Climate-Driven Dynamics of Landscape Patterns and Carbon Sequestration in Inner Mongolia: A Spatiotemporal Analysis from 2000 to 2020
Abstract
1. Introduction
2. Research Area and Data Sources
2.1. Overview of the Research Area
2.2. Data Sources
2.3. Indicator Selection
2.3.1. NPP Calculation of CASA Model
2.3.2. Calculation of Landscape Pattern Index
2.3.3. Construction of Correlation Analysis Dataset
3. Results
3.1. Spatiotemporal Evolution of Vegetation NPP
3.2. Changes in Landscape Patterns
3.3. Correlation Analysis Between Landscape Pattern and NPP
3.4. Correlation Analysis Between Climatic Variables and NPP
4. Discussion
4.1. Factors Driving the Spatiotemporal Changes in NPP
4.2. Impact of Landscape Pattern on Carbon Sequestration Capacity
4.3. Applicability of NPP as a Carbon Sequestration Capacity Indicator
4.4. Implications for Management
- 1.
- Enhancing landscape connectivity
- 2.
- Regionally differentiated management
- 3.
- Optimizing patch size and spatial structure
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lafortezza, R.; Sanesi, G.; Chen, J.Q.; Crow, T.R. Patterns and Processes in Forest Landscapes: Multiple Use and Sustainable Management; Springer: Dordrecht, The Netherlands, 2008; pp. 210–217. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wilson, M.; Hu, G.; Liu, J.; Wu, J.; Yu, M. How does habitat fragmentation affect the biodiversity and ecosystem functioning relationship? Landsc. Ecol. 2018, 33, 341–352. [Google Scholar] [CrossRef]
- Xu, Q.; Dong, Y.X.; Yang, R. Influence of the geographic proximity of city features on the spatial variation of urban carbon sinks: A case study on the Pearl River Delta. Environ. Pollut. 2018, 243, 354–363. [Google Scholar] [CrossRef]
- Xu, Q.; Dong, Y.X.; Yang, R. Influence of different geographical factors on carbon sink functions in the Pearl River Delta. Sci. Rep. 2017, 7, 110. [Google Scholar] [CrossRef]
- Wan, Y.S.; Wang, Y.L.; Gao, M.; Jin, L. An empirical assessment of whether urban green ecological networks have the capacity to store higher levels of carbon. Sci. Rep. 2024, 14, 3132. [Google Scholar] [CrossRef]
- Shi, N.; Yu, Y.; Liang, S.; Ren, Y.; Liu, M. Effects of urban green spaces landscape pattern on carbon sink among urban ecological function areas at the appropriate scale: A case study in Xi’an. Ecol. Indic. 2024, 158, 112345. [Google Scholar] [CrossRef]
- Wang, W.J.; Wang, Y.B.; Zhai, S.Y.; Xia, H.M.; Wang, D.; Song, H.Q. Climate change driven by LUCC reduced NPP in the Yellow River Basin, China. Glob. Planet. Chang. 2024, 242, 104586. [Google Scholar] [CrossRef]
- Zhao, M.S.; Running, S.W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef]
- Lü, Y.; Fu, B.; Feng, X.; Zeng, Y.; Liu, Y.; Chang, R.; Sun, G.; Wu, B. A policy-driven large scale ecological restoration: Quantifying ecosystem services changes in the Loess Plateau of China. PLoS ONE 2017, 7, e31782. [Google Scholar] [CrossRef]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lü, Y.; Zeng, Y. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2021, 6, 1019–1022. [Google Scholar] [CrossRef]
- Yue, C.; Xu, M.; Ciais, P.; Tao, S.; Shen, H.; Chang, J.; Li, W.; Deng, L.; He, J.; Leng, Y.; et al. Contributions of ecological restoration policies to China’s land carbon balance. Nat. Commun. 2024, 15, 9708. [Google Scholar] [CrossRef] [PubMed]
- Soliveres, S.; Van Der Plas, F.; Manning, P.; Prati, D.; Gossner, M.M.; Renner, S.C.; Alt, F.; Arndt, H.; Baumgartner, V.; Binkenstein, J.; et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nat. Int. Wkly. J. Sci. 2016, 536, 456–459. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Yue, D.X.; Guo, J.J.; Chen, G.G.; Wang, D. Spatial correlations between landscape patterns and net primary productivity: A case study of the Shule River Basin, China. Ecol. Indic. 2021, 130, 108067. [Google Scholar] [CrossRef]
- Zhao, M.S.; Running, S.W. Response to Comments on “Drought-Induced Reduction in Global Terrestrial Net Primary Pro-duction from 2000 Through 2009”. Science 2011, 333, 1093. [Google Scholar] [CrossRef]
- Shao, M.; Wu, L.F.; Li, F.Z.; Lin, C.S. Spatiotemporal Dynamics of Ecosystem Services and the Driving Factors in Urban Ag-glomerations: Evidence From 12 National Urban Agglomerations in China. Front. Ecol. Evol. 2022, 10, 804969. [Google Scholar] [CrossRef]
- Chang, X.Q.; Xing, Y.Q.; Wang, J.Q.; Yang, H.; Gong, W.S. Effects of land use and cover change (LUCC) on terrestrial carbon stocks in China between 2000 and 2018. Resour. Conserv. Recycl. 2022, 182, 106333. [Google Scholar] [CrossRef]
- Wu, C.; Yang, Y.; Yue, T. Review of the Current Status and Development Trend of Global Forest Carbon Storage Research Based on Bibliometrics. Forests 2024, 15, 1498. [Google Scholar] [CrossRef]
- Yuan, D.B.; Zhang, L.Y.; Fan, Y.Q.; Yang, R.X. Investigating spatio-temporal variations and contributing factors of land use-related carbon emissions in the Beijing-Tianjin-Hebei Region, China. Sci. Rep. 2024, 14, 18976. [Google Scholar] [CrossRef]
- Dong, L.L. Spatio-temporal evolution and prediction of carbon balance in the Yellow River Basin and zoning for low-carbon economic development. Sci. Rep. 2024, 14, 14385. [Google Scholar] [CrossRef]
- Ma, B.X.; Jing, J.L.; Liu, B.; Xu, Y.; Dou, S.Q.; He, H.C. Quantitative assessment of the relative contributions of climate change and human activities to NPP changes in the Southwest Karst area of China. Environ. Sci. Pollut. Res. 2022, 29, 80597–80611. [Google Scholar] [CrossRef]
- He, L.; Yuan, Y.; He, Z.W.; Pang, J.T.; Zhao, Y.; Zeng, W.T.; Cen, Y.X.; Xiao, Y. Spatiotemporal variations of vegetation NPP based on GF-SG and kNDVI and its response to climate change and human activities: A case study of the Zoigê Plateau. Forests 2024, 16, 32. [Google Scholar] [CrossRef]
- Yuan, Y.Y.; Guo, W.; Tang, S.Q.; Zhang, J.Q. Effects of patterns of urban green-blue landscape on carbon sequestration using XGBoost-SHAP model. J. Clean. Prod. 2024, 476, 143640. [Google Scholar] [CrossRef]
- Jong, R.D.; Verbesselt, J.; Schaepman, M.E.; Bruin, S. Trend changes in global greening and browning: Contribution of short-term trends to longer-term change. Glob. Change Biol. 2012, 18, 642–655. [Google Scholar] [CrossRef]
- Liu, X.; Huang, J.; Zhou, H.; Sun, J.Q.; Wang, Q.; Chen, X.J. Dynamic analysis of provincial forest carbon storage efficiency in China based on DEA Malmquist Index. Forests 2023, 14, 1629. [Google Scholar] [CrossRef]
- Yang, Y.H.; Yin, J.B.; Kang, S.Y.; Slater, L.J.; Gu, X.H.; Volchak, A. Quantifying the drivers of terrestrial drought and water stress impacts on carbon uptake in China. Agric. For. Meteorol. 2024, 344, 109817. [Google Scholar] [CrossRef]
- Edwards, D.P.; Fisher, B.; Wilcove, D.S. High conservation value or high confusion? Sustainable agriculture and biodiversity conservation in the Tropics. Conserv. Lett. 2012, 5, 20–27. [Google Scholar] [CrossRef]
- Lafortezza, R.; Chen, J.Q.; Randrup, T.B.; Bosch, C.K.V.D. Nature-based solutions for resilient landscapes and cities. Environ. Res. 2018, 165, 431–434. [Google Scholar] [CrossRef]
- Schweiger, O.; Settele, J.; Kudrna, O.; Klotz, S.; Kühn, I. Climate change can cause spatial mismatch of tropically interacting species. Ecology 2008, 89, 3472–3479. [Google Scholar] [CrossRef]
- Xu, C.; Li, C. Correlation between Landscape Pattern and Net Primary Productivity of Vegetation: A Case Study in the Arid and Semi-Arid Regions of Northwest China. Land 2023, 12, 2004. [Google Scholar] [CrossRef]
- Chapin, F.S.; Matson, P.A.; Vitousek, P.M. Principles of Terrestrial Ecosystem Ecology; Springer: New York, NY, USA, 2011; p. 529. [Google Scholar]
- Bond-Lamberty, B.; Thomson, A. Temperature-Associated Increases in the Global Soil Respiration Record. Nature 2010, 464, 579–582. [Google Scholar] [CrossRef] [PubMed]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat Fragmentation and Its Lasting Impact on Earth’s Ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef] [PubMed]
- Zomer, R.J.; Trabucco, A.; Bossio, D.A.; Verchot, L.V. Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 2008, 126, 67–80. [Google Scholar] [CrossRef]
- Piao, S.L.; Fang, J.Y.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef]
- Luo, Y.; Weng, E. Dynamic Disequilibrium of Terrestrial Carbon Cycle under Global Change. Trends Ecol. Evol. 2011, 26, 96–104. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, X.; Zeng, Z.; Liu, Y.; Peng, S.; Zhu, Z.; Piao, S. The effect of afforestation on soil moisture content in northeastern China. PLoS ONE 2016, 11, e0160776. [Google Scholar] [CrossRef]
- Verbeeck, H.; Samson, R.; Granier, A.; Montpied, P.; Lemeur, R. Multi-year model analysis of GPP in a temperate beech forest in France. Ecol. Model. 2007, 210, 85–103. [Google Scholar] [CrossRef]
- Zeng, N.; Yoon, J.; Marengo, J.A.; Subramaniam, A.; Nobre, C.A.; Mariotti, A.; Neelin, J.D. Causes and impacts of the 2005 Amazon drought. Environ. Res. Lett. 2008, 3, 014002. [Google Scholar] [CrossRef]
- Churkina, G.; Brown, D.G.; Keoleian, G. Carbon Stored in human settlements: The Conterminous United States. Glob. Change Biol. 2010, 16, 135–143. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
Data Type | Source of Data | Accuracy |
---|---|---|
LULC | Geospatial Data Cloud (https://www.gscloud.cn/, accessed on 14 October 2023) | 30 m |
Temperature and Precipitation | National Earth System Science Data Center (https://www.geodata.cn, accessed on 14 October 2023) | 30 m |
NPP | USGS (https://lpdaac.usgs.gov, accessed on 14 October 2023) | 30 m |
Indicators | Name | Formula | Implication |
---|---|---|---|
PD | Patch density | The larger the number of patches per unit area of a landscape, the higher the degree of landscape fragmentation | |
ED | Edge density | The length of the edge of a landscape per unit area affects the edge effect and species composition. The larger the patch, the higher the degree of fragmentation | |
PLAND | Patch area ratio | The proportion of a certain type of patch in the total landscape area determines important factors such as biodiversity, dominant species, and its quantity in the landscape | |
LPI | Maximum patch index | The maximum patch index helps determine the dominant type of landscape and can reflect the direction and strength of human activities | |
LSI | Shape index | Measuring the complexity of patch shapes within a landscape, the larger the value, the more complex the landscape shape | |
COHESION | Aggregation index | Reflecting the connectivity of different land use patch types within the landscape, the smaller the landscape, the higher the heterogeneity | |
PAFRAC | Fractal dimension index | The complexity of the shape of individual landscape patches | |
AI | Aggregation index | The relationship between adjacent types of landscape patches, with small values indicating high fragmentation levels and large values indicating good connectivity within the landscape patches | |
CONTAG | Sprawl index | The degree of aggregation or extension trend of different patch types in the landscape is related to the spatial configuration relationship of landscape components | |
IJI | Dispersion and parallelism index | The overall dispersion and juxtaposition of patch types, calculated from the relationship between the length of each edge type (eik) and total edge of the landscape divided by a term based on the number of land use/land cover types (m) |
Year | Landscape Pattern Index | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
AI | COHESION | CONTAG | SPILT | DIVISION | ED | IJI | LPI | LSI | PAFRAC | |
2000 | 87.119 | 99.895 | 49.520 | 4.543 | 0.779 | 8.551 | 63.050 | 40.109 | 236.998 | 1.527 |
2010 | 87.869 | 99.9 | 51.417 | 4.238 | 0.763 | 8.056 | 58.211 | 41.607 | 224.650 | 1.531 |
2020 | 87.469 | 99.895 | 53.734 | 4.564 | 0.780 | 8.322 | 54.727 | 40.769 | 230.560 | 1.511 |
Types | Year | TE | NP | IJI | PLAND |
Timberland | 2000 | 32,113.8 | 40,821 | 24.25 | 11.81 |
2010 | 32,745.51 | 43,440 | 23.85 | 11.05 | |
2020 | 34,043.97 | 42,312 | 21.81 | 11.92 | |
Grassland | 2000 | 91,428.21 | 86,966 | 83.44 | 46.73 |
2010 | 88,033.08 | 90,603 | 77.18 | 47.76 | |
2020 | 87,611.34 | 83,334 | 71.44 | 47.81 | |
Farmland | 2000 | 41,672.22 | 34,073 | 45.3 | 12.66 |
2010 | 40,790.94 | 36,046 | 44.5 | 11.72 | |
2020 | 41,994.75 | 34,699 | 45.32 | 13.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Q.; Ren, J. Climate-Driven Dynamics of Landscape Patterns and Carbon Sequestration in Inner Mongolia: A Spatiotemporal Analysis from 2000 to 2020. Atmosphere 2025, 16, 790. https://doi.org/10.3390/atmos16070790
Xie Q, Ren J. Climate-Driven Dynamics of Landscape Patterns and Carbon Sequestration in Inner Mongolia: A Spatiotemporal Analysis from 2000 to 2020. Atmosphere. 2025; 16(7):790. https://doi.org/10.3390/atmos16070790
Chicago/Turabian StyleXie, Qibeier, and Jie Ren. 2025. "Climate-Driven Dynamics of Landscape Patterns and Carbon Sequestration in Inner Mongolia: A Spatiotemporal Analysis from 2000 to 2020" Atmosphere 16, no. 7: 790. https://doi.org/10.3390/atmos16070790
APA StyleXie, Q., & Ren, J. (2025). Climate-Driven Dynamics of Landscape Patterns and Carbon Sequestration in Inner Mongolia: A Spatiotemporal Analysis from 2000 to 2020. Atmosphere, 16(7), 790. https://doi.org/10.3390/atmos16070790