The Mystery Actor in the Neuroendocrine Theater: Who Really Knows Obestatin? Central Focus on Hypothalamic–Pituitary Axes
Abstract
1. Introduction
2. Neurohormonal Regulatory Networks
3. Effect of Obestatin on Neurohormonal Network Activity
3.1. Obestatin’s Influence on Body Energy Status/Appetite-Regulating Network
3.2. Obestatin and Somatotrophic Axis
3.3. Obestatin and Gonadotrophic Axis
Authors | Research Model | Materials and Methods | Outcome |
---|---|---|---|
Feng et al., 2011 [66] | Male mice | Incubation of hypothalamic explants | No effect of obestatin on spontaneous and ghrelin-induced reduction in somatostatin release from hypothalamic nerve cells. No effect on the activity of GHRH neurons and blocking ghrelin-induced GHRH release. |
Hassouna et al., 2012 [67] | Male mice | Intraperitoneal injection in vivo | Obestatin abolished the stimulatory effect of ghrelin on the activity of GHRH neurons. Reduction in GH concentration as a result of obestatin eliminating the stimulatory effect of ghrelin. |
Nogueiras et al., 2007 [4] | Male rats | Intravenous administration | Obestatin does not affect the release of GH into the blood. |
Yamamoto et al., 2007 [63] | Male rats | Intravenous/intracerebroventricular administration | Obestatin does not affect the release of GH into the blood. |
Bresciani et al., 2006 [5] | Male rats | Intraperitoneal injection | Obestatin does not affect the release of GH into the blood. |
Zizzari et al., 2007 [64] | Male mice and rats | Intraperitoneal injection/intravenous injection | Obestatin antagonizes ghrelin-dependent GH release in vitro. |
Zhang et al., 2005 [2] | Male rats | 48 h fasting | No effect of obestatin on spontaneous and ghrelin-dependent GH release. |
Pazos et al., 2009 [65] | GC cells line | Medium supplemented with obestatin | Obestatin stimulated GH release into the culture medium, but only within the first 15 min of incubation. |
Luque et al., 2014 [88] | Pituitary cells from baboons and mice | Medium supplemented with obestatin | 24 h incubation of cells in medium supplemented with obestatin resulted in decreased GH mRNA expression and reduced GH release. |
Wójcik-Gładysz et al., 2018 [6] | Female sheep | Intracerebroventricular infusions | The mechanism of obestatin action seems to rely simultaneously on the stimulation of GHRH and the restraint of somatostatin output, which results in the enhanced release of GH from pituitary somatotrophic cells to the peripheral circulation. |
4. Summary and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wójcik-Gładysz, A.; Szlis, M. Hypothalamo-gastrointestinal axis—Role in food intake regulation. J. Anim. Feed Sci. 2016, 25, 97–108. [Google Scholar] [CrossRef]
- Zhang, J.V.; Ren, P.G.; Avsian-Kretchmer, O.; Luo, C.W.; Rauch, R.; Klein, C.; Hsueh, A.J.W. Medicine: Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake. Science 2005, 310, 996–999. [Google Scholar] [CrossRef]
- Green, B.D.; Irwin, N.; Flatt, P.R. Direct and indirect effects of obestatin peptides on food intake and the regulation of glucose homeostasis and insulin secretion in mice. Peptides 2007, 28, 981–987. [Google Scholar] [CrossRef] [PubMed]
- Nogueiras, R.; Pfluger, P.; Tovar, S.; Arnold, M.; Mitchell, S.; Morris, A.; Perez-Tilve, D.; Vázquez, M.J.; Wiedmer, P.; Castañeda, T.R.; et al. Effects of obestatin on energy balance and growth hormone secretion in rodents. Endocrinology 2007, 148, 21–26. [Google Scholar] [CrossRef]
- Bresciani, E.; Rapetti, D.; Donà, F.; Bulgarelli, I.; Tamiazzo, L.; Locatelli, V.; Torsello, A. Obestatin inhibits feeding but does not modulate GH and corticosterone secretion in the rat. J. Endocrinol. Investig. 2006, 29, RC16–RC18. [Google Scholar] [CrossRef]
- Wójcik-Gładysz, A.; Szlis, M.; Misztal, A.; Przybył, B.J.; Polkowska, J. Obestatin stimulates the somatotrophic axis activity in sheep. Brain Res. 2018, 1678, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Huda, M.S.B.; Durham, B.H.; Wong, S.P.; Deepak, D.; Kerrigan, D.; McCulloch, P.; Ranganath, L.; Pinkney, J.; Wilding, J.P.H. Plasma obestatin levels are lower in obese and post-gastrectomy subjects, but do not change in response to a meal. Int. J. Obes. 2008, 32, 129–135. [Google Scholar] [CrossRef]
- Zhang, J.V.; Jahr, H.; Luo, C.-W.; Klein, C.; Van Kolen, K.; Ver Donck, L.; De, A.; Baart, E.; Li, J.; Moechars, D.; et al. Obestatin Induction of Early-Response Gene Expression in Gastrointestinal and Adipose Tissues and the Mediatory Role of G Protein-Coupled Receptor, GPR39. Mol. Endocrinol. 2008, 22, 1464–1475. [Google Scholar] [CrossRef]
- Dun, S.L.; Brailoiu, G.C.; Brailoiu, E.; Yang, J.; Chang, J.K.; Dun, N.J. Distribution and biological activity of obestatin in the rat. J. Endocrinol. 2006, 191, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Kanamoto, N.; Akamizu, T.; Tagami, T.; Hataya, Y.; Moriyama, K.; Takaya, K.; Hosoda, H.; Kojima, M.; Kangawa, K.; Nakao, K. Genomic structure and characterization of the 5′-flanking region of the human ghrelin gene. Endocrinology 2004, 145, 4144–4153. [Google Scholar] [CrossRef]
- Nakai, N.; Kaneko, M.; Nakao, N.; Fujikawa, T.; Nakashima, K.; Ogata, M.; Tanaka, M. Identification of promoter region of ghrelin gene in human medullary thyroid carcinoma cell line. Life Sci. 2004, 75, 2193–2201. [Google Scholar] [CrossRef] [PubMed]
- Seim, I.; Collet, C.; Herington, A.C.; Chopin, L.K. Revised genomic structure of the human ghrelin gene and identification of novel exons, alternative splice variants and natural antisense transcripts. BMC Genom. 2007, 8, 298. [Google Scholar] [CrossRef] [PubMed]
- Seim, I.; Amorim, L.; Walpole, C.; Carter, S.; Chopin, L.K.; Herington, A.C. Ghrelin gene-related peptides: Multifunctional endocrine/autocrine modulators in health and disease. Clin. Exp. Pharmacol. Physiol. 2010, 37, 125–131. [Google Scholar] [CrossRef]
- Soares, J.-B.; Leite-Moreira, A.F. Ghrelin, des-acyl ghrelin and obestatin: Three pieces of the same puzzle. Peptides 2008, 29, 1255–1270. [Google Scholar] [CrossRef]
- McKee, K.K.; Tan, C.P.; Palyha, O.C.; Liu, J.; Feighner, S.D.; Hreniuk, D.L.; Smith, R.G.; Howard, A.D.; Van der Ploeg, L.H.T. Cloning and Characterization of Two Human G Protein-Coupled Receptor Genes (GPR38 and GPR39) Related to the Growth Hormone Secretagogue and Neurotensin Receptors. Genomics 1997, 46, 426–434. [Google Scholar] [CrossRef]
- Egerod, K.L.; Holst, B.; Petersen, P.S.; Hansen, J.B.; Mulder, J.; Hökfelt, T.; Schwartz, T.W. GPR39 Splice Variants Versus Antisense Gene LYPD1: Expression and Regulation in Gastrointestinal Tract, Endocrine Pancreas, Liver, and White Adipose Tissue. Mol. Endocrinol. 2007, 21, 1685–1698. [Google Scholar] [CrossRef] [PubMed]
- Moechars, D.; Depoortere, I.; Moreaux, B.; de Smet, B.; Goris, I.; Hoskens, L.; Daneels, G.; Kass, S.; Ver Donck, L.; Peeters, T.; et al. Altered Gastrointestinal and Metabolic Function in the GPR39-Obestatin Receptor-Knockout Mouse. Gastroenterology 2006, 131, 1131–1141. [Google Scholar] [CrossRef]
- Tremblay, F.; Perreault, M.; Klaman, L.D.; Tobin, J.F.; Smith, E.; Gimeno, R.E. Normal food intake and body weight in mice lacking the G protein-coupled receptor GPR39. Endocrinology 2007, 148, 501–506. [Google Scholar] [CrossRef]
- Szlis, M.; Przybył, B.J.; Pałatyńska, K.; Wójcik-Gładysz, A. QRFP43 modulates the activity of the hypothalamic appetite regulatory centre in sheep. J. Anim. Feed Sci. 2024, 33, 281–286. [Google Scholar] [CrossRef]
- Granata, R.; Settanni, F.; Gallo, D.; Trovato, L.; Biancone, L.; Cantaluppi, V.; Nano, R.; Annunziata, M.; Campiglia, P.; Arnoletti, E. Obestatin Promotes Survival of Pancreatic bCells and Human Islets and Induces Expression of Genes Involved in the Regulation of b-Cell Mass and Function. Diabetes 2008, 57, 967–979. [Google Scholar] [CrossRef]
- Unniappan, S.; Speck, M.; Kieffer, T.J. Metabolic effects of chronic obestatin infusion in rats. Peptides 2008, 29, 1354–1361. [Google Scholar] [CrossRef]
- Pan, W.; Tu, H.; Kastin, A.J. Differential BBB interactions of three ingestive peptides: Obestatin, ghrelin, and adiponectin. Peptides 2006, 27, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Sotowska-Brochocka, J. Fizjologia Zwierząt—Zagadnienia Wybrane, 1st ed.; Wydawnictwa Uniwersytetu Warszawskiego: Warszawa, Polska, 2001; p. 448. ISBN 83-235-0193-9. [Google Scholar]
- Barrett, K.E.; Barman, S.M.; Brooks, H.L.; Yuan, J.X.-J. Hypothalamic Regulation of Hormonal Functions. In Ganong’s Review of Medical Physiology, 26th ed.; McGraw-Hill Education: New York, NY, USA, 2019. [Google Scholar]
- Funahashi, H.; Takenoya, F.; Guan, J.L.; Kageyama, H.; Yada, T.; Shioda, S. Hypothalamic neuronal networks and feeding-related peptides involved in the regulation of feeding. Anat. Sci. Int. 2003, 78, 123–138. [Google Scholar] [CrossRef]
- Gładysz, A.; Krejči, P.; Šimůnek, J.; Polkowska, J. Effects of central infusions of neuropeptide Y on the somatotropic axis in sheep fed on two levels of protein. Acta Neurobiol. Exp. 2001, 61, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Tillet, Y.; Picard, S.; Bruneau, G.; Ciofi, P.; Wańkowska, M.; Wójcik-Gładysz, A.; Polkowska, J. Hypothalamic arcuate neuropeptide Y-neurons decrease periventricular somatostatin-neuronal activity before puberty in the female lamb: Morphological arguments. J. Chem. Neuroanat. 2010, 40, 265–271. [Google Scholar] [CrossRef]
- Xu, B.; Goulding, E.H.; Zang, K.; Cepoi, D.; Cone, R.D.; Jones, K.R.; Tecott, L.H.; Reichardt, L.F. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat. Neurosci. 2003, 6, 736–742. [Google Scholar] [CrossRef]
- Kim, M.S.; Rossi, M.; Abusnana, S.; Sunter, D.; Morgan, D.G.A.; Small, C.J.; Edwards, C.M.; Heath, M.M.; Stanley, S.A.; Seal, L.J.; et al. Hypothalamic localization of the feeding effect of agouti-related peptide and alpha-melanocyte-stimulating hormone. Diabetes 2000, 49, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Stanley, S.; Wynne, K.; McGowan, B.; Bloom, S. Hormonal Regulation of Food Intake. Physiol. Rev. 2005, 85, 1131–1158. [Google Scholar] [CrossRef]
- Simpson, K.A.; Martin, N.M.; Bloom, S.R. Hypothalamic regulation of food intake and clinical therapeutic applications Regulação hipotalâmica da ingestão alimentar e suas aplicações terapêuticas clínicas. Arq. Bras. Endocrinol. Metabol. 2009, 53, 120–128. [Google Scholar] [CrossRef]
- Wojtulewicz, K.; Tomczyk, M.; Wójcik, M.; Bochenek, J.; Antushevich, H.; Krawczyńska, A.; Załȩcki, M.; Herman, A.P. Circadian and seasonal changes in the expression of clock genes in the ovine pars tuberalis. J. Anim. Feed Sci. 2023, 32, 363–371. [Google Scholar] [CrossRef]
- Wynne, K.; Stanley, S.; McGowan, B.; Bloom, S.R. Appetite control. J. Endocrinol. 2005, 184, 291–318. [Google Scholar] [CrossRef] [PubMed]
- Coll, A.P.; Farooqi, I.S.; O’Rahilly, S. The Hormonal Control of Food Intake. Cell 2007, 129, 251–262. [Google Scholar] [CrossRef]
- Tatemoto, K.; Carlquist, M.; Mutt, V. Neuropeptide Y—A novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 1982, 296, 659–660. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.D.; Mitchell, N.F.; Lin, S.; Macia, L.; Yulyaningsih, E.; Baldock, P.A.; Enriquez, R.F.; Zhang, L.; Shi, Y.-C.; Zolotukhin, S.; et al. Y1 and Y5 Receptors Are Both Required for the Regulation of Food Intake and Energy Homeostasis in Mice. PLoS ONE 2012, 7, e40191. [Google Scholar] [CrossRef]
- Sohn, J.W.; Elmquist, J.K.; Williams, K.W. Neuronal circuits that regulate feeding behavior and metabolism. Trends Neurosci. 2013, 36, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Kalra, S.P.; Dube, M.G.; Pu, S.; Xu, B.; Horvath, T.L.; Kalra, P.S. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr. Rev. 1999, 20, 68–100. [Google Scholar]
- Lopaschuk, G.D.; Ussher, J.R.; Jaswal, J.S. Targeting Intermediary Metabolism in the Hypothalamus as a Mechanism to Regulate Appetite. Pharmacol. Rev. 2010, 62, 237–264. [Google Scholar] [CrossRef]
- Szczepkowska, A.; Bochenek, J.; Wójcik, M.; Tomaszewska-Zaremba, D.; Antushevich, H.; Tomczyk, M.; Skipor, J.; Herman, A.P. Effect of caffeine on adenosine and ryanodine receptor gene expression in the hypothalamus, pituitary, and choroid plexus in ewes under basal and LPS challenge conditions. J. Anim. Feed Sci. 2023, 32, 17–25. [Google Scholar] [CrossRef]
- Cowley, M.A.; Smith, R.G.; Diano, S.; Tschöp, M.; Pronchuk, N.; Grove, K.L.; Strasburger, C.J.; Bidlingmaier, M.; Esterman, M.; Heiman, M.L.; et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 2003, 37, 649–661. [Google Scholar] [CrossRef]
- Schneeberger, M.; Gomis, R.; Claret, M. Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J. Endocrinol. 2014, 220, T25–T46. [Google Scholar] [CrossRef]
- Germano, C.M.R.; de Castro, M.; Rorato, R.; Laguna, M.T.C.; Antunes-Rodrigues, J.; Elias, C.F.; Elias, L.L.K. Time course effects of adrenalectomy and food intake on cocaine- and amphetamine-regulated transcript expression in the hypothalamus. Brain Res. 2007, 1166, 55–64. [Google Scholar] [CrossRef]
- Mercer, A.J.; Hentges, S.T.; Meshul, C.K.; Low, M.J. Unraveling the Central Proopiomelanocortin Neural Circuits. Front. Neurosci. 2013, 7, 19. [Google Scholar] [CrossRef]
- Benoit, S.C.; Schwartz, M.W.; Lachey, J.L.; Hagan, M.M.; Rushing, P.A.; Blake, K.A.; Yagaloff, K.A.; Kurylko, G.; Franco, L.; Danhoo, W.; et al. A Novel Selective Melanocortin-4 Receptor Agonist Reduces Food Intake in Rats and Mice without Producing Aversive Consequences. J. Neurosci. 2000, 20, 3442–3448. [Google Scholar] [CrossRef]
- Douglass, J.; McKinzie, A.; Couceyro, P. PCR differential display identifies a rat brain mRNA that is transcriptionally regulated by cocaine and amphetamine. J. Neurosci. 1995, 15, 2471–2481. [Google Scholar] [CrossRef] [PubMed]
- Robson, A.J.; Rousseau, K.; Loudon, A.S.I.; Ebling, F.J.P. Cocaine and Amphetamine-Regulated Transcript mRNA Regulation in the Hypothalamus in Lean and Obese Rodents. J. Neuroendocrinol. 2002, 14, 697–709. [Google Scholar] [CrossRef] [PubMed]
- Wortley, K.E.; Anderson, K.D.; Garcia, K.; Murray, J.D.; Malinova, L.; Liu, R.; Moncrieffe, M.; Thabet, K.; Cox, H.J.; Yancopoulos, G.D.; et al. Genetic deletion of ghrelin does not decrease food intake but influences metabolic fuel preference. Proc. Natl. Acad. Sci. USA 2004, 101, 8227–8232. [Google Scholar] [CrossRef]
- Archer, Z.A.; Rayner, D.V.; Duncan, J.S.; Bell, L.M.; Mercer, J.G. Introduction of a High-Energy Diet Acutely Up-Regulates Hypothalamic Cocaine and Amphetamine-Regulated Transcript, Mc4R and Brown Adipose Tissue Uncoupling Protein-1 Gene Expression in Male Sprague-Dawley Rats. J. Neuroendocrinol. 2005, 17, 10–17. [Google Scholar] [CrossRef]
- Lin, Y.; Hall, R.A.; Kuhar, M.J. CART peptide stimulation of G protein-mediated signaling in differentiated PC12 cells: Identification of PACAP 6-38 as a CART receptor antagonist. Neuropeptides 2011, 45, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Gourcerol, G.; St-Pierre, D.H.; Taché, Y. Lack of obestatin effects on food intake: Should obestatin be renamed ghrelin-associated peptide (GAP)? Regul. Pept. 2007, 141, 1–7. [Google Scholar] [CrossRef]
- Mondal, M.S.; Toshinai, K.; Ueno, H.; Koshinaka, K.; Nakazato, M. Characterization of obestatin in rat and human stomach and plasma, and its lack of acute effect on feeding behavior in rodents. J. Endocrinol. 2008, 198, 339–346. [Google Scholar] [CrossRef]
- Szlis, M.; Polkowska, J.; Skrzeczyńska, E.; Przybył, B.J.; Wójcik-Gładysz, A. Does obestatin modulate the hypothalamic appetite-regulating network in peripubertal sheep? J. Anim. Physiol. Anim. Nutr. 2018, 102, 690–700. [Google Scholar] [CrossRef] [PubMed]
- G S Tannenbaum, N.L. The interrelationship of growth hormone (GH)-releasing factor and somatostatin in generation of the ultradian rhythm of GH secretion. Endocrinology 1984, 115, 1952–1957. [Google Scholar] [CrossRef]
- Hartman, M.L.; Veldhuis, J.D.; Thorner, M.O. Normal Control of Growth Hormone Secretion. Horm. Res. 1993, 40, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Plotsky, P.M.; Vale, W. Patterns of Growth Hormone-Eeleasing Factor and Somatostatin Secretion into the Hypophysial-Portal Circulation of the Rat. Science 1985, 230, 461–463. [Google Scholar] [CrossRef]
- Theill, L.E.; Karin, M. Transcriptional control of GH expression and anterior pituitary development. Endocr. Rev. 1993, 14, 670–689. [Google Scholar]
- Goffin, V.; Shiverick, K.T.; Kelly, P.A.; Martial, J.A. Sequence-Function Relationships Within the Expanding. Endocr. Rev. 1996, 17, 385–410. [Google Scholar]
- Badger, T.M.; Millard, W.J.; Owens, S.M.; Larovere, J.; O’Sullivan, D. Effects of gonadal steroids on clearance of growth hormone at steady state in the rat. Endocrinology 1991, 128, 1065–1072. [Google Scholar] [CrossRef]
- Holl, R.W.; Schwarz, U.; Schauwecker, P.; Benz, R.; Veldhuis, J.D.; Heinze, E. Diurnal variation in the elimination rate of human growth hormone (GH): The half-life of serum GH is prolonged in the evening, and affected by the source of the hormone, as well as by body size and serum estradiol. J. Clin. Endocrinol. Metab. 1993, 77, 216–220. [Google Scholar] [PubMed]
- Spagnoli, A.; Rosenfeld, R.G. The mechanisms by which growth hormone brings about growth: The relative contributions of growth hormone and insulin-like growth factors. Endocrinol. Metab. Clin. N. Am. 1996, 25, 615–631. [Google Scholar] [CrossRef]
- Daughaday, W.H.; Trivedi, B.; Kapadia, M. Measurement of insulin-like growth factor ii by a specific radioreceptor assay in serum of normal individuals, patients with abnormal growth hormone secretion, and patients with tumor-associated hypoglycemia. J. Clin. Endocrinol. Metab. 1981, 53, 289–294. [Google Scholar] [CrossRef]
- Yamamoto, D.; Ikeshita, N.; Daito, R.; Herningtyas, E.H.; Toda, K.; Takahashi, K.; Iida, K.; Takahashi, Y.; Kaji, H.; Chihara, K.; et al. Neither intravenous nor intracerebroventricular administration of obestatin affects the secretion of GH, PRL, TSH and ACTH in rats. Regul. Pept. 2007, 138, 141–144. [Google Scholar] [CrossRef]
- Zizzari, P.; Longchamps, R.; Epelbaum, J.; Bluet-Pajot, M.T. Obestatin partially affects ghrelin stimulation of food intake and growth hormone secretion in rodents. Endocrinology 2007, 148, 1648–1653. [Google Scholar] [CrossRef]
- Pazos, Y.; Álvarez, C.J.P.; Camiña, J.P.; Al-Massadi, O.; Seoane, L.M.; Casanueva, F.F. Role of obestatin on growth hormone secretion: An in vitro approach. Biochem. Biophys. Res. Commun. 2009, 390, 1377–1381. [Google Scholar] [CrossRef]
- Feng, D.D.; Yang, S.K.; Loudes, C.; Simon, A.; Al-Sarraf, T.; Culler, M.; Alvear-Perez, R.; Llorens-Cortes, C.; Chen, C.; Epelbaum, J.; et al. Ghrelin and obestatin modulate growth hormone-releasing hormone release and synaptic inputs onto growth hormone-releasing hormone neurons. Eur. J. Neurosci. 2011, 34, 732–744. [Google Scholar] [CrossRef]
- Hassouna, R.; Zizzari, P.; Viltart, O.; Yang, S.K.; Gardette, R.; Videau, C.; Badoer, E.; Epelbaum, J.; Tolle, V. A Natural Variant of Obestatin, Q90L, Inhibits Ghrelin’s Action on Food Intake and GH Secretion and Targets NPY and GHRH Neurons in Mice. PLoS ONE 2012, 7, e51135. [Google Scholar] [CrossRef]
- Carro, E.; Señaris, R.; Peino, R.; Leal-Cerro, A.; Popovic, V.; Micic, D.; Dieguez, C.; Casanueva, F.F. Neuropharmacological assessment of growth hormone secretion. Acta Paediatr. Int. J. Paediatr. Suppl. 1997, 86, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.B.; Cummins, J.T.; Francis, H.; Sudbury, A.W.; Mccloud, P.I.; Clarke, I.J. Effect of restricted feeding on the relationship between hypophysial portal concentrations of growth hormone (GH)-releasing factor and somatostatin, and jugular concentrations of GH in ovariectomized ewes. Endocrinology 1991, 128, 1151–1158. [Google Scholar] [CrossRef] [PubMed]
- Kochman, K.; Przekop, F.; Okrasa, S. Ośrodkowa regulacja neuralna procesów rozrodczych. In Biologia Rozrodu Zwierząt: Fizjologiczna Regulacja Procesów Rozrodczych Samicy; Krzymowski, T., Ed.; Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego: Olsztyn, Polska, 2007; pp. 21–46. ISBN 83-7299-437-4. [Google Scholar]
- Navarro, V.M.; Gottsch, M.L.; Chavkin, C.; Okamura, H.; Clifton, D.K.; Steiner, R.A. Regulation of Gonadotropin-Releasing Hormone Secretion by Kisspeptin/Dynorphin/Neurokinin B Neurons in the Arcuate Nucleus of the Mouse. J. Neurosci. 2009, 29, 11859–11866. [Google Scholar] [CrossRef]
- García-Galiano, D.; Van Ingen Schenau, D.; Leon, S.; Krajnc-Franken, M.A.M.; Manfredi-Lozano, M.; Romero-Ruiz, A.; Navarro, V.M.; Gaytan, F.; Van Noort, P.I.; Pinilla, L.; et al. Kisspeptin signaling is indispensable for neurokinin B, but not glutamate, stimulation of gonadotropin secretion in mice. Endocrinology 2012, 153, 316–328. [Google Scholar] [CrossRef]
- Li, Q.; Millar, R.P.; Clarke, I.J.; Smith, J.T. Evidence that neurokinin B controls basal gonadotropin-releasing hormone secretion but is not critical for estrogen-positive feedback in sheep. Neuroendocrinology 2015, 101, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, C.A.; Chen, C.C.; Coetsee, M.; Mamputha, S.; Whitlock, K.E.; Bredenkamp, N.; Grosenick, L.; Fernald, R.D.; Illing, N. Expression, structure, function, and evolution of gonadotropin-releasing hormone (GnRH) receptors GnRH-R1SHS and GnRH-R2PEY in the teleost, Astatotilapia burtoni. Endocrinology 2007, 148, 5060–5071. [Google Scholar] [CrossRef]
- Fromme, B.J.; Katz, A.A.; Roeske, R.W.; Millar, R.P.; Flanagan, C.A. Role of Aspartate 7.32(302) of the human gonadotropin-releasing hormone receptor in stabilizing a high-affinity ligand conformation. Mol. Pharmacol. 2001, 60, 1280–1287. [Google Scholar] [CrossRef]
- Millar, R.P.; Lu, Z.L.; Pawson, A.J.; Flanagan, C.A.; Morgan, K.; Maudsley, S.R. Gonadotropin-releasing hormone receptors. Endocr. Rev. 2004, 25, 235–275. [Google Scholar] [CrossRef]
- Cheng, C.K.; Leung, P.C.K. Molecular biology of gonadotropin-releasing hormone (GnRH)-I, GnRH-II, and their receptors in humans. Endocr. Rev. 2005, 26, 283–306. [Google Scholar] [CrossRef]
- Krzymowski, T. Biologia Rozrodu Zwierząt: Fizjologiczne Regulacje Procesów Rozrodczych Samicy; Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego: Olsztyn, Polska, 2007; pp. 95–131. [Google Scholar]
- Pierzchała-Koziec, K. Wydzielanie wewnętrzne. In Fizjologia Zwierząt; Krzymowski, T., Przała, J., Eds.; Państwowe Wydawnictwo Rolnicze i Leśne: Warszawa, Polska, 2005; pp. 159–197. [Google Scholar]
- Bilezikjian, L.M.; Blount, A.L.; Leal, A.M.O.; Donaldson, C.J.; Fischer, W.H.; Vale, W.W. Autocrine/paracrine regulation of pituitary function by activin, inhibin and follistatin. Mol. Cell. Endocrinol. 2004, 225, 29–36. [Google Scholar] [CrossRef]
- Volante, M.; Rosas, R.; Ceppi, P.; Rapa, I.; Cassoni, P.; Wiedenmann, B.; Settanni, F.; Granata, R.; Papotti, M. Obestatin in human neuroendocrine tissues and tumours: Expression and effect on tumour growth. J. Pathol. 2009, 218, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Granata, R.; Gallo, D.; Luque, R.M.; Baragli, A.; Scarlatti, F.; Grande, C.; Gesmundo, I.; Cordoba-Chacon, J.; Bergandi, L.; Settanni, F.; et al. Obestatin regulates adipocyte function and protects against diet-induced insulin resistance and inflammation. FASEB J. 2012, 26, 3393–3411. [Google Scholar] [CrossRef] [PubMed]
- Mészárosová, M.; Sirotkin, A.V.; Grossmann, R.; Darlak, K.; Valenzuela, F. The effect of obestatin on porcine ovarian granulosa cells. Anim. Reprod. Sci. 2008, 108, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Roszkowicz-Ostrowska, K.; Młotkowska, P.; Marciniak, E.; Szlis, M.; Barszcz, M.; Misztal, T. Activation of BDNF–TrkB Signaling in Specific Structures of the Sheep Brain by Kynurenic Acid. Cells 2024, 13, 1928. [Google Scholar] [CrossRef]
- Hunzicker-Dunn, M.; Maizels, E.T. FSH signaling pathways in immature granulosa cells that regulate target gene expression: Branching out from protein kinase A. Cell. Signal. 2006, 18, 1351–1359. [Google Scholar] [CrossRef]
- Perrett, R.M.; McArdle, C.A. Molecular mechanisms of gonadotropin-releasing hormone signaling: Integrating cyclic nucleotides into the network. Front. Endocrinol. 2013, 4, 180. [Google Scholar] [CrossRef] [PubMed]
- Romani, F.; Lanzone, A.; Tropea, A.; Familiari, A.; Scarinci, E.; Sali, M.; Delogu, G.; Catino, S.; Apa, R. In Vitro effect of unacylated ghrelin and obestatin on human luteal cell function. Fertil. Steril. 2012, 97, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Luque, R.M.; Córdoba-Chaćon, J.; Ibañez-Costa, A.; Gesmundo, I.; Grande, C.; Gracia-Navarro, F.; Tena-Sempere, M.; Ghigo, E.; Gahete, M.D.; Granata, R.; et al. Obestatin plays an opposite role in the regulation of pituitary somatotrope and corticotrope function in female primates and male/female mice. Endocrinology 2014, 155, 1407–1417. [Google Scholar] [CrossRef]
- Wójcik-Gładysz, A.; Szlis, M.; Przybył, B.J.; Polkowska, J. Obestatin may affect the GnRH/KNDy gene network in sheep hypothalamus. Res. Vet. Sci. 2019, 123, 51–58. [Google Scholar] [CrossRef]
- Szlis, M.; Wójcik-Gładysz, A.; Przybył, B.J. Central obestatin administration affect the LH and FSH secretory activity in peripubertal sheep. Theriogenology 2020, 145, 10–17. [Google Scholar] [CrossRef]
- Al-Halbouni, S.; Homsi, S.; Koshji, N. Evaluation the Effect of Chronic Obestatin Therapy on the Serum Glucose, Insulin And Lipid Levels in Type 2 Diabetic Rats. Open Public Health J. 2023, 16, 1–8. [Google Scholar] [CrossRef]
- Wojciechowicz, T.; Skrzypski, M.; Koodziejski, P.A.; Szczepankiewicz, D.; Pruszyskaoszmaek, E.; Kaczmarek, P.; Strowski, M.Z.; Nowak, K.W. Obestatin stimulates differentiation and regulates lipolysis and leptin secretion in rat preadipocytes. Mol. Med. Rep. 2015, 12, 8169–8175. [Google Scholar] [CrossRef]
- Bora, R.R.; Prasad, R.; Khatib, M.N. Cardio-Protective Role of a Gut Hormone Obestatin: A Narrative Review. Cureus 2023, 15, e37972. [Google Scholar] [CrossRef]
- Khaleel, E.F.; Abdel-Aleem, G.A. Obestatin protects and reverses nonalcoholic fatty liver disease and its associated insulin resistance in rats via inhibition of food intake, enhancing hepatic adiponectin signaling, and blocking ghrelin acylation. Arch. Physiol. Biochem. 2019, 125, 64–78. [Google Scholar] [CrossRef]
- Villarreal, D.; Pradhan, G.; Zhou, Y.; Xue, B.; Sun, Y. Diverse and Complementary Effects of Ghrelin and Obestatin. Biomolecules 2022, 12, 517. [Google Scholar] [CrossRef]
- Gurriarán-Rodríguez, U.; Santos-Zas, I.; González-Sánchez, J.; Beiroa, D.; Moresi, V.; Mosteiro, C.S.; Lin, W.; Viñuela, J.E.; Señarís, J.; García-Caballero, T.; et al. Action of obestatin in skeletal muscle repair: Stem cell expansion, muscle growth, and microenvironment remodeling. Mol. Ther. 2015, 23, 1003–1021. [Google Scholar] [CrossRef] [PubMed]
Authors | Research Model | Materials and Methods | Outcome |
---|---|---|---|
Mészárosová et al., 2008 [83] | Granulosa cells from Slovakian white gilts | Medium supplemented with obestatin | Obestatin stimulated progesterone secretion to the culture medium but did not affect the secretion of estradiol and testosterone. |
Romani et al., 2012 [87] | Human luteal cells | Medium supplemented with obestatin | Obestatin decreased progesterone and prostaglandin E2 and F2α secretions into the medium. |
Luque et al., 2014 [88] | Pituitary cells from baboons and mice | Medium supplemented with obestatin | Obestatin did not affect prolactin, LH, and FSH releases. |
Wójcik-Gładysz et al., 2019 [89] | Female sheep | Intracerebroventricular infusions | Obestatin increased GnRH mRNA expression in the preoptic area. Obestatin decreased the GnRH mRNA expression in the median eminence, without affecting the level of this peptide mRNA in the anterior hypothalamic area. Central obestatin infusion evoked the restraining of IR GnRH material in the median eminence. Obestatin increased Kiss mRNA and decreased PDyn mRNA expression but not the NKB mRNA in the arcuate nucleus. |
Szlis et al., 2020 [90] | Female sheep | Intracerebroventricular infusions | Obestatin decreased LHβ mRNA expression and increased accumulation of LH protein in gonadotrophic cells, and as a result of these changes, the level of LH concentration in peripheral blood also decreased. Moreover, FSHβ mRNA expression and protein accumulation in pituitary cells increased after obestatin treatment, but at the same time, obestatin did not change the pulsatile pattern of FSH release. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szlis, M.; Wójcik-Gładysz, A.; Gajewska, A.; Przybyl, B.J. The Mystery Actor in the Neuroendocrine Theater: Who Really Knows Obestatin? Central Focus on Hypothalamic–Pituitary Axes. Int. J. Mol. Sci. 2025, 26, 7395. https://doi.org/10.3390/ijms26157395
Szlis M, Wójcik-Gładysz A, Gajewska A, Przybyl BJ. The Mystery Actor in the Neuroendocrine Theater: Who Really Knows Obestatin? Central Focus on Hypothalamic–Pituitary Axes. International Journal of Molecular Sciences. 2025; 26(15):7395. https://doi.org/10.3390/ijms26157395
Chicago/Turabian StyleSzlis, Michał, Anna Wójcik-Gładysz, Alina Gajewska, and Bartosz Jaroslaw Przybyl. 2025. "The Mystery Actor in the Neuroendocrine Theater: Who Really Knows Obestatin? Central Focus on Hypothalamic–Pituitary Axes" International Journal of Molecular Sciences 26, no. 15: 7395. https://doi.org/10.3390/ijms26157395
APA StyleSzlis, M., Wójcik-Gładysz, A., Gajewska, A., & Przybyl, B. J. (2025). The Mystery Actor in the Neuroendocrine Theater: Who Really Knows Obestatin? Central Focus on Hypothalamic–Pituitary Axes. International Journal of Molecular Sciences, 26(15), 7395. https://doi.org/10.3390/ijms26157395