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Abstract

The Euphrates–Tigris Basin is experiencing significant environmental transformations
due to climate change, Land Use and Land Cover Change (LULCC), and anthropogenic
pressures. This study employs Earth Map, an open-access remote sensing platform, to com-
prehensively assess climate trends, vegetation dynamics, water resource variability, and
land degradation across the basin. Key findings reveal a geographic shift toward aridity,
with declining precipitation in high-altitude headwater regions and rising temperatures
exacerbating water scarcity. While cropland expansion and localized improvements in
land productivity were observed, large areas—particularly in hyperarid and steppe zones—
show early signs of degradation, increasing the risk of dust source expansion. LULCC
analysis highlights substantial wetland loss, irreversible urban growth, and agricultural
encroachment into fragile ecosystems, with Iraq experiencing the most pronounced trans-
formations. Climate projections under the SSP245 and SSP585 scenarios indicate intensified
warming and aridity, threatening hydrological stability. This study underscores the ur-
gent need for integrated water management, Land Degradation Neutrality (LDN), and
climate-resilient policies to safeguard the basin’s ecological and socioeconomic resilience.
Earth Map is a vital tool for monitoring environmental changes, offering rapid insights for
policymakers and stakeholders in this data-scarce region. Future research should include
higher-resolution datasets and localized socioeconomic data to improve adaptive strategies.

Keywords: Euphrates–Tigris Basin; climate change; LULCC; land degradation; Earth Map

1. Introduction
Climate change and environmental degradation are among the most pressing chal-

lenges of the 21st century, significantly affecting water resources, land use, and vegetation
dynamics [1]. Rising global temperatures, changing precipitation patterns, and the in-
creasing frequency of extreme weather events are reshaping ecosystems and disrupting
human livelihoods [2,3]. These changes are particularly evident in river basins, which serve
as the lifeline of many regions and provide essential resources for agriculture, industry,
and settlements [4,5]. Analyzing environmental changes at the basin level is particularly
important for effective management and sustainable development [6]. River basins function
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as interconnected systems in which climate, land use, water availability, and vegetation
interact in complex ways [7]. Changes in many ecological criteria at the basin scale can
have cascading effects throughout the ecosystem. Therefore, monitoring these dynamics at
a comprehensive basin-wide scale will enable better resource allocation, informed policy
decisions, and targeted conservation efforts. Furthermore, large basins are located across
the borders of multiple countries and should be assessed holistically. This makes them
critical to regional cooperation and stability [8]. Many of the world’s major river basins,
such as the Tigris–Euphrates, Nile, and Mekong, are shared by many nations, requiring
regional collaborations [9–11]. This basin-level monitoring and management approach
supports sustainable land use and land cover development, particularly in regard to climate
change [12].

The Euphrates–Tigris Basin is a critical transboundary water system supporting di-
verse ecological functions in the Middle East. The basin covers parts of Türkiye, Syria, Iraq,
and Iran and contains vital wetlands, river ecosystems, and a problematic ecosystem de-
pendent on seasonal water flows [13]. From a hydrological perspective, the Euphrates and
Tigris rivers provide essential freshwater resources to a region characterized by arid and
semi-arid climates. The rivers originate in the highlands of Türkiye and flow downstream
through Syria and Iraq, where they sustain agriculture, urban populations, and industrial
activities [14]. The sensitive ecosystem of the basin has recently been exposed to the ad-
verse effects of climate change [15]. The Euphrates–Tigris Basin is of high socioeconomic
importance as it forms the backbone of agriculture, energy production, and livelihoods
for millions of people [9]. Therefore, integrated basin management, the development of
adaptation strategies, and monitoring are essential to reduce the effects of climate change.

The Euphrates–Tigris Basin is increasingly affected by climate change due to increasing
temperatures, changing precipitation patterns, higher evapotranspiration rates, higher
occurrence of extreme events, etc. [16]. In parallel, regional instability, changes in land use,
and land degradation in the basin due to the expansion of agriculture and urbanization
further exacerbate environmental challenges. These land degradation and use changes
disrupt natural hydrological cycles, placing additional pressure on a region already under
water stress. Vegetation degradation in the basin is another major concern as it directly
affects ecosystem services [17]. Loss of natural vegetation also contributes to desertification
and increased sand and dust storms [15]. Given the increasing challenges posed by climate
change, land use changes, and vegetation degradation, a comprehensive monitoring system
is essential for the sustainable management of the Euphrates–Tigris Basin. A data-driven
approach will enable decision-makers to assess long-term trends, detect early warning
signs, and implement adaptive strategies to reduce environmental risks.

Given these challenges, integrating climate, land use, vegetation, and water data in the
basin provides a holistic understanding of the region’s ecological transformations. In this
context, future climate projections based on Shared Socioeconomic Pathways, particularly
SSP245 (a stabilization scenario) and SSP585 (a high-emissions scenario), offer critical in-
sights into anticipated changes in temperature and precipitation across the Euphrates–Tigris
Basin. These projections suggest increased water scarcity, heightened stress on vegeta-
tion, and a greater likelihood of extreme climatic events, including droughts, sandstorms,
and dust storms [18]. Integrating scenario-based climate modeling into environmental
monitoring frameworks strengthens the capacity to assess long-term risks and to develop
adaptive management strategies suited to a range of possible future climate conditions [19].
In recent years, remote sensing (RS) and geographic information systems (GIS) have been
the most advanced tools used for this purpose. RS&GIS integration facilitates informed
policy decisions by providing more accurate climate impact assessments, land degradation
mapping, vegetation monitoring, and water resources management [20,21]. In this context,
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open-access global datasets facilitate data-driven decision-making for sustainable resource
management by providing valuable insights into spatial and temporal changes [22,23].
Datasets from sources such as the National Aeronautics and Space Administration (NASA),
European Space Agency (ESA), and global hydrological models provide valuable informa-
tion on climate trends, precipitation patterns, land cover changes, vegetation indices, and
water availability. These datasets facilitate large-scale analysis by enabling comparisons
across regions and time periods, such as major river basins [24,25]. This technological level
and big data management make it easier and more explainable for stakeholders in large
basins, allowing them to identify climate-related changes, evaluate the impact of land use
changes, and assess ecological stress levels using satellite images and geographic analysis.
Additionally, open-access data ensure transparency and sustainability, support collabora-
tive decision-making, and increase the capacity to develop evidence-based strategies for
climate adaptation and resource management in the basin [26]. One of these platforms,
Earth Map (earthmap.org), is a powerful open-access tool for monitoring environmental
changes. Developed by the Food and Agriculture Organization (FAO) in collaboration with
Google Earth Outreach, Earth Map allows users to analyze climate, land use, vegetation,
water dynamics, and many other parameters using Google Earth Engine (GEE)’s extensive
satellite data archive. The platform simplifies complex analyses, giving researchers and
decision-makers access to historical and near-real-time data through a point-and-click
interface and without requiring any programming skills [27,28]. Such an approach allows
for a large democratization of the application of an open-access environment and climate
data to anyone who lacks the time or the know-how to retrieve them and transform them
into actionable information.

The purpose of this study is to assess the impacts of climate change on environmental
dynamics within the Euphrates–Tigris Basin by integrating multiple geospatial indicators
using Earth Map, a global open-access monitoring platform. Through a structured analysis
of climate trends, Land Use and Land Cover Change (LULCC), vegetation dynamics, and
water balance, this study aims to identify spatial vulnerabilities and long-term ecological
transformations in this critical transboundary region. The research aims to access numerical
data by utilizing Earth Map’s standardized datasets and provides a comprehensive, scalable,
and policy-oriented assessment of regional environmental stress. This approach supports
evidence-based decision-making for sustainable land and water resource management.
It lays a foundation for future research focused on modeling causal relationships and
developing adaptive climate strategies.

2. Materials and Methods
2.1. Study Area

The Euphrates–Tigris Basin is one of the most essential transboundary river systems
in the Middle East, spanning parts of Türkiye, Syria, Iraq, and Iran. Originating in the
highlands of eastern Türkiye, the Euphrates and Tigris rivers flow through arid and
semi-arid lands before merging in southern Iraq and emptying into the Persian Gulf [29].
Covering an area of approximately 930,000 km2, the basin supports agriculture, drinking
water, hydroelectric production, and biodiversity, making it a critical natural resource
for the region (Figure 1). The climate of the basin varies from humid conditions in the
mountainous regions in the upper basin to arid and semi-arid conditions in the lower
basin [30]. Seasonal rainfall and snowmelt in the Anatolian Plateaus are important in
maintaining river flow. Over the last few decades, the basin has experienced ecosystem
stress due to climate change and unsustainable land use practices [31].
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Figure 1. Study area (left map from [origin of left map]; three right maps from Earth Map).

Given that the Euphrates–Tigris Basin spans multiple countries with differing socioeco-
nomic conditions and competing water needs, the equitable and sustainable management
of transboundary water resources presents a critical challenge [32]. Climate change is
expected to further alter the availability and distribution of water in the region, making
coordinated management and future resource allocation even more essential [33]. This
underscores the need for each riparian state to assume shared responsibility in addressing
water-related vulnerabilities. It is imperative to foster cooperative mechanisms that tran-
scend historical disputes, internal political challenges, and conflict dynamics in order to
promote resilience and long-term regional stability [34,35]. Accordingly, a comprehensive
understanding of the basin’s geopolitical context and future scenarios concerning water and
food security is vital for formulating effective climate adaptation strategies and advancing
sustainable development across the basin.
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2.2. Earth Map

Earth Observation (EO) data have played a critical role in understanding urgent envi-
ronmental problems and the impacts of climate change, enabling us to make significant
advances in land monitoring and climate assessment. The recent years have been funda-
mental regarding the amount of EO and climate data freely available to the public and
researchers [36]. Technological advances (such as cloud-based storage and processing
power) and open-data policies adopted by governments and space agencies have driven
improvements in accessibility [37]. Cloud computing technologies and free satellite data are
revolutionizing how countries, organizations, academia, and even individuals approach the
management of natural resources, including monitoring climate parameters, environmental
problems, deforestation, and desertification [38–42]. Since 2016, the Food and Agricul-
ture Organization (FAO) has been developing Earth Map (earthmap.org), a simple and
user-friendly interface that provides anyone easy access to many features and datasets in
Google Earth Engine (GEE) and other sources that are mostly used for environment and
climate analysis and to the GEE powerful cloud computational capacity; the point-and-click
platform does not require users to master any coding techniques and is accessible to anyone
through a browser and internet access [37].

Earth Map is a web-based application that consists of a map where geographic layers
can be easily viewed, and statistics can be generated instantly through its graphical user
interface. Earth Map’s data are currently divided into 18 thematic groups (layers) covering
agriculture, biodiversity, climate, energy projections, greenhouse gas emissions, energy, fire,
forestry, geophysics, hydrology, imagery, land use/land cover, Land Degradation Neutral-
ity, protected areas, social, soil, vegetation, and water. The tool allows the user to visualize
the layers (maps) with their corresponding descriptions on top of the background maps of
Google Maps. More importantly, the user can perform deeper analysis by generating zonal
statistics in AOIs that complement the visual information of the maps; spatial data or charts
and tables can be easily exported in commonly used formats for further processing. An AI
Explain feature has been recently added to describe the statistics in natural language. AOIs
can be the boundaries provided in Earth Map, basin borders from the WWF HydroSHEDS
dataset, or the user can either draw or import his/her own AOIs as KML, GeoJSON, or
shapefile. GEE provides Earth Map with the capacity to run on-the-fly analysis on most
of the metrics of the images, such as temperature, precipitation, burned areas, tree cover,
drought index, and many others [43,44]. These zonal statistics can be run in seconds on any
device, regardless of the computing power of the device, since their processing occurs on
the cloud. Statistics can be collected at different temporal aggregations (annual, monthly
averages, and monthly time series) and over various time periods. Since statistical analysis
is performed on the fly, information can be obtained at a global, regional, or project level
(Figure 2). This makes Earth Map a multi-temporal, multi-parametric, and multi-scale
geospatial platform for a large number of environmental and climatic data. Earth Map is a
web-based and freely accessible application with a graphical user interface (GUI) built on
top of the GEE Application Programming Interface (API) to interact with the GEE servers
to display the maps and generate statistical results. The Earth Map GUI is responsible for
displaying all geographic data (layers and statistics) to the user and presenting them in a
comprehensible and usable format. It uses the Google Maps API as its primary interface
component. The code structure in Earth Map uses a combination of front-end JavaScript
components and server-less NodeJs code to interact with GEE (Figure 3). All details about
Earth Map and its comprehensive methodology are presented in [25].
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Figure 2. Earth Map’s interface.

 

Figure 3. Earth Map’s software architecture [27].

Through just a click, the user can visualize the same area under analysis in two external
platforms:

- a streamlined GEE application called Imagery Comparison (https://earthmap.org/
compare.html, accessed on 14 March 2025) with access to more geospatial products
and side-by-side image comparison.

- the FAO AgroInformatics Geospatial Platform (https://data.apps.fao.org, accessed on
5 April 2025) with additional resources and analytical capabilities.

Earth Map received a Google Geo for the Good Impact Award in 2024 [45].
Every dataset in Earth Map comes with an Information button through which the user

can first access a short description of the data, from which, according to the data involved,
they can directly access the source data, the processed data, and the GEE asset and script.

https://earthmap.org/compare.html
https://earthmap.org/compare.html
https://data.apps.fao.org
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Earth Map includes a full Help Center with how-to guides, examples, tutorials, FAQs,
publications, and a Contact Us form to report suggestions, bugs, or data requests.

In this study, eight distinct datasets available through the Earth Map platform were
utilized to comprehensively analyze the environmental dynamics of the Euphrates–Tigris
River Basin.

2.3. Datasets
2.3.1. Global Ecological Zones

Ecological zones are typically classified based on long-term climate patterns, vegeta-
tion, and physiographic characteristics. The FAO Global Ecological Zones (GEZ) dataset
provides a standardized global framework for ecological zoning, primarily developed to
support forest resource assessments and climate-related ecosystem monitoring [46,47]. The
classification is based on a combination of climatic parameters—such as temperature and
precipitation regimes—alongside natural vegetation types, elevation, and biogeographic
distribution. The GEZ mapping methodology incorporates climate normals (typically
30-year averages), derived from global climatological datasets such as CRU and WorldClim,
and uses a combination of expert knowledge and cluster analysis techniques to delineate
zones. The resulting ecological zones represent relatively homogeneous areas in terms
of vegetation structure, climate conditions, and ecosystem functioning. These zones are
periodically updated to reflect changes due to climate trends, improved input data, or
methodological refinements. In the latest version, 20 primary zones are defined globally,
including boreal, temperate, subtropical, and tropical domains, with further subdivision
based on humidity levels (e.g., dry, moist, wet, and mountain). The statistical validation of
GEZ classifications is performed using remote sensing data, ground observations (where
available), and spatial overlays with independent ecological classifications. While not
based on a statistical test, the methodology includes iterative calibration and peer review
to ensure ecological and climatological consistency across global regions. In the context of
climate change analysis, the GEZ dataset provides a valuable spatial reference for evaluat-
ing ecosystem shifts, identifying zones at risk of transition, and assessing the vulnerability
of specific ecological domains to climatic variability and extremes. Comparing recent
observational data against historical GEZ boundaries helps highlight areas experiencing
significant bioclimatic shifts, offering an evidence base for adaptive land use planning
and ecosystem resilience strategies [48]. In the context of the Euphrates–Tigris Basin, GEZ
data—by delineating ecologically homogeneous zones—provide a valuable framework for
assessing ecosystem vulnerability, interpreting and monitoring bioclimatic changes and
climate sensitivity, and informing adaptive land management strategies.

2.3.2. Aridity Index (AI)

To calculate the AI on an annual basis, the 8-day potential evapotranspiration (PET)
data from the MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500 m
Version 6 product are first aggregated. For each year in the study period (2001–2020),
all 8-day PET values are summed to produce the annual total PET per pixel. This pro-
cess obtains an annual PET dataset with a spatial resolution of 500 m. Precipitation
data are obtained from the ERA5-Land dataset provided by the European Centre for
Medium-Range Weather Forecasts (ECMWF). Hourly precipitation values are aggre-
gated into annual totals for each corresponding year. Since the native spatial resolution
of ERA5-Land is approximately 9 km, the annual precipitation data are resampled to a
500 m resolution using bilinear interpolation so that the spatial resolution matches that
of the MOD16A2 PET dataset. This allows for the pixel-wise calculation of the Aridity
Index, defined as the ratio of annual precipitation to annual potential evapotranspiration
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(AI = P/PET), for the years 2001 to 2020. The median AI values for the two decadal
periods (2001–2010 and 2011–2020) are calculated to examine temporal shifts in aridity.
A difference map is then generated to visualize spatial changes in aridity conditions
over time [49]. This study employed the Aridity Index (AI) to evaluate spatial and
temporal variations in drought conditions across the Euphrates–Tigris Basin over the
2001–2020 period. Calculated as the ratio of annual precipitation to potential evapo-
transpiration, the AI enabled quantifying drought intensity and identifying transitions
between aridity classes. As a diagnostic tool, the AI provided critical insights into the
influence of both climatic variability and anthropogenic land management practices
on drought dynamics. Moreover, it facilitated the detection of emerging drought risks,
especially for regions that play a vital role in sustaining the basin’s hydrology.

2.3.3. Precipitation/Temperature

The two most important indicators of drought are temperature and precipitation [50].
However, looking at anomalies and changes, not just raw values, provides a long-term
perspective on climate change and helps inform adaptation strategies. Anomalies help
detect and respond to ongoing droughts, while average changes help plan for the future by
showing how the climate is evolving [51]. The “Total Precipitation Change”, “Mean Tem-
perature Change”, “Total Precipitation Anomalies”, and “Mean Temperature Anomalies”
products are derived from processing the European Centre for Medium-Range Weather
Forecasts (ECMWF) ERA5 atmospheric reanalysis of the global climate product. The Total
Precipitation Change map represents the change in the average total precipitation per
year for the whole period, while the Mean Temperature Change represents the change in
the average mean temperature per year for the entire period (by year). The Precipitation
Anomalies and the Mean Temperature Anomalies are calculated by building an image
with the average of the Annual Precipitation and Mean Temperature values for the region
of interest for the whole period (1979–2019) and comparing it to the average Annual Pre-
cipitation value and the Mean Temperature value (per pixel) of the years 2014–2019. The
anomalies map shows the percentage deviation (per pixel) between 2014 and 2019. The
pixel size is 0.25 deg (approx. 28 km at the equator), and the period of observations is 1979
to the present (5 days of lag time for processing). Monthly aggregates are calculated based
on the ERA5 hourly values of each parameter [52]. In addition, the NEX-GDDP-CMIP6
dataset provides high-resolution and bias-corrected global climate projections downscaled
from CMIP6 General Circulation Models (GCMs), developed for the IPCC Sixth Assessment
Report. It includes daily data based on ScenarioMIP, which runs under two Tier 1 Shared
Socioeconomic Pathways (SSPs). The dataset is created by applying statistical downscaling
and bias correction to global model outputs to better capture local climate variations and
topographic influences [53,54]. In this study, temperature and precipitation data were
used to assess both historical and projected climate trends and their impact on drought
risk and water resource sustainability in the Euphrates–Tigris Basin. These datasets can
identify increasing climate instability, where wet and dry years alternate, threatening the
reliability of the basin’s ecosystem cycle. Furthermore, future projections based on the
NEX-GDDP-CMIP6 scenarios highlight significant warming and potential increases in
drought under both moderate- and high-emission pathways. Together, these climate indi-
cators are essential for understanding past and future drought dynamics, supporting the
development of adaptation strategies, and informing sustainable ecosystem management
under changing climate conditions.
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2.3.4. Land Cover and Land Use Change

In this study, the Global Land Cover and Land Use Change 2000/2020 dataset, devel-
oped by the University of Maryland’s Global Land Analysis and Discovery (UMD GLAD)
laboratory, is used as the primary source for land use and land cover (LULC) information.
This dataset is particularly suitable for assessing the long-term impacts of climate change,
as it provides spatially consistent high-resolution data (30 m resolution) on global land
cover transitions over the two-decade period from 2000 to 2020 [55]. A key innovation of
the UMD GLAD dataset is its direct change detection methodology, which differs from tra-
ditional “post-classification comparison” approaches. Instead of independently classifying
land cover for each year and comparing the results, the GLAD dataset applies a bi-temporal
supervised classification using paired Landsat imagery from 2000 and 2020. This method
employs a consistent set of training data and classification algorithms to directly detect
and label land cover transitions at the pixel level, which minimizes the compounding of
classification errors across time steps [56]. The classification process involves the use of
random forest machine learning algorithms, trained on thousands of globally distributed
reference samples, to distinguish among 10 major land cover classes (e.g., forest, cropland,
grassland, urban, and shrubland) [57]. Spectral indices, such as the Normalized Difference
Vegetation Index (NDVI), and moisture and texture metrics are extracted from Landsat
surface reflectance imagery and used as inputs to the classifier [58]. Importantly, the dataset
also incorporates ancillary data layers—such as elevation, slope, and climate variables—to
enhance classification accuracy in ecologically complex areas. In addition to producing a
static land cover map for each year, the dataset provides a transition matrix that specifies
which land cover classes changed and the direction and magnitude of these changes. For
example, it captures transitions such as “forest to agriculture”, “grassland to urban”, or
“wetland to barren”, which are particularly relevant in the context of climate change and
land degradation studies [55]. These matrices enable detailed spatial and statistical analy-
sis of LULC dynamics at both regional and global scales. By integrating high-resolution
remote sensing data with advanced machine learning and change detection algorithms,
the GLAD dataset allows for more reliable detection of long-term land cover changes,
supporting robust assessments of human and climate-induced landscape transformations.
This study utilized the GLAD dataset to analyze LCLUC, focusing on key land cover
classes, such as wetlands, cropland, and built-up areas, in order to examine how related
socio-environmental processes have influenced land use dynamics in the Euphrates–Tigris
Basin. The LCLUC analysis highlighted the complex interplay between environmental
stressors—particularly drought—and human adaptive responses, revealing significant
agricultural and urban expansion into ecologically sensitive areas, such as semi-arid zones
and wetlands. These findings offer important insights into the implications of land use
transformations for long-term environmental sustainability and resource management
under conditions of climatic and political stress.

2.3.5. Normalized Difference Vegetation Index, Potential Evapotranspiration, and
Water Deficit

Vegetation monitoring is a critical parameter in assessing the impacts of drought, land
management practices, and climate variability within a river basin [59]. Among various
remote sensing tools, the Normalized Difference Vegetation Index (NDVI) is one of the
most widely used indices for tracking both spatial and temporal variations in vegetation
cover [60]. The NDVI is calculated using the formula: NDVI = (NIR − RED)/(NIR + RED),
where NIR is the near-infrared reflectance and RED is the red reflectance, both derived
from multispectral satellite imagery. NDVI values range from −1 to +1, with higher values
indicating denser and healthier vegetation. Positive trends in the NDVI typically reflect
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improved vegetation health or increased greening, while negative trends suggest vegetation
degradation or stress [61]. In this study, NDVI data were obtained from the MOD13Q1.061
Terra Vegetation Indices 16-Day Global 250 m product, covering the period from 2000 to
the present.

Another key variable in environmental monitoring is potential evapotranspiration
(PET), which estimates the amount of water that would evaporate and transpire from a
surface with sufficient water supply. PET is influenced by temperature, solar radiation,
wind speed, and humidity. Although various models exist to estimate PET (e.g., Penman–
Monteith and Hargreaves), in this study, PET values were sourced from the MOD16A2
MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500 m (Version 6) dataset, which
uses the Penman–Monteith equation, modified for satellite inputs:

PET =
∆(Rn − G) + Pacp

es−ea
ra

∆ + γ
(

1 + rs
ra

) (1)

where Rn is net radiation, GG is soil heat flux, ρa is air density, cp is specific heat of air, es − ea

is vapor pressure deficit, and rs and ra are surface and aerodynamic resistances, respectively.
PET serves as a reliable indicator of atmospheric demand for moisture and is particularly
useful for identifying ecosystem stress in arid and semi-arid environments [62]. To assess
water availability and moisture stress more directly, the Water Deficit (WD) is calculated by
subtracting Actual Evapotranspiration (ET) from PET: Water Deficit = PET − ET. A positive
Water Deficit indicates that atmospheric water demand exceeds available soil moisture,
which can lead to drought, vegetation stress, and land degradation [63]. ET data are also
derived from the MOD16A2 product (2000–2024), which incorporates meteorological and
remote sensing variables to estimate actual plant water use. For temporal analysis, all time
series data (NDVI, PET, and WD) were processed using statistical methods such as linear re-
gression and Mann–Kendall trend tests to detect the significance and direction of long-term
trends (p-values < 0.05 considered statistically significant). Seasonal trend decomposition
and z-score normalization were also applied, where necessary, to understand interannual
variability and anomalies. Collecting these indicators—NDVI for vegetation condition,
PET for climatic water demand, and WD for water stress—provides a comprehensive
understanding of the ecological responses to climate change within the river basin. This
integrated approach supports the development of sustainable water resource management
strategies and adaptation measures for ecosystem and community resilience [64,65].

Together, these variables enabled a comprehensive evaluation of vegetation health,
climatic stressors, and changing water availability under ongoing climate change, support-
ing the identification of vulnerable areas and informing sustainable resource management
strategies within the basin. Using average values provides a baseline understanding of
typical conditions, while change maps reveal spatial shifts in vegetation productivity, evap-
otranspiration, and water stress over time. Anomaly analyses are crucial for detecting
short-term deviations from normal conditions, helping to identify extreme events such
as droughts or unusually wet periods. Trend analyses, including linear regression and
statistical significance testing, allow for detecting long-term directional changes, offer-
ing critical insights into how ecosystems are evolving in response to climate variability
and anthropogenic pressures. Collectively, these analytical approaches enhance the tem-
poral and spatial resolution of environmental monitoring and support evidence-based
decision-making for adaptation and resilience planning.
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2.3.6. Land Productivity Dynamics

To better understand land degradation, climate change impacts, and land management
practices’ effectiveness, it is essential to monitor land productivity over an extended period,
primarily through satellite-based observations of vegetation dynamics. Land Productivity
Dynamics (LPD) is a key indicator for evaluating the health and productive capacity of
land ecosystems, as it captures long-term changes in vegetation growth patterns and
ecosystem function [66]. It is also one of the three sub-indicators used to assess progress
toward achieving Land Degradation Neutrality (LDN), alongside land cover change and
soil organic carbon trends [67].

LDN aims to balance land degradation with restoration or sustainable land manage-
ment efforts, ensuring that the net quantity and quality of land resources remain stable or
improve over time. According to the United Nations Convention to Combat Desertification
(UNCCD), LDN is achieved when:

LDN = (LDbaseline − LDcurrent) + Gains ≥ 0, where LDbaseline is the area of degraded
land at a reference year (usually 2000), LDcurrent is the area currently degraded, and Gains
refer to improvements in productivity or restored areas.

LPD is primarily assessed using long-term NDVI time series, typically derived from
moderate-resolution satellite products, such as MODIS or AVHRR. To analyze LPD trends
over time, statistical techniques such as non-parametric trend analysis (e.g., Mann–Kendall
test) and Theil–Sen slope estimation are applied to each pixel in the NDVI time series. This
enables the detection of monotonic trends in vegetation productivity without assumptions
of normal distribution or linearity. The direction and magnitude of these trends are then
classified into five productivity trajectories: increasing, stable, early signs of decline, declin-
ing, and degraded. This method—originally developed by Ivits and Cherlet [68]—was later
adopted in global assessments, such as the World Atlas of Desertification [69]. The Earth
Map platform evaluates land productivity using 16-year rolling periods (e.g., 2001–2016,
2002–2017, . . ., up to 2009–2024). Each time window is assessed for significant positive
or negative trends in the NDVI, benchmarked against the initial condition in the baseline
year. Pixels that show a consistent negative slope in NDVI values are flagged as areas of
declining productivity, potentially indicating land degradation. This approach allows for
robust land condition monitoring, especially when ground data are limited or unavailable.
By integrating LPD trends into LDN monitoring frameworks, policymakers and land man-
agers can identify priority areas for intervention, measure the effectiveness of restoration
efforts, and align national strategies with global goals such as Sustainable Development
Goal 15.3—“By 2030, combat desertification, restore degraded land and soil, and strive to
achieve a land degradation-neutral world” [70].

Land Productivity Dynamics (LPD) serves as a vital indicator for detecting degraded
areas, early signs of vegetation decline, and regions exhibiting increased productivity,
thereby elucidating the spatial and temporal patterns of land condition changes. Inte-
grating LPD into this analysis enhances the identification of vulnerable ecosystems and
facilitates the evaluation of land management effectiveness. Moreover, its application
aligns with international frameworks, such as Land Degradation Neutrality (LDN) and
Sustainable Development Goal 15.3, which emphasize combating land degradation and
promoting sustainable land use. In the context of the Euphrates–Tigris Basin, LPD was
employed to systematically monitor and assess long-term trends in vegetation growth
and ecosystem functionality, providing a scientifically robust basis for evidence-driven
decision-making aimed at land restoration and resilience under ongoing environmental
and climatic challenges.
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The selected datasets were chosen considering their relationships with key indicators
of climate change, land use, vegetation, and hydrological conditions, providing a solid
basis for assessing both temporal and spatial patterns in the region (Table 1).

Table 1. Overview of Earth Map datasets used in this study.

Data Name Short Description Main Source Purpose/Target Logic

Global Ecological Zones

The Global Ecological Zones (GEZ) dataset,
developed by the FAO, classifies global forests

into major ecological types (e.g., tropical
rainforest and boreal forest).

Food and Agriculture
Organization of the United

Nations (FAO)

Climate trends
and variabilityAridity Index

The United Nations Environment Programme
(UNEP) defines drylands according to an Aridity

Index (AI), which is the ratio of the average
annual precipitation to the potential

evapotranspiration.

European Commission, Joint
Research Centre

Precipitation/Temperature

The products are derived from processing the
European Centre for Medium-Range Weather

Forecasts (ECMWF) ERA5 atmospheric
reanalysis of the global climate product.

Copernicus Climate
Change Service

Land Cover and Land
Use Change

The GLAD Global Land Cover and Land Use
Change dataset quantifies land use/cover

changes from 2000 to 2020 at a 30 m
spatial resolution.

GLAD Global Land Cover and
Land Use Change

Land Cover and Land Use
Change (LCLUC) and
gain/loss conversions

Potential
Evapotranspiration

The potential evapotranspiration (PET) products
are derived from the available MODIS Global
Terrestrial Evapotranspiration 8-Day Global

1 km time series. MOD16A2 v006—MODIS/Terra
Net Evapotranspiration 8-Day L4

Global 500 m SIN Grid Vegetation dynamics,
climatic water demand, and

Land Degradation
Neutrality

Water Deficit

The Water Deficit product is derived from
processing MODIS/Terra Net

Evapotranspiration 8-Day L4 Global 500 m
version to generate a time series of the

Water Deficit.

Normalized Difference
Vegetation Index

The NDVI products are derived from the
available Vegetation Indices 16-Day Global

250 m time series. MOD13Q1 v006 MODIS/Terra
Vegetation Indices 16-Day L3

Global 250 m SIN GridLand Productivity
Dynamics

The dynamics in the land productivity indicator
are related to changes in the health and

productive capacity.

3. Results and Discussions
In this study, the analysis of the Euphrates–Tigris Basin was carried out using Earth

Map, focusing on climate trends and variability, LULCC, vegetation, and water monitoring.
The findings were evaluated regarding adaptation to climate change and its effects, ensuring
sustainable water resources management and integrated basin management strategies. It
was emphasized that Earth Map facilitates a comprehensive assessment by using open-
access satellite data to monitor environmental trends over time. It is an effective tool that
provides valuable insights for decision-makers and stakeholders.

3.1. Climate Trends and Variability

According to the GEZ, 26.20% of the basin is located in the Subtropical Mountain
System (Figure 4). The Subtropical Mountain System ecozone in the basin plays an essential
role in water supply by acting as a natural reservoir regulating hydrological cycles and
supporting downstream ecosystems and human communities [71]. A significant part of
this ecozone is located in the Anatolian plateaus of Türkiye and is the main source of
the Euphrates and Tigris rivers. Other sources are supplied from the Zagros Mountains,
located in the same Subtropical Mountain System [30]. Additionally, 39.23% of the basin is
in the Subtropical Desert, and 33.42% is in the Subtropical Steppe ecozone. These dryland
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ecosystems require a delicate balance to ensure sustainable land and water management [72]
and the resilience of local ecosystems and communities [73].

Figure 4. Global Ecological Zones of the Euphrates–Tigris Basin.

When the change map was analyzed from the median values of the 2001–2010 and
2011–2020 periods (Figure 5a,b), it was found that the hyperarid class decreased by 4.81%,
the arid class decreased by 3.01%, and the non-drylands class decreased by 7.98%. On the
other hand, the semi-arid class increased by 9.36% and the dry subhumid class increased
by 13.50% (Figure 5c). When aridity changes for the 2001–2020 period are examined, the
decrease in arid areas is 7.08%, and the increase in arid areas is 1.64% (Figure 5d).
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Figure 5. Change in Aridity Index (Prec ECMWF Land/PET MODIS); AI of the 2001–2010 period (a),
AI of the 2011–2020 period (b), Comparison of AI classes of changes for 2001–2020 (c), and aridity
changes for the 2001–2020 period (d). The United Nations Environment Programme (UNEP) defines
drylands according to an Aridity Index (AI), which is the ratio of the average annual precipitation to
the potential evapotranspiration; drylands are lands with an AI of less than 0.65. Drylands are further
divided, based on the AI, into hyperarid lands (AI < 0.05), arid lands (0.05 ≤ AI < 0.2), semi-arid
lands (0.2 ≤ AI < 0.5), and dry subhumid lands (0.5 ≤ AI < 0.65).

In the basin, it is observed that there is a conversion from the two driest classes
(hyperarid and arid) to other classes (semi-arid and dry subhumid) within the AI classes.
When the hyperarid and arid conversion regions are examined, geomorphological effects
are observed, but specific areas stand out. In particular, drought reduction has been
detected in the following regions: the Şanlıurfa (Suruç)-Mardin (Kızıltepe) line within the
borders of Türkiye, Münbiç and its surroundings within the Syrian border, Tell Beydar-Tel
Hamees and its surroundings, the Tal Afar-Mosul-Kirkuk line in Iraq, and Qasr Şirin
and its surroundings and Humeyl and Derb Gündeb and its surroundings in Iran. The
common feature of these regions is that irrigated agriculture is carried out in the region.
The regions in the basin where drought reduction has been detected within the borders
of Türkiye are within the scope of the Southeastern Anatolia Project (GAP). GAP is an
irrigation project targeting irrigated agriculture to increase the region’s economic and
social welfare [74]. Similarly, despite all the challenges experienced, the total irrigable
land, especially in the north of Syria, is around 1.42 million hectares [75]. Iraq has
approximately 13.24 million hectares of land irrigated by the rivers feeding the country
within the basin [76]. Iran has approximately 14.3 million hectares of cultivated land
under irrigated conditions in the last decade, emphasizing the importance of irrigation in
the remaining areas of Iran in the basin [77]. In addition, the region between Baghdad
and Basra transitions from the hyperarid class to the arid class. This area is the most
important region in central and southern Iraq, where agriculture in the basin mainly
depends on irrigation from the Tigris and Euphrates rivers. The region is also within
the agricultural areas, expanding with drought threats in Iraq. In Iraq, the agricultural
sector consumes the majority of water resources, with values ranging from 75% [78]
to 90% [79]. In addition, increasing agricultural activities in the region, based on the
amount of water required to protect the existing areas of the marshes in the region, pose
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a threat to the sustainable management of the region [80]. In the four countries in the
basin, the increase in agricultural areas developed because of approaches to water use
and food supply and security is observed in the regions affected by drought. However,
it should not be forgotten that these conversion areas are still at risk of drought, and
their dependence on water will continue to increase due to the adverse effects of climate
change. In addition, when Figure 5d is examined, an increase in drought is observed
in the northern and mountainous areas that feed the basin, in Türkiye (Anatolia). This
situation is also observed in the drought study conducted in the mountainous areas of
Türkiye [81], and another study determined that the Eastern Anatolia Region, which
feeds the Euphrates and Tigris basins, is among the four drought hotspots in Türkiye [82].
The increase in droughts observed in the mountainous regions of Türkiye, especially
in the northern parts of the Euphrates and Tigris basins, has significant consequences
for the hydrology and sustainability of these transboundary river systems. Since these
high-altitude areas serve as critical sources of surface water and groundwater through
snowmelt and precipitation [83], prolonged drought conditions reduce the amount of
water recharged into the main rivers. This may lead to reduced river flows and reduced
water availability for agriculture, ecosystems, and downstream communities, and it
may prompt more prudent measures among basin countries for the sustainable use of
water resources.

Long-term temperature changes across the basin indicate a consistent increase, partic-
ularly in the high-altitude regions that geomorphologically serve as the primary sources
of water feeding the basin, excluding hyperarid and arid zones (Figure 6a). The analysis
of precipitation change reveals a noticeable decline in the northern part of the basin and
the southeastern portion of the basin located within the Iranian border (Figure 6c). Both
temperature and precipitation change maps show a clear pattern of rising temperatures
and decreasing precipitation in the headwater regions, particularly within the Anatolian
segment of the basin. The examination of anomaly values supports these findings: yearly
temperature anomalies in the mountainous source areas increase up to 1.80 ◦C (Figure 6b),
while yearly precipitation anomalies show a decrease of up to 113.75 mm in the same
regions (Figure 6d). Although precipitation anomalies reach deviations of up to 183 mm in
the mountain range extending from Anatolia into Iraq and Iran, as well as in the hyper-
arid and arid zones, their contribution to long-term precipitation trends remains limited.
Consequently, these anomalies—characterized by alternating wet and dry years—do not
result in a significant long-term increase in precipitation but instead contribute to growing
instability in the basin’s hydrological cycle. This increased variability underscores the need
for enhanced predictability, improved storage capacity, and robust water management
systems to ensure resilience in the face of climatic fluctuations. The NEX-GDDP-CMIP6
dataset is comprised of global downscaled climate scenarios derived from the General
Circulation Model (GCM) runs conducted under the Coupled Model Intercomparison
Project Phase 6 (CMIP6) [53] and across two of the four “Tier 1” greenhouse gas emissions
scenarios known as Shared Socioeconomic Pathways (SSPs) [54,84]. This dataset includes
downscaled projections from ScenarioMIP model runs [85], for which daily scenarios were
produced and distributed through the Earth System Grid Federation. Based on climate
projections, the basin is expected to experience significant warming, with temperature
deviations reaching +3.05 ◦C under SSP245 and +6.71 ◦C under SSP585 by 2100, indicating
a strong warming trend regardless of the scenario (Figure 6e). Under SSP245, precipitation
is projected to decline slightly by the end of the century, with an average decrease of 8 mm,
suggesting increasing aridity. Although SSP585 shows a short-term increase in precipitation
by 33 mm around 2040, it declines to only 11 mm above baseline by 2100, indicating a
potential for early intensification followed by drying (Figure 6f). These changes imply
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heightened drought and water stress risks, along with increased climate variability, which
could severely impact the basin’s water resources and ecosystem resilience.

 

Figure 6. Spatial distribution of mean and anomaly temperature and precipitation changes (a–d) and
temporal trends under SSP245 and SSP585 climate scenarios (e,f).
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3.2. Land Cover and Land Use Change (LCLUC)

An analysis of land use/land cover (LULC) changes from 2000 to 2020 using the GLAD
dataset reveals significant spatial and temporal shifts influenced not only by environmental
dynamics but also by socioeconomic and political factors across the Euphrates–Tigris Basin.
This study focuses on changes in water bodies, cropland, and built-up areas to evaluate
the region’s sensitivity and adaptive responses to climate change. By analyzing these three
critical land cover categories, this study aims to reveal how LULC has evolved in relation
to hydrological processes, food security, and urban expansion over the last two decades
(Figure 7). An analysis of the 2000–2020 land use/land cover (LULC) changes using the
GLAD dataset revealed a decline of 1% in the desert class and 3% in the semi-arid class.
Concurrently, a reduction was also observed in certain wetland classes, including salt
pan and wetland sparse vegetation classes. In contrast, there was an increase in wetland
dense short vegetation and open surface water classes. Notably, the most significant
increases were observed in cropland and built-up areas, with expansions of 2.12% and
2.18%, respectively (Table 2). These LULC changes correspond closely with the region’s
geopolitical instability and development pressures. Countries such as Iraq and Syria have
faced prolonged periods of conflict, population displacement, and institutional breakdowns
in land governance [86,87]. In many cases, conflict has triggered unregulated agricultural
expansion and informal urban development, particularly in peri-urban and semi-arid
zones [88]. Cropland and built-up area expansion often reflect a combination of post-
conflict reconstruction, internally displaced populations (IDPs) settling in marginal lands,
and policies aimed at boosting food security in the face of economic sanctions or conflict-
related trade disruptions [89–91].

Figure 7. The Euphrates–Tigris Basin Land Cover and Land Use Change 2000/2020 UMD GLAD;
LULC 2000 (a), LULC 2020 (b), and LCLUC 2000/2020 (c).
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Table 2. The Euphrates–Tigris Basin Land Cover and Land Use Change.

Class 2000 (ha) 2020 (ha) Change (ha)

True desert 37,335,028.45 36,484,760.37 −850,268.08
Semi-arid 32,850,054.75 29,814,243.69 −3,035,811.06
Dense short vegetation 6,107,403.91 5,793,714.89 −313,689.02
Tree cover 225,247.12 247,365.85 22,118.73
Salt pan 435,916.26 126,023.29 −309,892.97
Wetland sparse vegetation 545,022.67 167,500.93 −377,521.74
Wetland dense short
vegetation 99,406.31 142,627.95 43,221.64

Wetland tree cover 2726.20 2,712.03 −14.16
Open surface water 1,321,320.21 2,120,124.75 798,804.54
Snow/ice 367.23 305.14 −62.09
Cropland 13,611,024.57 15,598,467.94 1,987,443.37
Built-up 1,003,854.82 3,039,525.67 2,035,670.85
Ocean − − −
Total 93,537,372.50 93,537,372.50 0.00

According to the GLAD (2000–2020) Land Cover and Land Use Change (LCLUC)
matrix assessment, available on Earth Map, wetland loss resulted from land cover con-
versions, including 1.3% from desert and semi-arid, 6% from cropland, and 1.3% from
built-up classes. Conversely, wetland gains were attributed to conversions from desert and
semi-arid (6.4%) and cropland classes (5.6%). However, gains in wetland area in desertified
regions may be influenced by seasonal flooding or the spread of unregulated irrigation,
often driven by short-term adaptation strategies rather than long-term sustainability. Other
conversions related to gain and loss areas occurred within the same classes. Cropland loss
resulted from land cover conversions, including 7.5% from desert, 75.8% from semi-arid,
11.9% from dense vegetation, and 4.8% from wetland classes. Conversely, cropland gains
were attributed to conversions from desert (10%), semi-arid (80.3%), dense vegetation
(7.9%), and wetland (1.8%). The expansion of agricultural lands into semi-arid zones, while
partly driven by climate adaptation needs, also reflects socioeconomic stress and shifts in
land tenure due to displacement and migration. As expected, there are no losses in the built-
up class. Built-up gains were attributed to conversions from desert (4.9%), semi-arid (58%),
dense vegetation (11.7%), wetland (0.8%), and cropland classes (24.6%). LCLUC main
classes and change matrix changes as loss/gain show that cropland and built-up classes
are expanding at the expense of semi-arid, desert, dense vegetation, and wetland classes.
The results of the drought analysis emphasize that agricultural and urban development
pressures are intensifying in the face of drought threats in the basin. Although wetlands
have experienced losses due to encroachment from cropland and built-up classes, they have
shown gains from desert, semi-arid, and cropland conversions. However, wetland gains,
especially in desert and semi-arid classes, are sensitive in terms of water management
sustainability due to their conditions. Similarly, cropland dynamics are characterized by
significant losses and gains in both semi-arid and desert areas, indicating complex inter-
actions between land degradation and agricultural expansion. The irreversible nature of
built-up expansion, driven mainly by conversions from cropland and semi-arid classes,
further emphasizes the increasing footprint of urbanization in the basin. In addition, these
patterns suggest significant urban growth—much of it unplanned or informal—especially
around cities affected by war, population returns, or refugee resettlement. The expansion of
cropland into fragile semi-arid and desert zones—such as those seen in Iraq and Syria—can
also be interpreted as a result of increased reliance on marginal lands due to war-related
infrastructural damage or lack of access to more fertile areas.
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In addition, the GLAD 2000–2020 land cover change map, derived from Earth Map,
provides classifications of loss, gain, and stability for wetland, cropland, and built-up land
cover types. In this study, these changes were analyzed within a GIS environment at the
national level, excluding Jordan and Saudi Arabia, in terms of area size and impact on
consequences (Table 3). The dataset defines “persistent water loss/gain” for wetland areas;
“loss/gain from trees, wetland vegetation, short vegetation, and other” for cropland; and
“loss/gain from trees, cropland, and other” for built-up areas. The analysis reveals that 94%
of the persistent water loss in the region occurred in Iraq, while persistent water gains were
concentrated primarily in Iraq (48.4%) and Syria (40.6%). In terms of cropland expansion,
Syria and Iraq recorded the highest rates of cropland gain from wetland vegetation, at 43.9%
and 33.4%, respectively. Iraq also exhibited the highest cropland gain from the “other”
category (57.6%), which predominantly comprises semi-arid and desert areas. Regarding
cropland loss, Iraq and Syria experienced the highest proportions of cropland loss to tree
cover, at 44.8% and 42.2%, respectively, while Iraq also had the highest cropland loss to
short vegetation or other classes (45.5%). Indicating instability in land use likely tied to
abandonment, soil degradation, or land tenure uncertainty. Built-up area expansion was
most prominent in Iraq and Türkiye, particularly regarding conversion from cropland. The
highest built-up gain from cropland was recorded in Iraq (38.9%), followed by Türkiye
(34.7%) and Syria (15.3%). These dynamics highlight the irreversible nature of urban sprawl,
which often intensifies in post-conflict periods, such as in Syria and Iraq, and the lack of
formal planning or implementation mechanisms. The national-level analysis of land cover
dynamics between 2000 and 2020 reveals Iraq as the most affected and transformative
country in the region, exhibiting dominant trends across all major land cover transitions

Table 3. Land cover percentage gain/loss conversions in the Euphrates–Tigris Basin by country
2000–2020 (except Jordan and Saudi Arabia).

IRN (%) IRQ (%) SYR (%) TUR (%)

Persistent water loss 0.025 0.949 0.011 0.013
Persistent water gain 0.406 0.483 0.0103 0.099

Cropland gain from trees 0.247 0.29 0.009 0.452
Cropland gain from wetland vegetation 0.438 0.334 0.019 0.207

Cropland gain from other classes 0.140 0.575 0.107 0.176
Cropland loss to trees 0.422 0.447 0.011 0.119

Cropland loss to short vegetation/other classes 0.152 0.455 0.165 0.226
Built-up gain from trees 0.062 0.514 - 0.423
Built-up gain from crops 0.152 0.389 0.111 0.346

Built-up gain from other classes 0.169 0.476 0.061 0.281

3.3. Vegetation Dynamics, Climatic Water Demand, and Land Degradation Neutrality

Through the Earth Map platform, analyses were conducted on NDVI, PET, and Wa-
ter Deficit for the Euphrates–Tigris Basin (Figure 8). Since approximately three-quarters
of the basin lies within an arid ecosystem, the average NDVI value across the region is
relatively low, around 0.18 (Figure 8(a1)). The analysis of NDVI anomaly and change
maps indicates that the anomaly values effectively capture vegetation dynamics within
the basin (Figure 8(a2,a3)). Notably, significant anomalies and changes are particularly
evident in cropland areas. The long-term NDVI trend from 2000 to the present consistently
increases, suggesting an overall positive trajectory in vegetation productivity (Figure 8(a4)).
The analysis of average PET values reveals that the highest levels are concentrated in the
region between Basra and Baghdad, located between the Euphrates and Tigris Rivers, and
in areas within the Iranian borders to the north-northeast of Basra (Figure 8(b1)). While
the PET anomaly and change maps exhibit broadly similar spatial patterns, the anomaly
values effectively reflect the magnitude and distribution of change. Areas showing notable
PET variations in both maps include the northern parts of the basin, particularly across
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Syria and Türkiye, and the mountainous regions in the eastern and northeastern sectors
(Figure 8(b2,b3)). These areas exhibit a pronounced increasing trend in PET values. Despite
these localized increases, the overall annual average PET trend across the basin remains
relatively stable over the observation period, indicating a generally horizontal trajectory
(Figure 8(b4)). According to the average Water Deficit values for the Euphrates–Tigris
Basin, notably high deficits are observed in the regions of Baghdad and Basra, as well as
in the intensively cultivated and wetland-rich areas located between the two rivers and
the zone extending from Kirkuk to Dezful in the eastern part of the basin (Figure 8(c1)).
These elevated values indicate that water demand significantly exceeds available supply,
particularly in these regions, signifying drought conditions, increased water stress for vege-
tation, and intensifying pressure on diminishing soil moisture. Additionally, a moderate
increase in Water Deficit change is observed in the northern part of the basin, particularly
in the Anatolian region of Türkiye, which serves as the basin’s headwaters (Figure 8(c2)).
This trend, consistent with other findings, points to a worsening drought scenario in the
upper basin. Water Deficit anomaly values reinforce this pattern, highlighting a similar
spatial distribution (Figure 8(c3)). Notably, a partial decrease in both Water Deficit change
and anomaly values is evident in the Zagros Mountains region, stretching from Erbil to
Shahr-e Kord in the eastern basin. The long-term trend indicates a marked increase in
climatic Water Deficit, particularly pronounced in the period following 2020 (Figure 8(c4)),
underscoring the growing impacts of climate change on the regional water balance.

Figure 8. Earth Map NDVI, PET, and Water Deficit analysis from 2000 to 2024: NDVI average (a1),
change (a2), anomalies (a3), and trend (a4); PET average (b1), change (b2), anomalies (b3), and trend
(b4); and Water Deficit average (c1), change (c2), anomalies (c3), and trend (c4).
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In this study, LPD was mapped for the Euphrates–Tigris Basin, and the results were
analyzed (Figure 9). When analyzing the LPD change matrix for the Euphrates–Tigris
Basin from 2016 to 2024 (Table 4), a 66.18% decrease in areas classified as ‘Declining’ and
a 67.39% increase in ‘Increasing’ areas are observed. This trend is reflected in the class
transitions, where ‘Increasing’ productivity is predominantly detected in cropland areas
and their immediate surroundings. An examination of the change matrix and class-specific
dynamics related to the ‘Cropland’ category on Earth Map, within the context of Land
Productivity Dynamics, revealed that areas ‘Cropland declining’ decreased by 44.98%,
while those identified as ‘Cropland increasing’ expanded by 8.89%. These rates of change
suggest that the general trend of land productivity decline has slowed in larger areas of
cropland, with a concomitant increase in agricultural productivity in areas where land is
covered. The observed patterns reflect both a slowdown in the widespread degradation of
cropland and the emergence of productivity gains in specific areas.

 

Figure 9. The Euphrates–Tigris Basin Land Productivity Dynamics from 2016 to 2024.

In contrast, areas exhibiting a decline in productivity are primarily concentrated in
the southwestern parts of the basin, characterized by hyperarid conditions and sparse
vegetation cover. Notably, there is a significant increase of 177.01% in the ‘Early Signs
of Decline’ class, which predominantly occurs within the desert and steppe ecozones.
This trend suggests a high probability of future degradation, as the largest transition
to the ‘Declining’ category—amounting to 12,561 km2—originates from the ‘Early Signs
of Decline’ class. These regions are known to be globally influenced by sand and dust
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storms [92], indicating a potential intensification of dust source activity in the basin over
time. Furthermore, the ‘Stable but Stressed’ class increased by 44.67%, indicating potential
vulnerability and its possible contribution to land degradation under worsening conditions.
Considering that 55.3% of the basin currently falls within the ‘Early Signs of Decline’ and
‘Stable but Stressed’ categories, this supports the hypothesis that these areas, particularly
within the desert and steppe ecozones, are at high risk of transitioning into sand and dust
source regions. Additionally, the largest transitions to the ‘Increasing’ class were observed
from the ‘Stable but Stressed’ (53,609.2 km2) and ‘Stable’ (20,056.22 km2) classes, suggesting
localized improvements potentially linked to land management or climatic variability.

Table 4. The Euphrates–Tigris Basin Land Productivity Dynamics change matrix (ha).

2024
Total (2016)Unknown

Class Declining Early Signs
of Decline

Stable But
Stressed Stable Increasing

2016

Unknown
class 0 0 0 5 0 0 5

Declining 0 831,411 2,063,137 3,284,661 2,629,552 618,859 9,427,620
Early signs
of decline 0 1,256,100 3,627,536 2,654,530 2,090,146 731,739 10,360,051

Stable but
stressed 19 527,488 11,849,019 10,210,230 13,707,808 5,360,920 41,655,484

Stable 0 474,596 9,503,291 5,866,428 7,602,693 2,005,622 25,452,630
Increasing 14 98,930 1,655,257 1,031,840 1,455,806 2,399,523 6,641,370

Total (2024) 33 3,188,525 28,698,240 23,047,694 27,486,005 11,116,663 93,537,160

4. Conclusions
This study provides a comprehensive assessment of climate trends, Land Use and

Land Cover Change (LULCC), vegetation dynamics, and water resource variability in the
Euphrates–Tigris Basin using Earth Map and remote sensing data. The findings highlight
critical environmental shifts and their implications for sustainable water management,
ecosystem resilience, and regional adaptation strategies under climate change.

The analysis revealed both encouraging and concerning trends in land productivity,
with a decline in ‘Declining’ areas and an increase in ‘Increasing’ zones, particularly near
croplands. However, the sharp rise in ‘Early Signs of Decline’ and ‘Stable but Stressed’
areas—especially in hyperarid and steppe ecozones—signals growing degradation risks,
potentially leading to expanded dust source regions. These changes are driven not only by
climate factors but also by unsustainable land use and land cover practices. Climate trends
from ERA5 and MODIS data indicate a shift from hyperarid to semi-arid and dry subhumid
zones, largely due to extensive irrigation across Türkiye, Syria, Iraq, and Iran. While such
practices have supported localized productivity, they also increase water dependency
and vulnerability under projected warming and drying conditions. Rising temperatures
and declining precipitation in headwater regions threaten future runoff and basin-wide
hydrological stability. Climate projections under the SSP2-4.5 and SSP5-8.5 scenarios further
confirm intensifying aridity and extremes. These findings highlight the urgent need for
integrated water governance, climate adaptation, and sustainable land management to
ensure ecological and socioeconomic resilience in the Euphrates–Tigris Basin.

The analysis of Land Use and Land Cover Change (LULCC) in the Euphrates–Tigris
Basin (2000–2020) reveals significant shifts in wetlands, croplands, and built-up areas,
largely driven by climatic pressures and human activity. Cropland expansion into semi-
arid and desert areas not only reflects growing food demand and adaptation to aridity but
also raises concerns about land degradation in environmentally sensitive zones. Built-up
area growth, particularly in Iraq and Türkiye, has led to irreversible land conversion and
increased stress on water and infrastructure. Wetland changes show both gains and losses,
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with many declines linked to cropland and urban encroachment, compounded by past
political and security challenges in the southern basin. Iraq stands out as the most affected
country, with major transitions in water, cropland, and urban land cover. These findings
highlight the close links between land use, climate stress, and socioeconomic development,
emphasizing the urgent need for coordinated climate-resilient land management policies
that align environmental sustainability with human development in the region.

This study’s integrated assessment of vegetation dynamics, climatic water demand,
and land productivity in the Euphrates–Tigris Basin provides critical insights into the
region’s ecological health and vulnerability to climate change and land degradation. Long-
term NDVI trends show increased vegetation productivity, particularly in cropland areas,
suggesting some resilience through intensified agricultural practices. However, this increase
may also reflect unsustainable use of marginal lands. While potential evapotranspiration
(PET) remains generally stable, localized rises in headwaters indicate growing evaporative
demand under warming. Water Deficits are most severe in densely populated agricultural
zones, highlighting increasing risks of drought and vegetation stress, especially after
2020. Land Productivity Dynamics (LPD) reveal mixed trends: a 67% rise in increasing
productivity areas contrasts with a sharp 177% surge in early decline signs, mainly in desert
and steppe regions vulnerable to dust storms. Additionally, a 45% growth in ‘Stable but
Stressed’ areas points to a widespread risk of degradation without targeted intervention.
Overall, more than half of the basin faces potential land degradation, emphasizing the need
for coordinated land use and water management to achieve Land Degradation Neutrality.
Sustainable practices, enhanced restoration efforts, improved water efficiency, and regional
cooperation are essential to safeguard the basin’s ecological and socioeconomic resilience
amid climate change.

The Euphrates–Tigris Basin is undergoing rapid environmental changes driven by
natural pressures, climate variability, and anthropogenic pressures. While some regions
show adaptive capacity (e.g., cropland expansion), others face escalating water stress
and land degradation. Addressing these challenges requires coordinated science-based
policies to ensure the basin’s long-term sustainable water management, Land Degradation
Neutrality, ecosystem stability, and socioeconomic resilience. Earth Map and remote sensing
tools have been proven to be invaluable for monitoring these dynamics and informing
decision-making in a data-scarce region. While the current results provide valuable insights
into the environmental dynamics of the Euphrates–Tigris Basin, they are clearly insufficient
to fully grasp the complex socioeconomic impacts faced by downstream communities. In
particular, socioeconomic data must also be integrated to fully understand socioeconomic
impacts. Integrating these human dimensions is crucial for developing comprehensive and
targeted adaptation strategies that enhance basin-wide resilience and promote equitable
resource management. Future studies should integrate higher-resolution datasets and
localized socioeconomic assessments to refine adaptation strategies. For this purpose, it
is important to identify the subheadings of each problem that will increase resilience and
contribute to the solution and to produce policies by revealing their effects on each problem.
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