped relationship between digital economy development and emission efficiency, and implement tailored policy portfolios—ultimately facilitating agriculture’s green and low-carbon transition. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

28 pages, 7506 KiB  
Article
Impact of Plateau Grassland Degradation on Ecological Suitability: Revealing Degradation Mechanisms and Dividing Potential Suitable Areas with Multi Criteria Models
by Yi Chai, Lin Xu, Yong Xu, Kun Yang, Rao Zhu, Rui Zhang and Xiaxing Li
Remote Sens. 2025, 17(15), 2539; https://doi.org/10.3390/rs17152539 - 22 Jul 2025
Viewed by 410
Abstract
The Qinghai–Tibetan Plateau (QTP), often referred to as the “Third Pole” of the world, harbors alpine grassland ecosystems that play an essential role as global carbon sinks, helping to mitigate the pace of climate change. Nonetheless, alterations in natural environmental conditions coupled with [...] Read more.
The Qinghai–Tibetan Plateau (QTP), often referred to as the “Third Pole” of the world, harbors alpine grassland ecosystems that play an essential role as global carbon sinks, helping to mitigate the pace of climate change. Nonetheless, alterations in natural environmental conditions coupled with escalating human activities have disrupted the seasonal growth cycles of grasslands, thereby intensifying degradation processes. To date, the key drivers and lifecycle dynamics of Grassland Depletion across the QTP remain contentious, limiting our comprehension of its ecological repercussions and regulatory mechanisms. This study comprehensively investigates grassland degradation on the Qinghai–Tibetan Plateau, analyzing its drivers and changes in ecological suitability during the growing season. By integrating natural factors (e.g., precipitation and temperature) and anthropogenic influences (e.g., population density and grazing intensity), it examines observational data from over 160 monitoring stations collected between the 1980s and 2020. The findings reveal three distinct phases of grassland degradation: an acute degradation phase in 1990 (GDI, Grassland Degradation Index = 2.53), a partial recovery phase from 1996 to 2005 (GDI < 2.0) during which the proportion of degraded grassland decreased from 71.85% in 1990 to 51.22% in 2005, and a renewed intensification of degradation after 2006 (GDI > 2.0), with degraded grassland areas reaching 56.39% by 2020. Among the influencing variables, precipitation emerged as the most significant driver, interacting closely with anthropogenic factors such as grazing practices and population distribution. Specifically, the combined impacts of precipitation with population density, grazing pressure, and elevation were particularly notable, yielding interaction q-values of 0.796, 0.767, and 0.752, respectively. Our findings reveal that while grasslands exhibit superior carbon sink potential relative to forests, their productivity and ecological functionality are undergoing considerable declines due to the compounded effects of multiple interacting factors. Consequently, the spatial distribution of ecologically suitable zones has contracted significantly, with the remaining high-suitability regions concentrating in the “twin-star” zones of Baingoin and Zanda grasslands, areas recognized as focal points for future ecosystem preservation. Furthermore, the effects of climate change and intensifying anthropogenic activity have driven the reduction in highly suitable grassland areas, shrinking from 41,232 km2 in 1990 to 24,485 km2 by 2020, with projections indicating a further decrease to only 2844 km2 by 2060. This study sheds light on the intricate mechanisms behind Grassland Depletion, providing essential guidance for conservation efforts and ecological restoration on the QTP. Moreover, it offers theoretical underpinnings to support China’s carbon neutrality and peak carbon emission goals. Full article
Show Figures

Figure 1

29 pages, 6641 KiB  
Article
Climate-Adaptive Passive Design Strategies for Near-Zero-Energy Office Buildings in Central and Southern Anhui, China
by Jun Xu, Yu Gao and Lizhong Yang
Sustainability 2025, 17(14), 6535; https://doi.org/10.3390/su17146535 - 17 Jul 2025
Viewed by 536
Abstract
Driven by the global energy transition and China’s dual-carbon targets, Passive ultra-low-energy buildings are a key route for carbon reduction in the construction sector. This study addresses the high energy demand of office buildings and the limited suitability of current efficiency codes in [...] Read more.
Driven by the global energy transition and China’s dual-carbon targets, Passive ultra-low-energy buildings are a key route for carbon reduction in the construction sector. This study addresses the high energy demand of office buildings and the limited suitability of current efficiency codes in the hot-summer/cold-winter, high-humidity zone of central and southern Anhui. Using multi-year climate records and energy-use surveys from five cities and one scenic area (2013–2024), we systematically investigate climate-adaptive passive-design strategies. Climate-Consultant simulations identify composite envelopes, external shading, and natural ventilation as the three most effective measures. Empirical evidence confirms that optimized envelope thermal properties significantly curb heating and cooling loads; a Huangshan office-building case validates the performance of the proposed passive measures, while analysis of a near-zero-energy demonstration project in Chuzhou yields a coordinated insulation-and-heat-rejection scheme. The results demonstrate that region-specific passive design can provide a comprehensive technical framework for ultra-low-energy buildings in transitional climates and thereby supporting China’s carbon-neutrality targets. Full article
(This article belongs to the Special Issue Building Sustainability within a Smart Built Environment)
Show Figures

Figure 1

19 pages, 15843 KiB  
Article
Hydrochemical Characteristics and Formation Mechanisms of Groundwater in the Nanmiao Emergency Groundwater Source Area, Yichun, Western Jiangxi, China
by Shengpin Yu, Tianye Wang, Ximin Bai, Gongxin Chen, Pingqiang Wan, Shifeng Chen, Qianqian Chen, Haohui Wan and Fei Deng
Water 2025, 17(14), 2063; https://doi.org/10.3390/w17142063 - 10 Jul 2025
Viewed by 367
Abstract
The Nanmiao Emergency Groundwater Source Area, rich in H2SiO3, serves as a strategic freshwater reserve zone in western Jiangxi Province. However, the mechanisms underlying groundwater formation in this area remain unclear. This study applied a combination of statistical analysis, [...] Read more.
The Nanmiao Emergency Groundwater Source Area, rich in H2SiO3, serves as a strategic freshwater reserve zone in western Jiangxi Province. However, the mechanisms underlying groundwater formation in this area remain unclear. This study applied a combination of statistical analysis, isotopic tracing, and hydrochemical modeling to reveal the hydrochemical characteristics and origins of groundwater in the region. The results indicate that Na+ and Ca2+ dominate the cations, while HCO3 and Cl dominate the anions. Groundwater from descending springs is characterized by low mineralization and weak acidity, with hydrochemical types of primarily HCO3–Na·Mg and HCO3–Mg·Na·Ca. Groundwater from boreholes is weakly mineralized and neutral, with dominant hydrochemical types of HCO3–Ca·Na and HCO3–Ca·Na·Mg, suggesting a deep circulation hydrogeochemical process. Hydrogen and oxygen isotope analysis indicates that atmospheric precipitation is the primary recharge source. The chemical composition of groundwater is mainly controlled by rock weathering, silicate mineral dissolution, and cation exchange processes. During groundwater flowing, water and rock interactions, such as leaching, cation exchange, and mixing, occur. This study identifies the recharge sources and circulation mechanisms of regional groundwater, offering valuable insights for the sustainable development and protection of the emergency water source area. Full article
(This article belongs to the Special Issue Advances in Surface Water and Groundwater Simulation in River Basin)
Show Figures

Figure 1

18 pages, 10178 KiB  
Article
Effects of Legume–Grass Mixture Combinations and Planting Ratios on Forage Productivity and Nutritional Quality in Typical Sand-Fixing Vegetation Areas of the Mu Us Sandy Land
by Yuqing Mi, Hongbin Xu, Lei Zhang, Ruihua Pan, Shengnan Zhang, Haiyan Gao, Haibing Wang and Chunying Wang
Agriculture 2025, 15(14), 1474; https://doi.org/10.3390/agriculture15141474 - 9 Jul 2025
Viewed by 443
Abstract
Monoculture and legume–grass mixed cropping are the two most common planting methods, with mixed cropping generally demonstrating higher hay yield and superior nutritional quality compared to monoculture. However, research on legume–grass mixed cropping for establishing cultivated pastures in typical sand-fixing vegetation areas of [...] Read more.
Monoculture and legume–grass mixed cropping are the two most common planting methods, with mixed cropping generally demonstrating higher hay yield and superior nutritional quality compared to monoculture. However, research on legume–grass mixed cropping for establishing cultivated pastures in typical sand-fixing vegetation areas of the Mu Us Sandy Land remains scarce. These knowledge gaps have hindered the synergistic integration of forage production and ecological restoration in the region. This study conducted mixed cropping trials in the sand-fixing vegetation zone of the Mu Us Sandy Land using Dahurian wildrye (Elymus dahuricus), Mongolian wheatgrass (Agropyron mongolicum), and Standing milkvetch (Astragalus adsurgens) to investigate the effects of species combinations and planting ratios on forage productivity and nutritional quality, aiming to determine the optimal planting strategy. Results showed that in the first establishment year, the yield of all mixed cropping systems significantly exceeded that of monocultured Dahurian wildrye and Mongolian wheatgrass. All mixed cropping combinations exhibited land equivalent ratios (LER) and relative yield totals (RYT) below 1, indicating varying degrees of interspecific competition during the first year, with grass species generally demonstrating stronger competitive abilities than legumes. Mixed-cropped forages showed higher crude protein, crude fat, and crude ash content compared to monocultures, alongside lower neutral detergent fiber (NDF) and acid detergent fiber (ADF) levels, suggesting improved relative feed value (RFV). Among the combinations, E5A5 and E6A4 (5:5 and 6:4 ratio of Dahurian wildrye to Standing milkvetch) achieved higher RFV, with RFV gradually declining as the legume proportion decreased. In conclusion, both monoculture and legume–grass mixed cropping are viable in the Mu Us Sandy Land’s sand-fixing vegetation areas and the E5A5 combination (5:5 ratio of Dahurian wildrye to Standing milkvetch) as having the highest overall score, demonstrating that this mixed cropping ratio optimally balances yield and nutritional quality, making it the recommended planting protocol for the region. This mixed cropping system offers a theoretical foundation for efficiently establishing artificial pastures in the Mu Us Sandy Land, supporting regional pastoral industry development and desertification mitigation. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

14 pages, 2403 KiB  
Article
Drought Stress Enhances Mycorrhizal Colonization in Rice Landraces Across Agroecological Zones of Far-West Nepal
by Urmila Dhami, Nabin Lamichhane, Sudan Bhandari, Gunanand Pant, Lal Bahadur Thapa, Chandra Prasad Pokhrel, Nikolaos Monokrousos and Ram Kailash Prasad Yadav
Soil Syst. 2025, 9(3), 72; https://doi.org/10.3390/soilsystems9030072 - 9 Jul 2025
Viewed by 486
Abstract
Mycorrhizal symbiosis in rice enhances drought adaptation but there are limited studies regarding the frequency and amplitude of mycorrhizae colonization in traditional landraces. This study investigates mycorrhizal colonization frequency (FMS) and intensity (IRS) in 12 rice landraces across three agroecological zones (Tarai, Inner-Tarai, [...] Read more.
Mycorrhizal symbiosis in rice enhances drought adaptation but there are limited studies regarding the frequency and amplitude of mycorrhizae colonization in traditional landraces. This study investigates mycorrhizal colonization frequency (FMS) and intensity (IRS) in 12 rice landraces across three agroecological zones (Tarai, Inner-Tarai, Mid-hill) of Far-West Nepal under drought stress. Field experiments exposed landraces to control, intermittent, and complete drought treatments, with soil properties and root colonization analyzed. Results revealed FMS and IRS variations driven by soil composition and genotype. Mid-hill soils (acidic, high organic matter) showed lower FMS but elevated IRS under drought, while neutral pH in Tarai and silt/clay-rich soils supported higher FMS. Sandy soil in Inner-Tarai also promoted FMS. Drought significantly increased IRS, particularly in Anjana and Sauthiyari (Tarai), Chiudi and Shanti (Inner-Tarai), and Chamade and Jhumke (Mid-hill), which exhibited IRS surges of 171–388%. These landraces demonstrated symbiotic resilience, linking mycorrhizal networks to enhanced nutrient/water uptake. Soil organic matter and nutrient levels amplified IRS responses, underscoring fertility’s role in adaptation. FMS ranged from 50 to 100%, and IRS 1.20–19.74%, with intensity being a stronger drought-tolerance indicator than frequency. The study highlights the conservation urgency for these landraces, as traditional varieties decline due to hybrid adoption. Their drought-inducible mycorrhizal symbiosis offers a sustainable strategy for climate-resilient rice production, emphasizing soil–genotype interactions in agroecological adaptation. Full article
Show Figures

Figure 1

16 pages, 2041 KiB  
Article
Unlocking the Industrial Potential of Cambuci Peel: A Sustainable Approach Based on Its Physicochemical Profile
by Juver Andrey Jimenez Moreno, Tiago Linhares Cruz Tabosa Barroso, Luiz Eduardo Nochi Castro, Leda Maria Saragiotto Colpini, Felipe Sanchez Bragagnolo, Mauricio Ariel Rostagno and Tânia Forster Carneiro
Resources 2025, 14(7), 109; https://doi.org/10.3390/resources14070109 - 4 Jul 2025
Viewed by 730
Abstract
Cambuci is a native fruit from Brazil, and during the processing of this fruit, the peel is typically discarded due to limited knowledge of its physicochemical characteristics, which restricts its potential applications across various industries. Given the lack of detailed physicochemical characterization of [...] Read more.
Cambuci is a native fruit from Brazil, and during the processing of this fruit, the peel is typically discarded due to limited knowledge of its physicochemical characteristics, which restricts its potential applications across various industries. Given the lack of detailed physicochemical characterization of this by-product in the literature, this study aimed to analyze key parameters to expand on our understanding of this raw material and stimulate interest from both academia and industry. The cambuci peel was found to have a moisture content of 9.41 ± 1.69% dw (dry weight), total solids of 90.59 ± 1.69% dw, and volatile solids of 87.41 ± 1.69%. Its ash content was 3.18 ± 0.41%, while the chemical oxygen demand (COD) reached 420.54 ± 9.88 mg L−1. The total protein content was 4.93 ± 0.04 g/100 g dw, with reducing sugars at 108.22 ± 3.71 mg g−1 and non-reducing sugars at 30.58 ± 3.16 mg g−1. Neutral detergent fiber (NDF) and acid detergent fiber (ADF) were determined as 36.65 ± 0.19% dw and 18.91 ± 0.05% dw, respectively, with hemicellulose content of 17.74 ± 0.20% dw. Chromatographic analysis identified key bioactive compounds, including ellagic and gallic acid, which hold significant potential for pharmaceutical and food industry applications. Thermogravimetric analysis revealed three distinct decomposition zones, corresponding to physisorbed water, hemicellulose decomposition, and cellulose degradation, respectively. The results demonstrate the valuable physicochemical and biochemical properties of cambuci peel, supporting its potential for the development of new bioproducts aligned with circular economy principles. This study lays the foundation for further research into this underutilized by-product and its application in diverse industrial sectors. Full article
Show Figures

Figure 1

17 pages, 17662 KiB  
Article
Climate-Driven Dynamics of Landscape Patterns and Carbon Sequestration in Inner Mongolia: A Spatiotemporal Analysis from 2000 to 2020
by Qibeier Xie and Jie Ren
Atmosphere 2025, 16(7), 790; https://doi.org/10.3390/atmos16070790 - 28 Jun 2025
Viewed by 333
Abstract
Understanding the interplay between climate change, landscape patterns, and carbon sequestration is critical for sustainable ecosystem management. This study investigates the spatiotemporal evolution of vegetation Net Primary Productivity (NPP) and landscape patterns in Inner Mongolia, China, from 2000 to 2020, and evaluates their [...] Read more.
Understanding the interplay between climate change, landscape patterns, and carbon sequestration is critical for sustainable ecosystem management. This study investigates the spatiotemporal evolution of vegetation Net Primary Productivity (NPP) and landscape patterns in Inner Mongolia, China, from 2000 to 2020, and evaluates their implications for carbon sink capacity under climate change. Using remote sensing data, meteorological records, and landscape metrics (CONTAG, SPLIT, IJI), we quantified the relationships between vegetation productivity, landscape connectivity, and fragmentation. Results reveal a northeast-to-southwest gradient in NPP, with high values concentrated in forested regions of the Greater Khingan Range and low values in arid western deserts. Over two decades, NPP increased by 73% in high-productivity zones, driven by rising temperatures and ecological restoration policies. Landscape aggregation (CONTAG) and patch connectivity showed strong positive correlations with NPP, while higher fragmentation values (SPLIT, IJI) negatively impacted carbon sequestration. Climate factors, particularly precipitation variability, emerged as critical drivers of NPP fluctuations, with human activities amplifying regional disparities. We propose targeted strategies—enhancing landscape connectivity, regional differentiation management, and optimizing patch structure—to bolster climate-resilient carbon sinks. These findings underscore the necessity of integrating climate-adaptive landscape planning into regional carbon neutrality frameworks, offering feasible alternatives for mitigating climate impacts in ecologically vulnerable regions. Full article
Show Figures

Figure 1

Back to TopTop