The Role of Selected Proteins in the Pathogenesis of Psoriasis
Abstract
1. Introduction
2. Materials and Methods
3. Discussion
3.1. Elafin
Elafin’s Role in the Pathogenesis of Psoriasis
Author | Year | Population | Key Observation |
---|---|---|---|
Elafin in Psoriasis | |||
Nakane et al. [17] | 2002 | 6 patients with psoriasis | Elafin may contribute to the thickened, hyperproliferative epidermis characteristic of psoriasis. |
Holmannova et al. [28] | 2020 | 85 patients with psoriasis | Elafin levels were correlated with psoriasis severity, as measured by the PASI score and with inflammatory markers CRP and ESR. |
Elgharib et al. [11] | 2019 | N1—26 healthy people N2—26 patients with psoriasis | Higher elafin levels in serum were associated with increased disease severity and inflammation. |
Albarazenji et al. [29] | 2021 | N1—30 healthy people N2—30 patients with psoriasis | Elafin could be used to assess the effectiveness of treatments like NB-UVB therapy. |
Alghonemy et al. [30] | 2020 | N1—30 healthy people N2—60 patients with psoriasis | Elafin level was positively correlated with PASI scores, indicating a link between elafin expression and disease severity. |
Elghetany et al. [31] | 2021 | N1—45 healthy people N2—45 patients with psoriasis | Smoking and a positive family history of psoriasis were also associated with increased serum elafin levels. |
Alkemade et al. [32] | 1995 | N1—15 healthy people N2—6 patients with psoriasis | Elafin correlated strongly with the PASI score. |
Tanaka et al. [33] | 2000 | 9 patients with pustulosis palmoplantaris; 3 patients with generalized pustular psoriasis | Increased local inflammation and neutrophil activation in pustular regions may lead to rapid consumption of elafin. |
Nonomura et al. [34] | 1994 | N2—5 patients with psoriasis | Increased expression of elafin mRNA in psoriatic epidermis suggested a role in epidermal differentiation and barrier function. |
Schalkwijk et al. [35] | 1993 | N1—7 healthy people N2—9 patients with psoriasis | Strong elafin expression was present in the upper suprabasal layers of the psoriatic epidermis. |
Kuijpers et al. [36] | 1998 | 30 patients with chronic plaque psoriasis; 12 patients with pustulosis palmoplantaris; 1 patient with acrodermatitis continua of Hallopeau; 1 patient with generalized pustular psoriasis von Zumbusch; 1 patient with non-generalized pustular psoriasis | Mutations in the coding region of the elafin gene did not appear to be a major cause of pustular psoriasis. |
3.2. Chemerin
Chemerin Role in the Pathogenesis of Psoriasis
Author | Year | Population | Key Observation |
---|---|---|---|
Chemerin in Psoriasis | |||
Kong et al. [42] | 2023 | Psoriasis-like inflammatory cell model and imiquimod (IMQ)-induced mouse model | Neutralizing chemerin could reduce epidermal proliferation and inflammation in a mouse model of psoriasis. |
Borsky et al. [43] | 2021 | N1—22 healthy people N2—28 psoriatic patients | A direct correlation between chemerin levels and the PASI score was not found. |
Coban et al. [44] | 2016 | N1—50 healthy people N2—35 psoriatic patients | The decrease in chemerin paralleled reductions in high-sensitive-CRP. |
Aksu et al. [45] | 2017 | N1—32 healthy people N2—60 psoriatic patients | Chemerin may be a useful biomarker for identifying individuals with psoriasis who are at increased risk for cardiovascular disease. |
Tekely et al. [46] | 2018 | N1—40 healthy people N2—66 psoriatic patients | There was no correlation between chemerin levels and the severity of the psoriasis—PASI score. |
Zeid et al. [47] | 2012 | N1—10 healthy people N2—20 psoriatic patients | Higher chemerin levels in plasma and skin tissue were more common in recent-onset psoriasis compared with long-standing cases. |
Al-Sheikh et al. [48] | 2019 | N1—40 healthy people N2—50 psoriatic patients | Positive correlation revealed that the PASI score was positively linked to the level of chemerin in plasma, EFT, and CIMT. |
Wang et al. [49] | 2019 | N1—20 healthy people N2—25 psoriatic patients | Chemerin subsequently exacerbated the Th9/Treg imbalance by promoting Th9 cell differentiation. |
3.3. NAMPT (Visfatin)
NAMPT (Visfatin) Role in the Pathogenesis of Psoriasis
Author | Year | Population | Key Observation |
---|---|---|---|
NAMPT (Visfatin) Role in the Pathogenesis of Psoriasis | |||
Gerdes et al. [53] | 2012 | N1—80 healthy people N2—79 psoriatic patients | Visfatin levels were positively correlated with the BMI in the psoriasis patient group, but not in the control group. |
Ismail et al. [54] | 2012 | N1—42 healthy people N2—46 psoriatic patients | Visfatin levels were positively correlated with the PASI, which indicated that higher visfatin levels may be associated with more severe disease. |
Mercurio et al. [15] | 2021 | N1—10 healthy people N2—25 psoriatic patients | Intracellular NAMPT, by increasing NAD+ levels, promoted keratinocyte proliferation and inhibited their terminal differentiation, contributing to the thickened epidermis observed in psoriasis. |
Xie et al. [55] | 2014 | N1—21 healthy people N2—33 psoriatic patients (lesional skin), 28 psoriatic patients (non-lesional skin) | NAMPT gene was found to be significantly upregulated in psoriatic lesions compared with non-lesional skin and healthy skin. |
Hau et al. [56] | 2013 | N1—8 healthy people N2—8 psoriatic patients Animals: Female BALB/c mice aged 6 to 8 weeks, murine | The increased production of AMPs by visfatin might contribute to the inflammatory response in psoriasis by promoting immune cell recruitment and activation. |
3.4. The Skin as a Neuro–Immuno–Endocrine Organ in Psoriasis
3.5. Local Corticosteroidogenesis and Its Role in the Pathogenesis of Psoriasis
3.6. Ultraviolet B and Its Role in Psoriasis
3.7. Vitamin D Signaling Role in Psoriasis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Parisi, R.; Symmons, D.P.; Griffiths, C.E.; Ashcroft, D.M. Identification and Management of Psoriasis and Associated ComorbidiTy (IMPACT) project team. Global epidemiology of psoriasis: A systematic review of incidence and prevalence. J. Investig. Dermatol. 2013, 133, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Parisi, R.; Iskandar, I.Y.K.; Kontopantelis, E.; Augustin, M.; Griffiths, C.E.M.; Ashcroft, D.M. Global Psoriasis Atlas National regional worldwide epidemiology of psoriasis: Systematic analysis modelling study. BMJ 2020, 369, m1590. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mahé, E. Childhood psoriasis. Eur. J. Dermatol. 2016, 26, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Remröd, C.; Sjöström, K.; Svensson, A. Psychological differences between early- and late-onset psoriasis: A study of personality traits, anxiety and depression in psoriasis. Br. J. Dermatol. 2013, 169, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Jullien, D.; Eyerich, K. The Prevalence and Disease Characteristics of Generalized Pustular Psoriasis. Am. J. Clin. Dermatol. 2022, 23 (Suppl. S1), 5–12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mason, A.R.; Mason, J.; Cork, M.; Dooley, G.; Hancock, H. Topical treatments for chronic plaque psoriasis. Cochrane Database Syst. Rev. 2013, 2013, CD005028. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Geyer, P.E.; Voytik, E.; Treit, P.V.; Doll, S.; Kleinhempel, A.; Niu, L.; Müller, J.B.; Buchholtz, M.L.; Bader, J.M.; Teupser, D.; et al. Plasma Proteome Profiling to detect and avoid sample-related biases in biomarker studies. EMBO Mol. Med. 2019, 11, e10427. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yadav, K.; Singh, D.; Singh, M.R. Protein biomarker for psoriasis: A systematic review on their role in the pathomechanism, diagnosis, potential targets and treatment of psoriasis. Int. J. Biol. Macromol. 2018, 118 Pt B, 1796–1810. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, C.E.M.; Armstrong, A.W.; Gudjonsson, J.E.; Barker, J.N.W.N. Psoriasis. Lancet 2021, 397, 1301–1315. [Google Scholar] [CrossRef] [PubMed]
- Rendon, A.; Schäkel, K. Psoriasis Pathogenesis and Treatment. Int. J. Mol. Sci. 2019, 20, 1475. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Elgharib, I.; Khashaba, S.A.; Elsaid, H.H.; Sharaf, M.M. Serum elafin as a potential inflammatory marker in psoriasis. Int. J. Dermatol. 2019, 58, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Berekmeri, A.; Macleod, T.; Hyde, I.; Ojak, G.J.; Mann, C.; Kramer, D.; Stacey, M.; Wittmann, M. Epidermal proteomics demonstrates Elafin as a psoriasis-specific biomarker and highlights increased anti-inflammatory activity around psoriatic plaques. J. Eur. Acad. Dermatol. Venereol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, H.; Nakajima, K.; Nagano, Y.; Yamamoto, M.; Tarutani, M.; Takahashi, M.; Takahashi, Y.; Sano, S. Circulating level of chemerin is upregulated in psoriasis. J. Dermatol. Sci. 2010, 60, 45–47. [Google Scholar] [CrossRef] [PubMed]
- Gisondi, P.; Lora, V.; Bonauguri, C.; Russo, A.; Lippi, G.; Girolomoni, G. Serum chemerin is increased in patients with chronic plaque psoriasis and normalizes following treatment with infliximab. Br. J. Dermatol. 2013, 168, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Mercurio, L.; Morelli, M.; Scarponi, C.; Scaglione, G.L.; Pallotta, S.; Avitabile, D.; Albanesi, C.; Madonna, S. Enhanced NAMPT-Mediated NAD Salvage Pathway Contributes to Psoriasis Pathogenesis by Amplifying Epithelial Auto-Inflammatory Circuits. Int. J. Mol. Sci. 2021, 22, 6860. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- D’Amico, F.; Costantino, G.; Salvatorelli, L.; Ramondetta, A.; De Pasquale, R.; Sortino, M.A.; Merlo, S. Inverse correlation between the expression of AMPK/SIRT1 and NAMPT in psoriatic skin: A pilot study. Adv. Med. Sci. 2022, 67, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Nakane, H.; Ishida-Yamamoto, A.; Takahashi, H.; Iizuka, H. Elafin, a secretory protein, is cross-linked into the cornified cell envelopes from the inside of psoriatic keratinocytes. J. Investig. Dermatol. 2002, 119, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Slominski, R.M.; Raman, C.; Jetten, A.M.; Slominski, A.T. Neuro-immuno-endocrinology of the skin: How environment regulates body homeostasis. Nat. Rev. Endocrinol. 2025. Epub ahead of print Erratum in Nat. Rev. Endocrinol. 2025. https://doi.org/10.1038/s41574-025-01126-8. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Wortsman, J. Neuroendocrinology of the skin. Endocr. Rev. 2000, 21, 457–487, Erratum in Endocr. Rev. 2002, 23, 364. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Wortsman, J.; Luger, T.; Paus, R.; Solomon, S. Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol. Rev. 2000, 80, 979–1020. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.E.; Brown, T.I.; Roghanian, A.; Sallenave, J.M. SLPI and elafin: One glove, many fingers. Clin. Sci. 2006, 110, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Guyot, N.; Zani, M.L.; Berger, P.; Dallet-Choisy, S.; Moreau, T. Proteolytic susceptibility of the serine protease inhibitor trappin-2 (pre-elafin): Evidence for tryptase-mediated generation of elafin. Biol. Chem. 2005, 386, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, N.; Fujioka, A.; Tajima, S.; Ishibashi, A.; Hirose, S. Elafin is induced in epidermis in skin disorders with dermal neutrophilic infiltration: Interleukin-1 beta and tumour necrosis factor-alpha stimulate its secretion in vitro. Br. J. Dermatol. 2000, 143, 728–732. [Google Scholar] [CrossRef] [PubMed]
- Rabinovitch, M. EVE and beyond, retro and prospective insights. Am. J. Physiol. 1999, 277, L5–L12. [Google Scholar] [CrossRef] [PubMed]
- Guyot, N.; Butler, M.W.; McNally, P.; Weldon, S.; Greene, C.M.; Levine, R.L.; O’Neill, S.J.; Taggart, C.C.; McElvaney, N.G. Elafin, an elastase-specific inhibitor, is cleaved by its cognate enzyme neutrophil elastase in sputum from individuals with cystic fibrosis. J. Biol. Chem. 2008, 283, 32377–32385. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Simpson, A.J.; Maxwell, A.I.; Govan, J.R.; Haslett, C.; Sallenave, J.M. Elafin (elastase-specific inhibitor) has anti-microbial activity against gram-positive and gram-negative respiratory pathogens. FEBS Lett. 1999, 452, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez-Humarán, L.G.; Motta, J.P.; Aubry, C.; Kharrat, P.; Rous-Martin, L.; Sallenave, J.M.; Deraison, C.; Vergnolle, N.; Langella, P. Serine protease inhibitors protect better than IL-10 and TGF-β anti-inflammatory cytokines against mouse colitis when delivered by recombinant lactococci. Microb. Cell Fact. 2015, 14, 26. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Holmannova, D.; Borsky, P.; Borska, L.; Andrys, C.; Hamakova, K.; Rehacek, V.; Svadlakova, T.; Malkova, A.; Beranek, M.; Palicka, V.; et al. Metabolic Syndrome, Clusterin and Elafin in Patients with Psoriasis Vulgaris. Int. J. Mol. Sci. 2020, 21, 5617. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Albarazenji, N.F.A.; El Naeem Sallam, M.A.; Elhusseiny, R.M. Measurement of Serum Elafin Protein in Psoriasis Vulgaris Patients Before and After Narrowband Ultraviolet (NB-UVB) Therapy. QJM Int. J. Med. 2021, 114 (Suppl. S1), hcab093.033. [Google Scholar] [CrossRef]
- Alghonemy, S.M.E.; Obaid, Z.M.; Elbendary, A.S.; Fouda, I. Assessment of serum elafin as a possible inflammatory marker in psoriasis. Al-Azhar Assiut Med. J. 2020, 18, 408–412. [Google Scholar] [CrossRef]
- Elghetany, D.; Selim, M.; Tawhid, Z.; Ibrahim, A. Serum Elafin Level as a Potential Marker of Psoriasis Severity. Egypt. J. Hosp. Med. 2021, 85, 2884–2889. [Google Scholar] [CrossRef]
- Alkemade, H.A.; de Jongh, G.J.; Arnold, W.P.; van de Kerkhof, P.C.; Schalkwijk, J. Levels of skin-derived antileukoproteinase (SKALP)/elafin in serum correlate with disease activity during treatment of severe psoriasis with cyclosporin A. J. Investig. Dermatol. 1995, 104, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, N.; Fujioka, A.; Tajima, S.; Ishibashi, A.; Hirose, S. Levels of proelafin peptides in the sera of the patients with generalized pustular psoriasis and pustulosis palmoplantaris. Acta Derm. Venereol. 2000, 80, 102–105. [Google Scholar] [CrossRef] [PubMed]
- Nonomura, K.; Yamanishi, K.; Yasuno, H.; Nara, K.; Hirose, S. Up-regulation of elafin/SKALP gene expression in psoriatic epidermis. J. Investig. Dermatol. 1994, 103, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Schalkwijk, J.; van Vlijmen, I.M.; Alkemade, J.A.; de Jongh, G.J. Immunohistochemical localization of SKALP/elafin in psoriatic epidermis. J. Investig. Dermatol. 1993, 100, 390–393. [Google Scholar] [CrossRef] [PubMed]
- Kuijpers, A.L.; Pfundt, R.; Zeeuwen, P.L.; Molhuizen, H.O.; Mariman, E.C.; van de Kerkhof, P.C.; Schalkwijk, J. SKALP/elafin gene polymorphisms are not associated with pustular forms of psoriasis. Clin. Genet. 1998, 54, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Nagpal, S.; Patel, S.; Jacobe, H.; DiSepio, D.; Ghosn, C.; Malhotra, M.; Teng, M.; Duvic, M.; Chandraratna, R.A. Tazarotene-induced gene 2 (TIG2), a novel retinoid-responsive gene in skin. J. Investig. Dermatol. 1997, 109, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Chiricozzi, A.; Romanelli, P.; Volpe, E.; Borsellino, G.; Romanelli, M. Scanning the Immunopathogenesis of Psoriasis. Int. J. Mol. Sci. 2018, 19, 179. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Issa, M.E.; Muruganandan, S.; Ernst, M.C.; Parlee, S.D.; Zabel, B.A.; Butcher, E.C.; Sinal, C.J.; Goralski, K.B. Chemokine-like receptor 1 regulates skeletal muscle cell myogenesis. Am. J. Physiol. Cell Physiol. 2012, 302, C1621–C1631. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- İnci, S.; Aksan, G.; Doğan, P. Chemerin as an independent predictor of cardiovascular event risk. Ther. Adv. Endocrinol. Metab. 2016, 7, 57–68. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, Y.; Song, Y.; Wang, Z.; Lai, Y.; Yin, W.; Cai, Q.; Han, M.; Cai, Y.; Xue, Y.; Chen, Z.; et al. The chemerin-CMKLR1 axis in keratinocytes impairs innate host defense against cutaneous Staphylococcus aureus infection. Cell Mol. Immunol. 2024, 21, 533–545. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kong, S.M.; Sun, X.Y.; Cui, W.Y.; Cao, Y.C. Chemerin Exacerbates Psoriasis by Stimulating Keratinocyte Proliferation and Cytokine Production. Curr. Med. Sci. 2023, 43, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Borsky, P.; Fiala, Z.; Andrys, C.; Beranek, M.; Hamakova, K.; Kremlacek, J.; Malkova, A.; Svadlakova, T.; Krejsek, J.; Palicka, V.; et al. C-reactive protein, chemerin, fetuin-A and osteopontin as predictors of cardiovascular risks in persons with psoriasis vulgaris. Physiol. Res. 2021, 70, 383–391. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Coban, M.; Tasli, L.; Turgut, S.; Özkan, S.; Tunç Ata, M.; Akın, F. Association of Adipokines, Insulin Resistance, Hypertension and Dyslipidemia in Patients with Psoriasis Vulgaris. Ann. Dermatol. 2016, 28, 74–79. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aksu, F.; Caliskan, M.; Keles, N.; Erek Toprak, A.; Uzuncakmak, T.K.; Kostek, O.; Yilmaz, Y.; Demircioglu, K.; Cekin, E.; Ozturk, I.; et al. Chemerin as a marker of subclinical cardiac involvement in psoriatic patients. Cardiol. J. 2017, 24, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Tekely, E.; Szostakiewicz-Grabek, B.; Krasowska, D.; Chodorowska, G. Serum levels of chemerin and pigment epithelium-derived factor in patients with psoriasis. PostN Med. 2018, XXXI, 14–19. [Google Scholar] [CrossRef]
- Zeid, O.M.A.; Amin, I.M.; Rashed, L.M. Plasma and tissue chemerin levels and their relation to metabolic syndrome in patients with psoriasis. J. Egypt. Women’s Dermatol. Soc. 2012, 9, 118–122. [Google Scholar] [CrossRef]
- Al-sheikh, N.M.; Shehata, W.A.; Hassanein, S.A.; Ibrahim, W.A. Plasma Levels of Chemerin, Leptin and Psoriasin as Potential Markers of Subclinical Athero-Sclerosis in Psoriasis Patients. Egypt. J. Biochem. Mol. Biol. 2018, 36, 17–34. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Huo, J.; Hu, G.; Wu, J. Effects of chemerin/chemR23 axis on Th9/Treg in patients with psoriasis. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2019, 44, 144–149. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Preiss, J.; Handler, P. Enzymatic synthesis of nicotinamide mononucleotide. J. Biol. Chem. 1957, 225, 759–770. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.H.; Chang, D.M.; Lin, K.C.; Shin, S.J.; Lee, Y.J. Visfatin in overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases: A meta-analysis and systemic review. Diabetes Metab. Res. Rev. 2011, 27, 515–527. [Google Scholar] [CrossRef] [PubMed]
- Stofkova, A. Resistin and visfatin: Regulators of insulin sensitivity, inflammation and immunity. Endocr. Regul. 2010, 44, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Gerdes, S.; Osadtschy, S.; Rostami-Yazdi, M.; Buhles, N.; Weichenthal, M.; Mrowietz, U. Leptin, adiponectin, visfatin and retinol-binding protein-4-mediators of comorbidities in patients with psoriasis? Exp. Dermatol. 2012, 21, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Ismail, S.A.; Mohamed, S.A. Serum levels of visfatin and omentin-1 in patients with psoriasis and their relation to disease severity. Br. J. Dermatol. 2012, 167, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Chen, Z.; Wang, Q.; Song, X.; Zhang, L. Comparisons of gene expression in normal, lesional, and non-lesional psoriatic skin using DNA microarray techniques. Int. J. Dermatol. 2014, 53, 1213–1220. [Google Scholar] [CrossRef] [PubMed]
- Hau, C.S.; Kanda, N.; Noda, S.; Tatsuta, A.; Kamata, M.; Shibata, S.; Asano, Y.; Sato, S.; Watanabe, S.; Tada, Y. Visfatin enhances the production of cathelicidin antimicrobial peptide, human β-defensin-2, human β-defensin-3, and S100A7 in human keratinocytes and their orthologs in murine imiquimod-induced psoriatic skin. Am. J. Pathol. 2013, 182, 1705–1717. [Google Scholar] [CrossRef] [PubMed]
- Haimakainen, S.; Harvima, I.T. Corticotropin-releasing hormone receptor-1 is increased in mast cells in psoriasis and actinic keratosis, but not markedly in keratinocyte skin carcinomas. Exp. Dermatol. 2023, 32, 1794–1804. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.L.; Yu, X.J.; Cai, D.X.; Xu, Y.H.; Li, C.Y.; Sun, Q. Inhibiting interleukin-18 production through the mitogen-activated protein kinase pathway, a potential role of corticotropin-releasing hormone in chronic plaque psoriasis. Inflammation 2015, 38, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Galimova, E.; Rätsep, R.; Traks, T.; Chernov, A.; Gaysina, D.; Kingo, K.; Kõks, S. Polymorphisms in corticotrophin-releasing hormone-proopiomalanocortin (CRH-POMC) system genes: Neuroimmune contributions to psoriasis disease. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 2028–2040. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.T.; Slominski, R.M.; Raman, C.; Chen, J.Y.; Athar, M.; Elmets, C. Neuroendocrine signaling in the skin with a special focus on the epidermal neuropeptides. Am. J. Physiol. Cell Physiol. 2022, 323, C1757–C1776. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Slominski, A.T.; Zmijewski, M.A.; Zbytek, B.; Brozyna, A.A.; Granese, J.; Pisarchik, A.; Szczesniewski, A.; Tobin, D.J. Regulated proenkephalin expression in human skin and cultured skin cells. J. Investig. Dermatol. 2011, 131, 613–622. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nissen, J.B.; Avrach, W.W.; Hansen, E.S.; Stengaard-Pedersen, K.; Kragballe, K. Decrease in enkephalin levels in psoriatic lesions after calcipotriol and mometasone furoate treatment. Dermatology 1999, 198, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.J.; Lee, K.S.; Ko, C.M.; Moh, S.H.; Song, J.; Hur, L.C.; Cheon, Y.W.; Yang, S.H.; Choi, Y.H.; Kim, K.W. Leucine-enkephalin promotes wound repair through the regulation of hemidesmosome dynamics and matrix metalloprotease. Peptides 2016, 76, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Nagui, N.A.; Ezzat, M.A.; Abdel Raheem, H.M.; Rashed, L.A.; Abozaid, N.A. Possible role of proenkephalin in psoriasis. Clin. Exp. Dermatol. 2016, 41, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Slominski, R.M.; Raman, C.; Elmets, C.; Jetten, A.M.; Slominski, A.T.; Tuckey, R.C. The significance of CYP11A1 expression in skin physiology and pathology. Mol. Cell Endocrinol. 2021, 530, 111238. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hannen, R.; Udeh-Momoh, C.; Upton, J.; Wright, M.; Michael, A.; Gulati, A.; Rajpopat, S.; Clayton, N.; Halsall, D.; Burrin, J.; et al. Dysfunctional Skin-Derived Glucocorticoid Synthesis Is a Pathogenic Mechanism of Psoriasis. J. Investig. Dermatol. 2017, 137, 1630–1637. [Google Scholar] [CrossRef] [PubMed]
- Hannen, R.F.; Michael, A.E.; Jaulim, A.; Bhogal, R.; Burrin, J.M.; Philpott, M.P. Steroid synthesis by primary human keratinocytes; implications for skin disease. Biochem. Biophys. Res. Commun. 2011, 404, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.T.; Zmijewski, M.A.; Semak, I.; Sweatman, T.; Janjetovic, Z.; Li, W.; Zjawiony, J.K.; Tuckey, R.C. Sequential metabolism of 7-dehydrocholesterol to steroidal 5,7-dienes in adrenal glands and its biological implication in the skin. PLoS ONE. 2009, 4, e4309. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Slominski, A.T.; Zmijewski, M.A.; Zbytek, B.; Tobin, D.J.; Theoharides, T.C.; Rivier, J. Key role of CRF in the skin stress response system. Endocr. Rev. 2013, 34, 827–884. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Slominski, A.T.; Brożyna, A.A.; Tuckey, R.C. Cutaneous Glucocorticoidogenesis and Cortisol Signaling Are Defective in Psoriasis. J. Investig. Dermatol. 2017, 137, 1609–1611. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Slominski, R.M.; Tuckey, R.C.; Manna, P.R.; Jetten, A.M.; Postlethwaite, A.; Raman, C.; Slominski, A.T. Extra-adrenal glucocorticoid biosynthesis: Implications for autoimmune and inflammatory disorders. Genes Immun. 2020, 21, 150–168. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tiala, I.; Suomela, S.; Huuhtanen, J.; Wakkinen, J.; Hölttä-Vuori, M.; Kainu, K.; Ranta, S.; Turpeinen, U.; Hämäläinen, E.; Jiao, H.; et al. The CCHCR1 (HCR) gene is relevant for skin steroidogenesis and downregulated in cultured psoriatic keratinocytes. J. Mol. Med. 2007, 85, 589–601. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, A.K.; Funasaka, Y.; Slominski, A.; Bolognia, J.; Sodi, S.; Ichihashi, M.; Pawelek, J.M. UV light and MSH receptors. Ann. N. Y. Acad. Sci. 1999, 885, 100–116. [Google Scholar] [CrossRef] [PubMed]
- Pawelek, J.M.; Chakraborty, A.K.; Osber, M.P.; Orlow, S.J.; Min, K.K.; Rosenzweig, K.E.; Bolognia, J.L. Molecular cascades in UV-induced melanogenesis: A central role for melanotropins? Pigment. Cell Res. 1992, 5 Pt 2, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Scholzen, T.E.; Kalden, D.H.; Brzoska, T.; Fisbeck, T.; Fastrich, M.; Schiller, M.; Böhm, M.; Schwarz, T.; Armstrong, C.A.; Ansel, J.C.; et al. Expression of proopiomelanocortin peptides in human dermal microvascular endothelial cells: Evidence for a regulation by ultraviolet light and interleukin-1. J. Investig. Dermatol. 2000, 115, 1021–1028, Erratum in J. Investig. Dermatol. 2001, 116, 829. [Google Scholar] [CrossRef] [PubMed]
- Schiller, M.; Brzoska, T.; Böhm, M.; Metze, D.; Scholzen, T.E.; Rougier, A.; Luger, T.A. Solar-simulated ultraviolet radiation-induced upregulation of the melanocortin-1 receptor, proopiomelanocortin, and alpha-melanocyte-stimulating hormone in human epidermis in vivo. J. Investig. Dermatol. 2004, 122, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Skobowiat, C.; Dowdy, J.C.; Sayre, R.M.; Tuckey, R.C.; Slominski, A. Cutaneous hypothalamic-pituitary-adrenal axis homolog: Regulation by ultraviolet radiation. Am. J. Physiol. Endocrinol. Metab. 2011, 301, E484–E493. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Skobowiat, C.; Sayre, R.M.; Dowdy, J.C.; Slominski, A.T. Ultraviolet radiation regulates cortisol activity in a waveband-dependent manner in human skin ex vivo. Br. J. Dermatol. 2013, 168, 595–601. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Slominski, A.; Baker, J.; Ermak, G.; Chakraborty, A.; Pawelek, J. Ultraviolet B stimulates production of corticotropin releasing factor (CRF) by human melanocytes. FEBS Lett. 1996, 399, 175–176. [Google Scholar] [CrossRef] [PubMed]
- Zbytek, B.; Wortsman, J.; Slominski, A. Characterization of a ultraviolet B-induced corticotropin-releasing hormone-proopiomelanocortin system in human melanocytes. Mol. Endocrinol. 2006, 20, 2539–2547. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pisarchik, A.; Slominski, A.T. Alternative splicing of CRH-R1 receptors in human and mouse skin: Identification of new variants and their differential expression. FASEB J. 2001, 15, 2754–2756. [Google Scholar] [CrossRef] [PubMed]
- Zmijewski, M.A.; Slominski, A.T. CRF1 receptor splicing in epidermal keratinocytes: Potential biological role and environmental regulations. J. Cell Physiol. 2009, 218, 593–602. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Slominski, A.; Zbytek, B.; Zmijewski, M.; Slominski, R.M.; Kauser, S.; Wortsman, J.; Tobin, D.J. Corticotropin releasing hormone and the skin. Front. Biosci. 2006, 11, 2230–2248. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Slominski, A.T.; Zmijewski, M.A.; Skobowiat, C.; Zbytek, B.; Slominski, R.M.; Steketee, J.D. Sensing the environment: Regulation of local and global homeostasis by the skin’s neuroendocrine system. Adv. Anat. Embryol. Cell Biol. 2012, 212, 1–6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jozic, I.; Stojadinovic, O.; Kirsner, R.S.; Tomic-Canic, M. Stressing the steroids in skin: Paradox or fine-tuning? J. Investig. Dermatol. 2014, 134, 2869–2872. [Google Scholar] [CrossRef] [PubMed]
- Theoharides, T.C. Neuroendocrinology of mast cells: Challenges and controversies. Exp. Dermatol. 2017, 26, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, M.K.; Kaplan, N.; Tsoi, L.C.; Xing, X.; Liang, Y.; Swindell, W.R.; Hoover, P.; Aravind, M.; Baida, G.; Clark, M.; et al. Endogenous Glucocorticoid Deficiency in Psoriasis Promotes Inflammation and Abnormal Differentiation. J. Investig. Dermatol. 2017, 137, 1474–1483, Erratum in J. Investig. Dermatol. 2017, 137, 2665. https://doi.org/10.1016/j.jid.2017.11.001. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, J.E.; Cho, B.K.; Cho, D.H.; Park, H.J. Expression of hypothalamic-pituitary-adrenal axis in common skin diseases: Evidence of its association with stress-related disease activity. Acta Derm. Venereol. 2013, 93, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A. On the role of the corticotropin-releasing hormone signalling system in the aetiology of inflammatory skin disorders. Br. J. Dermatol. 2009, 160, 229–232. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Slominski, A.T.; Kim, T.K.; Janjetovic, Z.; Slominski, R.M.; Li, W.; Jetten, A.M.; Indra, A.K.; Mason, R.S.; Tuckey, R.C. Biological Effects of CYP11A1-Derived Vitamin D and Lumisterol Metabolites in the Skin. J. Investig. Dermatol. 2024, 144, 2145–2161. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matwiejuk, M.; Kulczyńska-Przybik, A.; Myśliwiec, H.; Chabowski, A.; Mroczko, B.; Flisiak, I. The Role of Selected Proteins in the Pathogenesis of Psoriasis. Int. J. Mol. Sci. 2025, 26, 6475. https://doi.org/10.3390/ijms26136475
Matwiejuk M, Kulczyńska-Przybik A, Myśliwiec H, Chabowski A, Mroczko B, Flisiak I. The Role of Selected Proteins in the Pathogenesis of Psoriasis. International Journal of Molecular Sciences. 2025; 26(13):6475. https://doi.org/10.3390/ijms26136475
Chicago/Turabian StyleMatwiejuk, Mateusz, Agnieszka Kulczyńska-Przybik, Hanna Myśliwiec, Adrian Chabowski, Barbara Mroczko, and Iwona Flisiak. 2025. "The Role of Selected Proteins in the Pathogenesis of Psoriasis" International Journal of Molecular Sciences 26, no. 13: 6475. https://doi.org/10.3390/ijms26136475
APA StyleMatwiejuk, M., Kulczyńska-Przybik, A., Myśliwiec, H., Chabowski, A., Mroczko, B., & Flisiak, I. (2025). The Role of Selected Proteins in the Pathogenesis of Psoriasis. International Journal of Molecular Sciences, 26(13), 6475. https://doi.org/10.3390/ijms26136475