Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (530)

Search Parameters:
Keywords = neuroendocrine system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 738 KiB  
Review
A Rationale for the Use of Ivabradine in the Perioperative Phase of Cardiac Surgery: A Review
by Christos E. Ballas, Christos S. Katsouras, Konstantinos C. Siaravas, Ioannis Tzourtzos, Amalia I. Moula and Christos Alexiou
J. Cardiovasc. Dev. Dis. 2025, 12(8), 294; https://doi.org/10.3390/jcdd12080294 (registering DOI) - 31 Jul 2025
Viewed by 45
Abstract
This review explores the advantages of ivabradine in the management of cardiac surgery patients, particularly highlighting its heart rate (HR)-reducing properties, its role in minimizing the impact of atrial fibrillation, and its contributions to improving left ventricular diastolic function, as well as reducing [...] Read more.
This review explores the advantages of ivabradine in the management of cardiac surgery patients, particularly highlighting its heart rate (HR)-reducing properties, its role in minimizing the impact of atrial fibrillation, and its contributions to improving left ventricular diastolic function, as well as reducing pain, stress, and anxiety. In parallel, studies provide evidence that ivabradine influences endothelial inflammatory responses through mechanisms such as biomechanical modulation. Unlike traditional beta-blockers that may induce hypotension, ivabradine selectively inhibits hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, allowing for effective HR reduction without compromising blood pressure stability. This characteristic is particularly beneficial for patients at risk of atrial fibrillation post-surgery, where HR control is crucial for cardiovascular stability. This is an area in which ivabradine appears to play a role prophylactically, possibly in combination with beta-blockers. Furthermore, ivabradine has been associated with enhanced diastolic parameters in left ventricular function, reflecting its potential to improve surgical outcomes in patients with compromised heart function. In addition to its cardiovascular benefits, it appears to alleviate psychological stress and anxiety, common in postoperative settings, by moderating the neuroendocrine response to stress, thereby reducing stress-induced hormone levels. Furthermore, it has notable analgesic properties, contributing to pain management through its action on HCN channels in both the peripheral and central nervous systems. Collectively, these findings indicate that ivabradine may serve as a valuable therapeutic agent in the perioperative care of cardiac surgery patients, addressing both physiological and psychological challenges during recovery. Full article
Show Figures

Figure 1

17 pages, 2205 KiB  
Review
The Mystery Actor in the Neuroendocrine Theater: Who Really Knows Obestatin? Central Focus on Hypothalamic–Pituitary Axes
by Michał Szlis, Anna Wójcik-Gładysz, Alina Gajewska and Bartosz Jaroslaw Przybyl
Int. J. Mol. Sci. 2025, 26(15), 7395; https://doi.org/10.3390/ijms26157395 (registering DOI) - 31 Jul 2025
Viewed by 67
Abstract
The available literature data indicate that obestatin, a peptide derived from the preproghrelin precursor, may modulate neuroendocrine function, particularly in appetite regulation and somatotrophic/gonadotrophic pathways. This review synthesizes animal studies assessing the influence of obestatin on central neuroendocrine systems. Obestatin has been shown [...] Read more.
The available literature data indicate that obestatin, a peptide derived from the preproghrelin precursor, may modulate neuroendocrine function, particularly in appetite regulation and somatotrophic/gonadotrophic pathways. This review synthesizes animal studies assessing the influence of obestatin on central neuroendocrine systems. Obestatin has been shown to affect the hypothalamic appetite-regulating center through neuropeptides such as neuropeptide Y and agouti-related peptide, yet findings remain inconsistent between species. In rodents, its effects on food intake and energy balance are inconclusive, whereas sheep models demonstrate significant alterations in orexigenic gene expression and peptide immunoreactivity. Regarding the somatotrophic axis, obestatin showed no significant effect on growth hormone (GH) secretion in rodents; however, in sheep, it modulated growth hormone-releasing hormone and somatostatin mRNA expression, elevated pituitary GH synthesis, and increased circulating GH levels. Studies involving the gonadotrophic axis demonstrated the presence of obestatin in Leydig and pituitary cells, with in vitro evidence suggesting its ability to modulate intracellular pathways implicated in gonadoliberin, luteinizing hormone, and follicle-stimulating hormone release. The collective findings discussed in this article indicate that obestatin interacts with multiple hypothalamic–pituitary axes, though its effects vary depending on species and experimental conditions. This review highlights the complexity of obestatin’s central actions and the need for further research to elucidate its functional relevance in neuroendocrine regulation. Full article
(This article belongs to the Special Issue New Insights and Research on Nutrition and Obesity)
Show Figures

Figure 1

11 pages, 938 KiB  
Review
Sensory Circumventricular Organ Insulin Signaling in Cardiovascular and Metabolic Regulation
by Han Rae Kim, Jin Kwon Jeong and Colin N. Young
Curr. Issues Mol. Biol. 2025, 47(8), 595; https://doi.org/10.3390/cimb47080595 - 29 Jul 2025
Viewed by 107
Abstract
Central nervous system (CNS) insulin signaling is involved in a broad array of cardiometabolic physiology, including glucose and lipid metabolism, feeding, energy expenditure, and blood pressure regulation. A key role for hypothalamic neuroendocrine and autonomic centers in regulating insulin-associated cardiovascular and metabolic physiology [...] Read more.
Central nervous system (CNS) insulin signaling is involved in a broad array of cardiometabolic physiology, including glucose and lipid metabolism, feeding, energy expenditure, and blood pressure regulation. A key role for hypothalamic neuroendocrine and autonomic centers in regulating insulin-associated cardiovascular and metabolic physiology has been highlighted. However, it is still unclear which CNS site(s) initiate insulin-dependent neural cascades. While some investigations have suggested that circulating insulin can access hypothalamic regions by crossing the blood-brain barrier, other studies point to a necessity of other brain areas upstream of the hypothalamus to initiate central insulin actions. In this context, accumulating evidence points to a possible involvement of the sensory circumventricular organs (CVOs), unique areas located outside of the blood-brain barrier, in insulin-dependent cardiometabolic homeostasis. Here, the multifaceted roles for the sensory CVOs in cardiovascular and metabolic regulation, with a special emphasis on insulin receptor pathways, are discussed. Full article
Show Figures

Graphical abstract

13 pages, 596 KiB  
Review
Drug Repurposing of New Treatments for Neuroendocrine Tumors
by Stefania Bellino, Daniela Lucente and Anna La Salvia
Cancers 2025, 17(15), 2488; https://doi.org/10.3390/cancers17152488 - 28 Jul 2025
Viewed by 254
Abstract
Drug repurposing or drug repositioning is the process of identifying new therapeutic uses for approved or investigational drugs beyond the original treatment indication. The discovery of new drugs for cancer therapy needs this cost-effective and time-saving alternative strategy to traditional drug development for [...] Read more.
Drug repurposing or drug repositioning is the process of identifying new therapeutic uses for approved or investigational drugs beyond the original treatment indication. The discovery of new drugs for cancer therapy needs this cost-effective and time-saving alternative strategy to traditional drug development for a rapid clinical translation in Phase II/III studies, especially for unmet medical needs and rare diseases. Neuroendocrine tumors (NETs) are a heterogeneous group of rare neoplasms arising from cells of the neuroendocrine system that, though often indolent, can be aggressive and metastatic. In this context, drug repurposing has emerged as a promising strategy to improve treatment options due to the limited number of effective treatments and the heterogeneity of the disease. Indeed, a large number of non-oncology drugs have the potential to address more than one target that could be therapeutic for cancer patients. Although many repurposed drugs are used off-label, efficacy for the new use must be demonstrated in clinical trials. Within regulatory frameworks, both the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) have procedures to reduce the need for extensive new studies and to expedite the review of drugs for serious conditions when preliminary evidence indicates substantial clinical improvement over available therapy. In spite of several advantages, including reduced development time, lower costs, known safety profiles, and faster regulatory approval, difficulty in obtaining new patents for old drugs with limited protection for intellectual property may reduce commercial returns and disincentivize investments. This review aims to provide comprehensive information on some marketed drugs currently under investigation to be repurposed or used in clinical practice for NETs and to discuss the major clinical challenges. Although drug repurposing is a useful strategy for early access to medicines, the monitoring of the clinical benefit of oncologic drugs during the post-marketing authorization is crucial to support the safety and effectiveness of treatments. Full article
(This article belongs to the Special Issue Advances in Drug Repurposing to Overcome Cancers)
Show Figures

Graphical abstract

23 pages, 5573 KiB  
Article
Expression Profiles of Genes Related to Serotonergic Synaptic Function in Hypothalamus of Hypertensive and Normotensive Rats in Basal and Stressful Conditions
by Olga E. Redina, Marina A. Ryazanova, Dmitry Yu. Oshchepkov, Yulia V. Makovka and Arcady L. Markel
Int. J. Mol. Sci. 2025, 26(15), 7058; https://doi.org/10.3390/ijms26157058 - 22 Jul 2025
Viewed by 178
Abstract
The hypothalamus belongs to the central brain structure designed for the neuroendocrine regulation of many organismal functions, including the stress response, cardiovascular system, and blood pressure, and it is well known that the serotonergic hypothalamic system plays a significant role in these processes. [...] Read more.
The hypothalamus belongs to the central brain structure designed for the neuroendocrine regulation of many organismal functions, including the stress response, cardiovascular system, and blood pressure, and it is well known that the serotonergic hypothalamic system plays a significant role in these processes. Unfortunately, the genetic determination of serotonergic hypothalamic mechanisms has been little studied. The aim of this article is to describe the expression profile of the genes in the hypothalamic serotonergic synapses in hypertensive ISIAH rats in comparison with normotensive WAG rats in control conditions and under the influence of a single short-term restraint stress. It was found that 14 differentially expressed genes (DEGs) may provide the inter-strain differences in the serotonergic synaptic function in the hypothalamus between the hyper- and normotensive rats studied. In hypertensive rats, downregulation of Slc18a1 gene in the presynaptic serotoninergic ends and decreased expression of Cacna1s and Htr3a genes determining the postsynaptic membrane conductance may be considered as a main factors causing differences in the function of hypothalamic serotoninergic synapses in hypertensive ISIAH and normotensive WAG rats at the basal conditions. Under basal conditions, glial cell genes were not involved in the formation of inter-strain differences in serotonergic synaptic function. The analysis of transcriptional responses to restraint stress revealed key genes whose expression is involved in the regulation of serotonergic signaling, and a cascade of interrelated changes in biological processes and metabolic pathways. Stress-dependent changes in the expression of some DEGs are similar in the hypothalamus of hypertensive and normotensive rats, but the expression of a number of genes changes in a strain-specific manner. The results suggest that in hypothalamic glial cells of both strains, restraint stress induces changes in the expression of DEGs associated with the synthesis of Ip3 and its receptors. Many of the identified serotonergic DEGs participate in the regulation of not only serotonergic synapses but may also be involved in the regulation of cholinergic, GABAergic, glutamatergic, and dopaminergic synapses. The results of the study provide new information on the genetic mechanisms of inter-strain differences in the functioning of the hypothalamic serotonergic system in hypertensive ISIAH and normotensive WAG rats at rest and under the influence of a single short-term restraint (emotional) stress. Full article
(This article belongs to the Special Issue Serotonin in Health and Diseases)
Show Figures

Figure 1

51 pages, 4910 KiB  
Review
The Impact of Building Windows on Occupant Well-Being: A Review Integrating Visual and Non-Visual Pathways with Multi-Objective Optimization
by Siqi He, Wenli Zhang and Yang Guan
Buildings 2025, 15(14), 2577; https://doi.org/10.3390/buildings15142577 - 21 Jul 2025
Viewed by 388
Abstract
This review investigates the role of building windows in supporting occupant well-being through access to natural views and daylight. This review synthesizes recent interdisciplinary research from environmental psychology, building science, and human physiology to examine how windows impact cognitive performance, psychological restoration, and [...] Read more.
This review investigates the role of building windows in supporting occupant well-being through access to natural views and daylight. This review synthesizes recent interdisciplinary research from environmental psychology, building science, and human physiology to examine how windows impact cognitive performance, psychological restoration, and circadian health. Drawing on 304 peer-reviewed studies from 2000 to 2024, the review identifies two core pathways: visual effects—related to daylight availability, glare control, and view quality—and non-visual effects—linked to circadian entrainment and neuroendocrine regulation via ipRGCs. These effects interact yet compete, necessitating a multi-objective optimization approach. This paper evaluates commonly used metrics for visual comfort, circadian-effective lighting, and view quality and discusses their integration in design frameworks. The review also highlights the potential of adaptive facade technologies and artificial window systems to balance human-centered lighting goals with energy efficiency. A research roadmap is proposed to support future integrative design strategies that optimize both visual and non-visual outcomes in diverse architectural contexts. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

20 pages, 12298 KiB  
Article
Impact of Metastatic Microenvironment on Physiology and Metabolism of Small Cell Neuroendocrine Prostate Cancer Patient-Derived Xenografts
by Shubhangi Agarwal, Deepti Upadhyay, Jinny Sun, Emilie Decavel-Bueff, Robert A. Bok, Romelyn Delos Santos, Said Al Muzhahimi, Rosalie Nolley, Jason Crane, John Kurhanewicz, Donna M. Peehl and Renuka Sriram
Cancers 2025, 17(14), 2385; https://doi.org/10.3390/cancers17142385 - 18 Jul 2025
Viewed by 393
Abstract
Background: Potent androgen receptor pathway inhibitors induce small cell neuroendocrine prostate cancer (SCNC), a highly aggressive subtype of metastatic androgen deprivation-resistant prostate cancer (ARPC) with limited treatment options and poor survival rates. Patients with metastases in the liver have a poor prognosis relative [...] Read more.
Background: Potent androgen receptor pathway inhibitors induce small cell neuroendocrine prostate cancer (SCNC), a highly aggressive subtype of metastatic androgen deprivation-resistant prostate cancer (ARPC) with limited treatment options and poor survival rates. Patients with metastases in the liver have a poor prognosis relative to those with bone metastases alone. The mechanisms that underlie the different behavior of ARPC in bone vs. liver may involve factors intrinsic to the tumor cell, tumor microenvironment, and/or systemic factors, and identifying these factors is critical to improved diagnosis and treatment of SCNC. Metabolic reprogramming is a fundamental strategy of tumor cells to colonize and proliferate in microenvironments distinct from the primary site. Understanding the metabolic plasticity of cancer cells may reveal novel approaches to imaging and treating metastases more effectively. Methods: Using magnetic resonance (MR) imaging and spectroscopy, we interrogated the physiological and metabolic characteristics of SCNC patient-derived xenografts (PDXs) propagated in the bone and liver, and used correlative biochemical, immunohistochemical, and transcriptomic measures to understand the biological underpinnings of the observed imaging metrics. Results: We found that the influence of the microenvironment on physiologic measures using MRI was variable among PDXs. However, the MR measure of glycolytic capacity in the liver using hyperpolarized 13C pyruvic acid recapitulated the enzyme activity (lactate dehydrogenase), cofactor (nicotinamide adenine dinucleotide), and stable isotope measures of fractional enrichment of lactate. While in the bone, the congruence of the glycolytic components was lost and potentially weighted by the interaction of cancer cells with osteoclasts/osteoblasts. Conclusion: While there was little impact of microenvironmental factors on metabolism, the physiological measures (cellularity and perfusion) are highly variable and necessitate the use of combined hyperpolarized 13C MRI and multiparametric (anatomic, diffusion-, and perfusion- weighted) 1H MRI to better characterize pre-treatment tumor characteristics, which will be crucial to evaluate treatment response. Full article
(This article belongs to the Special Issue Magnetic Resonance in Cancer Research)
Show Figures

Figure 1

16 pages, 1359 KiB  
Article
Dysregulation of Purinergic Signaling Sustains Chronic Inflammation and Oxidative Imbalance in Patients After PitNET Surgical Resection
by Geile Fistarol, Luiz A. de Oliveira, Gilnei B. da Silva, Daiane Manica, Marceli C. Hanauer, Paula Dallagnol, Rafael A. Narzetti, Maria L. Bergamini, Vitória C. de Melo, Tais Vidal, Micheli M. Pillat, Jussara de Lima, Marcelo L. V. da Cunha, Marielle L. Makiyama, Filomena Marafon, Aniela P. Kempka, Ariane Zamoner and Margarete D. Bagatini
Int. J. Mol. Sci. 2025, 26(14), 6890; https://doi.org/10.3390/ijms26146890 - 17 Jul 2025
Viewed by 210
Abstract
Pituitary neuroendocrine tumors (PitNETs) are the most common intracranial tumors. Evidence suggests that these types of tumors may have high recurrence rates. In this context, the purinergic system, oxidative stress, and inflammation are important signaling pathways involved in the cancer’s pathophysiology. This study [...] Read more.
Pituitary neuroendocrine tumors (PitNETs) are the most common intracranial tumors. Evidence suggests that these types of tumors may have high recurrence rates. In this context, the purinergic system, oxidative stress, and inflammation are important signaling pathways involved in the cancer’s pathophysiology. This study aimed to evaluate the sociodemographic and diagnostic profiles, as well as assess the purinergic signaling, immunological, and redox profiles, of patients after PitNET resection. We collected sociodemographic data and the patients’ diagnostic profiles. We also collected blood samples to analyze glycemia, triglycerides, albumin, and ATP levels. The ectonucleotidase activity was determined in peripheral blood mononuclear cells (PBMCs). In addition, we evaluated their redox and immunological profiles. There was a prevalence of gonadotropic macroadenoma derived from PIT-1 cells. We found that patients included in the PitNET group had increased glycemia, serum ATP levels, and ATP hydrolysis in PBMCs. Analyzing their immunological profiles, we found that patients had increased levels of IL-6, IL-10, and TNF, while the IL-27 level was decreased. Regarding their redox profiles, PitNET patients had increased levels of ROS and protein carbonylation. Unexpectedly, patients also showed increased levels of non-protein thiols (NPSHs), total thiols (PSHs), and ascorbic acid. Thus, the dysregulation of purinergic signaling sustained chronic inflammation and oxidative imbalance in PitNET patients for a long time after surgical resection. These data suggest that patients with PitNETs require long-term accompanying to prevent cancer recurrence prognosis. The biomarkers highlighted in this study may be good tools to help the medical approaches. Full article
(This article belongs to the Special Issue Advances in the Purinergic System)
Show Figures

Figure 1

22 pages, 24661 KiB  
Review
Imaging of Liver Metastases from GEP-NETs: A Narrative Review
by Alessandro Posa, Enza Genco, Pierluigi Barbieri, Mario Ariano, Marcello Lippi, Alessandro Maresca and Roberto Iezzi
Onco 2025, 5(3), 36; https://doi.org/10.3390/onco5030036 - 17 Jul 2025
Viewed by 216
Abstract
Prompt and accurate identification of liver metastases from neuroendocrine tumors, arising from the gastrointestinal system and from the pancreas, through the means of both anatomical and functional diagnostic imaging techniques is mandatory. A patient’s prognosis and treatment planning are dependent on these diagnostic [...] Read more.
Prompt and accurate identification of liver metastases from neuroendocrine tumors, arising from the gastrointestinal system and from the pancreas, through the means of both anatomical and functional diagnostic imaging techniques is mandatory. A patient’s prognosis and treatment planning are dependent on these diagnostic procedures. The aim of this narrative review is to depict the common appearance of liver metastases, as well as to depict atypical imaging patterns. Moreover, this review will cover the differential diagnosis between liver metastases from neuroendocrine tumors and other primary and secondary malignant liver lesions, as well as benign liver lesions. Full article
Show Figures

Figure 1

55 pages, 3773 KiB  
Review
Molecular Mechanisms and Biomarker-Based Early-Warning Indicators of Heavy Metal Toxicity in Marine Fish
by Andra Oros, Valentina Coatu, Nicoleta Damir, Diana Danilov, Elena Ristea and Luminita Lazar
Fishes 2025, 10(7), 339; https://doi.org/10.3390/fishes10070339 - 10 Jul 2025
Viewed by 560
Abstract
Heavy metals are among the most persistent and bioaccumulative pollutants in marine ecosystems, posing significant toxicological threats to fish via complex molecular and cellular disruptions. This review synthesizes current knowledge on the cascade of mechanistic responses in marine fish following HM exposure, which [...] Read more.
Heavy metals are among the most persistent and bioaccumulative pollutants in marine ecosystems, posing significant toxicological threats to fish via complex molecular and cellular disruptions. This review synthesizes current knowledge on the cascade of mechanistic responses in marine fish following HM exposure, which includes oxidative stress, modulation of antioxidant responses, activation of detoxification systems, DNA damage, inflammation, apoptosis, neuroendocrine disruption, and ultimately, cellular energy imbalance. In addition to established pathways, the review highlights recent advances in mechanistic understanding and biomarker development, including cellular stress responses, epigenetic regulation, metal homeostasis mechanisms, and novel molecular indicators. These mechanisms support the development of an integrated biomarker framework that combines classical indicators (e.g., antioxidant enzymes, metallothionein) with next-generation endpoints (e.g., miRNA profiles, gene-level responses of metal transporters or stress chaperones, epigenetic alterations). The interpretation of biomarker responses requires consideration of the exposure context, environmental variables, and physiological status to ensure accurate assessment of sublethal toxicity in field settings. By bridging mechanistic understanding with biomonitoring relevance, this review provides a comprehensive foundation for advancing molecular tools in pollution monitoring and risk assessment. Special emphasis is placed on biomarkers specific to heavy metal exposure, enhancing their diagnostic value relative to general stress indicators. Full article
(This article belongs to the Section Environment and Climate Change)
Show Figures

Graphical abstract

47 pages, 1839 KiB  
Review
Behavioral, Endocrine, and Neuronal Responses to Odors in Lampreys
by Philippe-Antoine Beauséjour, Barbara S. Zielinski and Réjean Dubuc
Animals 2025, 15(14), 2012; https://doi.org/10.3390/ani15142012 - 8 Jul 2025
Viewed by 438
Abstract
Lampreys are primitive fish that rely significantly on olfactory cues throughout their complex life cycle. The olfactory system of the sea lamprey (Petromyzon marinus) is among the best characterized in vertebrates. In recent decades, tremendous advances have been made by isolating [...] Read more.
Lampreys are primitive fish that rely significantly on olfactory cues throughout their complex life cycle. The olfactory system of the sea lamprey (Petromyzon marinus) is among the best characterized in vertebrates. In recent decades, tremendous advances have been made by isolating individual compounds from sea lampreys that can replicate natural behavior when artificially applied in the wild. In no other aquatic vertebrate has the olfactory ecology been described in such extensive detail. In the first section, we provide a comprehensive review of olfactory behaviors induced by specific, individual odorants during every major developmental stage of the sea lamprey in behavioral contexts such as feeding, predator avoidance, and reproduction. Moreover, pheromonal inputs have been shown to induce neuroendocrine responses through the hypothalamic-pituitary-gonadal axis, triggering remarkable developmental and physiological effects, such as gametogenesis and increased pheromone release. In the second section of this review, we describe a hypothetical endocrine signaling pathway through which reproductive fitness is increased following pheromone detection. In the final section of this review, we focus on the neuronal circuits that transform olfactory inputs into motor output. We describe specific brain signaling pathways that underlie odor-evoked locomotion. Furthermore, we consider possible modulatory inputs to these pathways that may induce plasticity in olfactory behavior following changes in the external or internal environment. As a whole, this review synthesizes previous and recent progress in understanding the behavioral, endocrine, and neuronal responses of lampreys to chemosensory signals. Full article
Show Figures

Figure 1

19 pages, 340 KiB  
Review
The Role of Selected Proteins in the Pathogenesis of Psoriasis
by Mateusz Matwiejuk, Agnieszka Kulczyńska-Przybik, Hanna Myśliwiec, Adrian Chabowski, Barbara Mroczko and Iwona Flisiak
Int. J. Mol. Sci. 2025, 26(13), 6475; https://doi.org/10.3390/ijms26136475 - 4 Jul 2025
Viewed by 505
Abstract
Psoriasis is a chronic, immune-mediated inflammatory skin disease with complex genetic, environmental, and immunological determinants. Beyond the skin, it affects multiple systems, including the joints and cardiovascular system. A hallmark of psoriasis is an overactivation of the innate and adaptive immune responses, leading [...] Read more.
Psoriasis is a chronic, immune-mediated inflammatory skin disease with complex genetic, environmental, and immunological determinants. Beyond the skin, it affects multiple systems, including the joints and cardiovascular system. A hallmark of psoriasis is an overactivation of the innate and adaptive immune responses, leading to dysregulated cytokine signaling, altered keratinocyte function, and aberrant expression of structural and regulatory proteins. In recent years, growing attention has been given to the skin as a neuro–immuno–endocrine organ, with evidence showing the role of stress-related neuropeptides, UVB-induced immune modulation, and vitamin D signaling in the disease pathogenesis. This review highlights emerging evidence on key multifunctional proteins—elafin, chemerin, and NAMPT (visfatin)—that exert both pro- and anti-inflammatory actions. Although still underexplored, these molecules appear to contribute significantly to the psoriatic microenvironment by modulating inflammation, immunity, and skin barrier function. Their dual roles suggest complex interactions within the cutaneous immune–neuroendocrine network, positioning them as potential biomarkers or therapeutic targets in psoriasis. By integrating insights into classical and emerging mediators, this review aims to provide a comprehensive perspective on the evolving landscape of psoriasis pathophysiology. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapeutic Targets in Skin Diseases)
28 pages, 933 KiB  
Review
Therapeutic Horizons: Gut Microbiome, Neuroinflammation, and Epigenetics in Neuropsychiatric Disorders
by Shabnam Nohesara, Hamid Mostafavi Abdolmaleky, Ahmad Pirani and Sam Thiagalingam
Cells 2025, 14(13), 1027; https://doi.org/10.3390/cells14131027 - 4 Jul 2025
Viewed by 721
Abstract
Neuroinflammation is a hallmark of many neuropsychiatric disorders (NPD), which are among the leading causes of disability worldwide. Emerging evidence highlights the significant role of the gut microbiota (GM)–immune system–brain axis in neuroinflammation and the pathogenesis of NPD, primarily through epigenetic mechanisms. Gut [...] Read more.
Neuroinflammation is a hallmark of many neuropsychiatric disorders (NPD), which are among the leading causes of disability worldwide. Emerging evidence highlights the significant role of the gut microbiota (GM)–immune system–brain axis in neuroinflammation and the pathogenesis of NPD, primarily through epigenetic mechanisms. Gut microbes and their metabolites influence immune cell activity and brain function, thereby contributing to neuroinflammation and the development and progression of NPD. The enteric nervous system, the autonomic nervous system, neuroendocrine signaling, and the immune system all participate in bidirectional communication between the gut and the brain. Importantly, the interaction of each of these systems with the GM influences epigenetic pathways. Here, we first explore the intricate relationship among intestinal microbes, microbial metabolites, and immune cell activity, with a focus on epigenetic mechanisms involved in NPD pathogenesis. Next, we provide background information on the association between inflammation and epigenetic aberrations in the context of NPD. Additionally, we review emerging therapeutic strategies—such as prebiotics, probiotics, methyl-rich diets, ketogenic diet, and medications—that may modulate the GM–immune system–brain axis via epigenetic regulation for the prevention or treatment of NPD. Finally, we discuss the challenges and future directions in investigating the critical role of this axis in mental health. Full article
Show Figures

Figure 1

11 pages, 2494 KiB  
Case Report
Exploring Chromogranin A (CgA) as a Diagnostic Marker in Hypothermia-Related Deaths: Two Case Studies and a Literature Review
by Luca Tomassini, Erika Buratti, Giulia Ricchezze and Roberto Scendoni
Diagnostics 2025, 15(13), 1673; https://doi.org/10.3390/diagnostics15131673 - 30 Jun 2025
Viewed by 260
Abstract
Background: Hypothermia, occurring when core temperature drops below 35 °C, can lead to death when the body’s heat loss exceeds its heat production. This study investigates two hypothermia-related deaths, exploring the utility of immunohistochemistry, specifically focusing on chromogranin A (CgA) as a potential [...] Read more.
Background: Hypothermia, occurring when core temperature drops below 35 °C, can lead to death when the body’s heat loss exceeds its heat production. This study investigates two hypothermia-related deaths, exploring the utility of immunohistochemistry, specifically focusing on chromogranin A (CgA) as a potential diagnostic tool. The aim is to assess whether CgA expression in neuroendocrine tissues can be considered a reliable indicator of premortem stress response in fatal hypothermia cases. Case Presentation: In the first case, a 67-year-old man was found on a snowy road 24 h after his disappearance. The autopsy revealed cold-induced skin lesions, gastric hemorrhages, and cerebral and pulmonary edema. Positive CgA immunostaining was observed in the pancreatic islets and adrenal medulla. In the second case, a 49-year-old man was found dead in a wooded area with indications of suicide. Both cases were examined with attention to macroscopic findings and histological samples from major neuroendocrine organs. As in previous cases, CgA immunostaining was positive in the pancreatic islets and adrenal medulla. Staining intensity was moderate to strong, consistent with heightened neuroendocrine activity, supporting the hypothesis of systemic stress prior to death. Conclusions: Although CgA is a potentially valuable adjunct in hypothermia diagnosis, careful consideration of cadaveric preservation is emphasized, particularly when bodies are preserved before autopsy. Further studies with larger sample sizes are needed to confirm its diagnostic specificity and to distinguish true pathological patterns from postmortem artifacts. Full article
(This article belongs to the Special Issue New Perspectives in Forensic Diagnosis)
Show Figures

Figure 1

27 pages, 2907 KiB  
Review
High-Grade Appendiceal Goblet Cell Adenocarcinoma—A Literature Review Starting from a Rare Case
by Mircea Gheorghe, Rodica Daniela Birla, Anca Evsei-Seceleanu, Luiza Bitina, Ioan Nicolae Mates and Dragos Valentin Predescu
Life 2025, 15(7), 1047; https://doi.org/10.3390/life15071047 - 30 Jun 2025
Viewed by 461
Abstract
Goblet cell adenocarcinomas (GCAs) are an exceedingly rare subtype of tumors, almost exclusively occurring in the appendix, and characterized by features overlapping both adenocarcinomas and neuroendocrine tumors (NETs), which has historically led to confusion and varied nomenclature. This study presents a comprehensive review [...] Read more.
Goblet cell adenocarcinomas (GCAs) are an exceedingly rare subtype of tumors, almost exclusively occurring in the appendix, and characterized by features overlapping both adenocarcinomas and neuroendocrine tumors (NETs), which has historically led to confusion and varied nomenclature. This study presents a comprehensive review of the literature highlighting particularities of this type of malignancy, starting from a rare case of a 54-year-old female operated on in our clinic for an appendiceal tumor, initially suspected to be a mucinous neoplasm based on colonoscopic biopsy, which was ultimately confirmed to be goblet cell adenocarcinoma on both intraoperative frozen section and definitive pathological examination. Exhibiting signs and symptoms associated with an abdominal mass, she underwent a right hemicolectomy with partial omentectomy for locally advanced, high-grade, invasive goblet cell adenocarcinoma of the appendix with lymphatic macro metastases and epiploic invasion, categorized as AJCC stage IVb carcinomatosis. The patient received FOLFOX adjuvant. Six months later, she required reoperation due to the progression of carcinomatosis, which was again confirmed histopathologically. A second-line oncological protocol comprising irinotecan, capecitabine, and bevacizumab was initiated. Given the rarity of GCAs and the absence of a consensus on nomenclature, classification, and diagnostic criteria, we conducted a comprehensive literature review to highlight current trends related to this entity, including its classification within different systems (Tang, Yozu, WHO, AJCC), as well as the therapeutic surgical approaches—ranging from simple appendectomy to extensive multiorgan resection, cytoreductive surgery (CRS) combined with hyperthermic intraperitoneal chemotherapy (HIPEC), and the use of systemic therapy. Adhering to these recommendations will enhance communication among pathologists, surgeons, and oncologists regarding the natural history and prognosis of this rare malignancy. Full article
(This article belongs to the Special Issue Pathophysiology, Diagnosis, and Treatments of Intestinal Diseases)
Show Figures

Figure 1

Back to TopTop