Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (125)

Search Parameters:
Keywords = neoantigen vaccines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
47 pages, 1236 KiB  
Review
Cancer Vaccination and Immune-Based Approaches in Pancreatic Cancer
by Matthew Bloom, Ali Raza Shaikh, Zhengyang Sun, Babar Bashir and Adam E. Snook
Cancers 2025, 17(14), 2356; https://doi.org/10.3390/cancers17142356 - 15 Jul 2025
Viewed by 710
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with high recurrence rates even after curative resection and adjuvant chemotherapy. Although immunotherapeutic approaches, such as immune checkpoint blockade (ICB), have revolutionized the treatment of some solid tumor malignancies, this has not been the case [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with high recurrence rates even after curative resection and adjuvant chemotherapy. Although immunotherapeutic approaches, such as immune checkpoint blockade (ICB), have revolutionized the treatment of some solid tumor malignancies, this has not been the case for PDAC. Several characteristics of PDAC, including its distinctive desmoplastic tumor microenvironment (TME), intratumor heterogeneity, and poor antigenicity and immune cell infiltration, contribute to its dismal immunotherapeutic landscape. Cancer vaccines offer one approach to overcoming these barriers, particularly in the resectable or borderline resectable settings, where tumor burden is low and immunosuppression is less pronounced. Various vaccination platforms have been tested in the clinical setting, from off-the-shelf peptide-based vaccines (e.g., AMPLFIFY-201 study, where over 80% of participants exhibited T-cell and biomarker responses) to personalized neoantigen mRNA vaccine approaches (e.g., autogene cevumeran, with significant responders experiencing longer median recurrence-free survival (RFS)). The key considerations for enhancing the efficacy of vaccination include combinations with chemotherapy, radiotherapy, and/or ICBs, as well as selecting appropriate immunomodulators or adjuvants. Recent results suggest that with continued mechanistic advancement and novel therapeutic development, cancer vaccines may finally be poised for clinical success in PDAC. Full article
Show Figures

Figure 1

31 pages, 2698 KiB  
Review
Tumor Microenvironment in Melanoma—Characteristic and Clinical Implications
by Hubert Sikorski, Michał Aleksander Żmijewski and Anna Piotrowska
Int. J. Mol. Sci. 2025, 26(14), 6778; https://doi.org/10.3390/ijms26146778 - 15 Jul 2025
Viewed by 828
Abstract
Cutaneous melanoma is an aggressive cancer with an increasing incidence worldwide, highlighting the need for research into its pathogenesis. The tumor microenvironment (TME) plays a critical role in melanoma progression and consists of cellular components and an extracellular matrix (ECM) rich in cytokines [...] Read more.
Cutaneous melanoma is an aggressive cancer with an increasing incidence worldwide, highlighting the need for research into its pathogenesis. The tumor microenvironment (TME) plays a critical role in melanoma progression and consists of cellular components and an extracellular matrix (ECM) rich in cytokines and signaling molecules. The most abundant stromal cells within the TME are cancer-associated fibroblasts (CAFs), which remodel the ECM and modulate immune responses. Among immune cells, tumor-associated macrophages (TAMs) predominate, and their polarization toward the M2 phenotype supports tumor progression. Tumor-infiltrating lymphocytes (TILs) have diverse functions, including cytotoxic T-cells, helper T-cells that modulate immune response, B-cells forming tertiary lymphoid structures (TLS), and regulatory T-cells with immunosuppressive properties. Dendritic cells (DCs) also play a complex role in the TME. A notable subpopulation are mature regulatory dendritic cells (mregDCs), which contribute to immune evasion. All of these TME components may drive tumorigenesis. Advancements in melanoma treatment—including immunotherapy and targeted therapies—have significantly improved outcomes in advanced-stage disease. In parallel, emerging approaches targeting the tumor microenvironment and gut microbiome, as well as personalized strategies such as neoantigen vaccines and cell-based therapies, are under active investigation and may further enhance therapeutic efficacy in the near future. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies for Melanoma)
Show Figures

Figure 1

15 pages, 452 KiB  
Systematic Review
The Efficacy of Neoantigen-Loaded Dendritic Cell Vaccine Immunotherapy in Non-Metastatic Gastric Cancer
by Menelaos Papakonstantinou, Paraskevi Chatzikomnitsa, Areti Danai Gkaitatzi, Athanasia Myriskou, Alexandros Giakoustidis, Dimitrios Giakoustidis and Vasileios N. Papadopoulos
Med. Sci. 2025, 13(3), 90; https://doi.org/10.3390/medsci13030090 - 11 Jul 2025
Viewed by 992
Abstract
Introduction: Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide. Even though surgery and chemotherapy are the mainstay of treatment, immunotherapy, and more specifically anti-tumor vaccination, has gained popularity over the past years due to the lower related toxicity and [...] Read more.
Introduction: Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide. Even though surgery and chemotherapy are the mainstay of treatment, immunotherapy, and more specifically anti-tumor vaccination, has gained popularity over the past years due to the lower related toxicity and fewer long-term side effects. Dendritic cell (DC) vaccines have been shown to induce tumor specific cytotoxic T-cell (CTL) responses both in vitro and in vivo; however, due to the nature of the disease, resistance to immunotherapy is often developed. Various modifications, such as the implementation of viral vectors, tumor RNA, or even tumor-specific peptides (neoantigens), have been studied as a means to avoid resistance and enhance the effectiveness of the vaccines. In this review, we aim to assess the effects of neoantigen-loaded DC vaccines (naDCVs) on the immune response against gastric cancer cells. Materials and methods: A thorough literature search was conducted on PubMed and clinicaltrials.gov for studies assessing the efficacy of naDCVs against gastric cancer both in vivo and in vitro. The studies were assessed for eligibility by two independent reviewers based on predetermined inclusion and exclusion criteria. The search was completed following the PRISMA guidelines. Results: Eleven studies were included in our systematic review. In five of the studies, the effects of the naDCVs were tested in vitro; in two and in four they were examined both in vitro and in vivo. The in vitro studies showed that the naDCVs resulted in a more robust immune response against the cancer cells in the study groups compared to the control groups. The in vivo studies conducted on mice showed that tumor volume was reduced in the groups treated with the naDCV compared to the untreated groups. What is more, the cytotoxic effect of CTLs against tumor cells was also increased in the vaccine groups. One of the studies was conducted on humans as a phase I study. The results show increased CTL proliferation and cytokine production in the vaccinated group compared to the control, but no difference regarding the tumor size was observed. Conclusions: Neoantigen-loaded DC vaccines can stimulate a strong immune response against specific gastric cancer cell peptides and enhance tumor cell lysis, therefore hindering or even reversing disease progression, offering great potential for the treatment of patients with gastric cancer. Full article
(This article belongs to the Special Issue Feature Papers in Section Cancer and Cancer-Related Diseases)
Show Figures

Figure 1

15 pages, 4481 KiB  
Article
Nodal Expansion, Tumor Infiltration and Exhaustion of Neoepitope-Specific Th Cells After Prophylactic Peptide Vaccination and Anti-CTLA4 Therapy in Mouse Melanoma B16
by Alexandra V. Shabalkina, Anna V. Izosimova, Ekaterina O. Ryzhichenko, Elizaveta V. Shurganova, Daria S. Myalik, Sofia V. Maryanchik, Valeria K. Ruppel, Dmitriy I. Knyazev, Nadezhda R. Khilal, Ekaterina V. Barsova, Irina A. Shagina and George V. Sharonov
Int. J. Mol. Sci. 2025, 26(13), 6453; https://doi.org/10.3390/ijms26136453 - 4 Jul 2025
Cited by 1 | Viewed by 364
Abstract
Peptide vaccines possess several advantages over mRNA vaccines but are generally less effective at inducing antitumor immunity. The bottlenecks limiting peptide vaccine efficacy could be elucidated by tracking and comparing vaccine-induced T-lymphocytes in successful and unsuccessful cases. Here we have applied our recent [...] Read more.
Peptide vaccines possess several advantages over mRNA vaccines but are generally less effective at inducing antitumor immunity. The bottlenecks limiting peptide vaccine efficacy could be elucidated by tracking and comparing vaccine-induced T-lymphocytes in successful and unsuccessful cases. Here we have applied our recent database of neoantigen-specific T cell receptors (TCRs) to profile tumor-specific T cells following vaccination with a neoantigen peptide vaccine and to correlate this with the response. Mice were vaccinated prophylactically with p30 peptide encoding B16 melanoma neoantigen (K739N mutation in Kif18b gene). The B16F0 melanoma in the vaccinated mice was additionally treated by a CTLA-4 checkpoint blockade. T cells from the tumors, tumor-draining lymph nodes (tdLNs) and vaccine depots were isolated, phenotyped, sorted by subsets and sequenced for TCR repertoires. The vaccine induced the accumulation of tumor-specific CD4+ Th cells in the tdLNs, while in the tumors these cells were present and their frequencies were not changed by the vaccine. These cells also accumulated at the vaccine depots, where they were phenotypically skewed by the vaccine components; however, these effects were minor due to approximately 50-fold lower cell quantities compared to the tdLNs. Only some of the p30-specific Th cells showed tumoricidal activity, as revealed by the reverse correlation of their frequencies in the tdLNs with the tumor size. The CTLA-4 blockade did not affect the tumor growth or the frequencies of tumor-specific cells but did stimulate Th cell motility. Thus, we have shown that tumor-specific Th clones accumulate and/or expand in the tdLNs, which correlates with tumor suppression but only for some of these clones. Tumor infiltration by these clones is not correlated with the growth rate. Full article
(This article belongs to the Special Issue New Insights in Tumor Immunity)
Show Figures

Figure 1

40 pages, 2128 KiB  
Review
Therapeutic Colorectal Cancer Vaccines: Emerging Modalities and Translational Opportunities
by Palaniyandi Muthukutty, Hyun Young Woo and So Young Yoo
Vaccines 2025, 13(7), 689; https://doi.org/10.3390/vaccines13070689 - 26 Jun 2025
Viewed by 930
Abstract
Therapeutic vaccines offer a targeted approach to enhancing anti-tumor immunity with minimal systemic toxicity. Despite advancements in surgery, chemotherapy, radiation, and immunotherapy, colorectal cancer (CRC) remains a major clinical challenge, particularly due to the limited efficacy of immune checkpoint inhibitors outside the MSI-H [...] Read more.
Therapeutic vaccines offer a targeted approach to enhancing anti-tumor immunity with minimal systemic toxicity. Despite advancements in surgery, chemotherapy, radiation, and immunotherapy, colorectal cancer (CRC) remains a major clinical challenge, particularly due to the limited efficacy of immune checkpoint inhibitors outside the MSI-H subgroup. In this comprehensive review summarizes the emerging vaccine modalities for CRC, including peptide, nucleic acid, cell-based, vector-driven, and nanotechnology platforms. We discuss the barriers posed by tumor immune evasion and heterogeneity, and highlight innovative strategies designed to improve vaccine efficacy. Finally, we explore recent clinical developments and translational opportunities that position therapeutic vaccines as a promising component of future CRC immunotherapy. Full article
(This article belongs to the Special Issue Cancer Vaccines: 4th Edition)
Show Figures

Figure 1

12 pages, 649 KiB  
Review
Melanoma Vaccines: Comparing Novel Adjuvant Treatments in High-Risk Patients
by Joseph C. Broderick, Alexandra M. Adams, Elizabeth L. Barbera, Spencer Van Decar, Guy T. Clifton and George E. Peoples
Vaccines 2025, 13(6), 656; https://doi.org/10.3390/vaccines13060656 - 19 Jun 2025
Viewed by 694
Abstract
Background: The emergence of checkpoint inhibitors (CPIs) has significantly improved survival outcomes in later-stage melanoma. However, the efficacy of these treatments remains limited, with around 50% of later-stage melanoma patients experiencing recurrence. As variable response rates to CPIs persist, the development of cancer [...] Read more.
Background: The emergence of checkpoint inhibitors (CPIs) has significantly improved survival outcomes in later-stage melanoma. However, the efficacy of these treatments remains limited, with around 50% of later-stage melanoma patients experiencing recurrence. As variable response rates to CPIs persist, the development of cancer vaccines has emerged as a potential strategy to augment antitumor immune responses. Results: This review compares two promising personalized therapeutic cancer vaccine trials in advanced melanoma: Elios Therapeutics’ Tumor Lysate (TL) vaccine and Moderna’s mRNA-4157 vaccine. The TL vaccine, which utilizes yeast cell wall particles (YCWPs) loaded with autologous tumor lysate, and the mRNA-4157 vaccine, which encodes up to 34 patient-specific neoantigens, both aim to stimulate robust tumor-specific immune responses. Both trials were phase 2b randomized studies, with Elios Therapeutics’ trial employing a double-blind, placebo-controlled design, while Moderna’s was open-label. Both trials had roughly equivalent sample sizes (n = 187 and n = 157, respectively) with similar demographics and disease characteristics. The TL trial reported improvements in disease-free survival (DFS) with a hazard ratio (HR) of 0.52 (p < 0.01) over 36 months, whereas the mRNA-4157 trial demonstrated improvements in recurrence-free survival (RFS) with an HR of 0.56 (p = 0.053) over 18 months. The TL vaccine exhibited lower rates of related grade 3 adverse events (<1%) compared to the mRNA vaccine (12%). Key differences between the two trials include the use of CPIs, with 100% of patients in the mRNA trial receiving pembrolizumab versus 37% of the patients in the TL trial receiving either an anti-PD-1 or anti-CTLA-4. The production processes also varied significantly, with the mRNA vaccine requiring individualized sequencing and a 9-week production time, while the TL vaccine utilized tumor lysate with a 1–3-day production time. Conclusions: While both vaccines demonstrated promising efficacy, future phase 3 trials are needed to further evaluate their potential as adjuvant therapies for melanoma. This review highlights the comparative strengths and limitations of these vaccine platforms, providing insight into the evolving landscape of adjuvant cancer vaccines. Full article
Show Figures

Figure 1

18 pages, 978 KiB  
Review
A Consolidated Review of Contemporary Targeted and Immunotherapeutic Options for Melanoma
by Parker J. Champion, Jacob R. Bluestein, Anthony E. Quinn, Scott D. Bell, Josiah H. Kiley, Mark R. Wakefield and Yujiang Fang
Biomedicines 2025, 13(6), 1388; https://doi.org/10.3390/biomedicines13061388 - 5 Jun 2025
Viewed by 801
Abstract
The incidence of melanoma is increasing globally, even in the wake of increased risk factor awareness and a growing body of advanced therapeutic options. It is apparent that the treatment of melanoma will remain a topic of worry in areas of the world [...] Read more.
The incidence of melanoma is increasing globally, even in the wake of increased risk factor awareness and a growing body of advanced therapeutic options. It is apparent that the treatment of melanoma will remain a topic of worry in areas of the world under high ultraviolet exposure and areas that harbor individuals with fair skin phenotypes. In the wake of such concern, the potential of immunotherapy and various targeted therapeutics to treat late-stage melanoma is increasing. In addition to the growing arsenal of PD-1 and PD-L1 immune checkpoint inhibitors, other targeted therapies are being developed and tested to treat melanoma. BRAF/MEK inhibitors target a key proliferative pathway in melanoma, offering clinical benefit but limited durability. Next-generation agents and triplet therapy with immunotherapy aim to improve outcomes. Androgen receptor signaling may also modulate responses to both targeted and immune-based treatments. Bispecific T cell engagers assist with guiding the body’s own T cells to tumors where they release toxins that kill the tumor cell. Personalized neoantigen vaccines target tumor-specific antigens by sequencing a patient’s cancerous cells to create tailored vaccines that elicit a strong and specific immune response. Tumor-infiltrating lymphocytes are autologous lymphocytes reinfused back into the host that are showing efficacy in the treatment of advanced melanoma. Together, these therapies are advancing the arsenal of chemotherapeutic options that can be used to inhibit the progression of melanoma. Full article
(This article belongs to the Special Issue Molecular Research and New Therapy in Melanoma)
Show Figures

Figure 1

11 pages, 561 KiB  
Review
Current Progress and Future Perspectives of RNA-Based Cancer Vaccines: A 2025 Update
by Matthias Magoola and Sarfaraz K. Niazi
Cancers 2025, 17(11), 1882; https://doi.org/10.3390/cancers17111882 - 4 Jun 2025
Viewed by 2930
Abstract
RNA-based cancer vaccines have emerged as transformative immunotherapeutic platforms, leveraging advances in mRNA technology and personalized medicine approaches. Recent clinical breakthroughs, particularly the success of mRNA-4157 combined with pembrolizumab in melanoma patients, have demonstrated significant improvements in efficacy, with a 44% reduction in [...] Read more.
RNA-based cancer vaccines have emerged as transformative immunotherapeutic platforms, leveraging advances in mRNA technology and personalized medicine approaches. Recent clinical breakthroughs, particularly the success of mRNA-4157 combined with pembrolizumab in melanoma patients, have demonstrated significant improvements in efficacy, with a 44% reduction in recurrence risk compared to checkpoint inhibitor monotherapy. Breakthrough results from pancreatic cancer vaccines and novel glioblastoma treatments using layered nanoparticle delivery systems mark 2024–2025 as a pivotal period for RNA cancer vaccine development. Current RNA vaccine platforms include conventional mRNA, self-amplifying RNA, trans-amplifying RNA, and emerging circular RNA technologies, with over 120 clinical trials currently underway across various malignancies. Critical advances in delivery optimization include next-generation lipid nanoparticles with tissue-specific targeting and novel nanoengineered systems achieving rapid immune system reprogramming. Manufacturing innovations focus on automated platforms, reducing production timelines from nine weeks to under four weeks for personalized vaccines, while costs remain challenging at over $ 100,000 per patient. Artificial intelligence integration is revolutionizing neoantigen selection through advanced algorithms and CRISPR-enhanced platforms, while regulatory frameworks are evolving with new FDA guidance for therapeutic cancer vaccines. Non-coding RNA applications, including microRNA and long non-coding RNA therapeutics, represent emerging frontiers with potential for enhanced immune modulation. With over 60 candidates in clinical development and the first commercial approvals anticipated by 2029, RNA cancer vaccines are positioned to become cornerstone therapeutics in personalized oncology, offering transformative hope for cancer patients worldwide. Full article
(This article belongs to the Special Issue Advances in Drug Delivery for Cancer Therapy)
Show Figures

Graphical abstract

28 pages, 1394 KiB  
Review
Synergistic Integration of HDAC Inhibitors and Individualized Neoantigen Therapy (INT): A Next-Generation Combinatorial Approach for Cancer Immunotherapy
by Rui Han, Huiling Zhou, Baoqing Peng, Shasha Yu, Jiajie Zhu and Jiaojiao Chen
Vaccines 2025, 13(6), 550; https://doi.org/10.3390/vaccines13060550 - 22 May 2025
Viewed by 1146
Abstract
Background: Cancer immunotherapy has advanced, yet therapeutic resistance and low response rates remain problematic. This study explores histone deacetylase inhibitors (HDACis) as adjuvants for cancer vaccines to enhance anti-tumor immunity and overcome these challenges. Methods: A comprehensive review of relevant literature was conducted. [...] Read more.
Background: Cancer immunotherapy has advanced, yet therapeutic resistance and low response rates remain problematic. This study explores histone deacetylase inhibitors (HDACis) as adjuvants for cancer vaccines to enhance anti-tumor immunity and overcome these challenges. Methods: A comprehensive review of relevant literature was conducted. Studies on the immunomodulatory mechanisms of HDACis, their effects on Individualized neoantigen therapy (INT), and clinical applications were analyzed. Results: HDACis enhance anti-tumor immunity through multiple mechanisms. They activate endogenous retroelements, expanding the “antigen repository”. HDACis also upregulate MHC class I and II molecules, enhance the antigen processing machinery, improve MHC—I complex stability, and remodel the tumor immune microenvironment. Early clinical trials of HDACis combined with peptide vaccines show promising safety and immunological responses. However, challenges exist, such as HDACi-mediated PD-L1 regulation, optimal sequencing strategies, and biomarker development. Conclusions: The combination of HDACis and cancer vaccines has significant potential in cancer immunotherapy. Despite challenges, it offers a new approach to overcome tumor heterogeneity and immune evasion, especially for patients with limited treatment options. Further research on toxicity management, triple-drug combinations, biomarker identification, and delivery systems is needed to fully realize its clinical benefits. Full article
(This article belongs to the Special Issue Advances in Cancer Immunotherapy and Vaccines Research: 2nd Edition)
Show Figures

Figure 1

21 pages, 991 KiB  
Review
Signature Gene Mutations in Colorectal Cancer: Potential Neoantigens for Cancer Vaccines
by Jaegoo Yoon, Haeun Moon, Yuna Jeon, Soohyun Choe and Hyunho Yoon
Int. J. Mol. Sci. 2025, 26(10), 4559; https://doi.org/10.3390/ijms26104559 - 9 May 2025
Viewed by 1338
Abstract
Colorectal cancer (CRC), the third most common cancer worldwide, is one of the deadliest cancers. CRC is known as a cold tumor, characterized by a low immune response that makes it difficult for immune cells to infiltrate and exhibits strong resistance to immunotherapy [...] Read more.
Colorectal cancer (CRC), the third most common cancer worldwide, is one of the deadliest cancers. CRC is known as a cold tumor, characterized by a low immune response that makes it difficult for immune cells to infiltrate and exhibits strong resistance to immunotherapy with checkpoint inhibition. This restricted response is largely attributed to signature gene mutations including mismatch repair (MMR) genes, KRAS, BRAF, APC, and TP53, which are also the main oncogenes in CRC. Mutated signature genes continuously upregulate abnormal signaling pathways, leading to excessive proliferation, cancer progression, and metastasis. Furthermore, it reorganizes the tumor microenvironment (TME) by recruiting immunosuppressive cells. However, the mutation can produce neoantigens that can provoke an immune response, making it a potential target for immunotherapy. In particular, cancer vaccines that leverage the strong neoantigenic properties of these mutations are considered promising for overcoming immune resistance and eliciting anti-tumor responses. In this review, we will describe signature gene mutations in CRC and focus on cancer vaccines targeting these mutations as potential therapies for CRC. Full article
Show Figures

Graphical abstract

20 pages, 963 KiB  
Review
Targeting the KRAS Oncogene for Patients with Metastatic Colorectal Cancer
by Ruoyu Miao, James Yu and Richard D. Kim
Cancers 2025, 17(9), 1512; https://doi.org/10.3390/cancers17091512 - 30 Apr 2025
Cited by 2 | Viewed by 2206
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, with KRAS mutations occurring in approximately 40% of cases. These mutations drive tumorigenesis through the constitutive activation of key signaling pathways, such as RAS-RAF-MEK-ERK (MAPK) and PI3K-AKT-mTOR, contributing to therapeutic resistance and [...] Read more.
Colorectal cancer (CRC) is one of the most common cancers worldwide, with KRAS mutations occurring in approximately 40% of cases. These mutations drive tumorigenesis through the constitutive activation of key signaling pathways, such as RAS-RAF-MEK-ERK (MAPK) and PI3K-AKT-mTOR, contributing to therapeutic resistance and poor prognosis. Advances in molecular biology have led to significant breakthroughs, including the development of KRAS G12C inhibitors, such as sotorasib and adagrasib, which have shown promise in clinical trials. However, their efficacy is limited to a small subset of KRAS-mutant CRC, and resistance mechanisms often emerge through compensatory pathway activation. Combination strategies, including KRAS inhibitors with anti-EGFR agents, have been explored in trials like KRYSTAL-1 and CodeBreaK 300. Emerging research highlights the role of the tumor microenvironment in immune evasion and therapeutic resistance, offering opportunities for novel immunotherapy approaches, including KRAS neoantigen vaccines and adoptive T-cell therapy. Despite these advancements, challenges such as intratumoral heterogeneity, limited immune infiltration, and non-G12C KRAS mutations remain significant hurdles. This review provides a comprehensive overview of the molecular mechanisms, current advances and challenges, and future prospects in the management of KRAS-mutant CRC. Full article
Show Figures

Figure 1

37 pages, 908 KiB  
Review
Considerations for mRNA Product Development, Regulation and Deployment Across the Lifecycle
by John H Skerritt
Vaccines 2025, 13(5), 473; https://doi.org/10.3390/vaccines13050473 - 28 Apr 2025
Cited by 1 | Viewed by 3414
Abstract
With the successful deployment of several mRNA vaccines against SARS-CoV-2, an mRNA vaccine against RSV (respiratory syncytial virus) and a large pipeline of mRNA products against other infectious diseases, cancers and rare diseases, it is important to examine the whole product lifecycle. mRNA [...] Read more.
With the successful deployment of several mRNA vaccines against SARS-CoV-2, an mRNA vaccine against RSV (respiratory syncytial virus) and a large pipeline of mRNA products against other infectious diseases, cancers and rare diseases, it is important to examine the whole product lifecycle. mRNA technology enables product design, testing and manufacturing systems to be rapidly developed, but these advantages can be lost if other factors that determine public access are not closely considered. This review analyzes key aspects of the mRNA product lifecycle including candidate design, manufacturing, quality systems and product safety and storage. Regulatory thinking is well advanced in some countries but not others, but more thought on the regulation of mRNA vaccines outside of a pandemic situation as well as mRNA therapeutics including individual neoantigen therapies and rare disease treatments is needed. Consumer acceptance—the “social license to operate” around mRNA products—is critical for their uptake, particularly outside of a pandemic. Full article
(This article belongs to the Section Nucleic Acid (DNA and mRNA) Vaccines)
Show Figures

Figure 1

19 pages, 324 KiB  
Review
Clinical Applications of the Molecular Landscape of Melanoma: Integration of Research into Diagnostic and Therapeutic Strategies
by Imre Lőrinc Szabó, Gabriella Emri, Andrea Ladányi and József Tímár
Cancers 2025, 17(9), 1422; https://doi.org/10.3390/cancers17091422 - 24 Apr 2025
Viewed by 869
Abstract
The molecular landscape of cutaneous melanoma is complex and heterogeneous, and a deeper understanding of the genesis and progression of the tumor driven by genetic alterations is essential for the development of effective diagnostic and therapeutic strategies. Molecular diagnostics and the use of [...] Read more.
The molecular landscape of cutaneous melanoma is complex and heterogeneous, and a deeper understanding of the genesis and progression of the tumor driven by genetic alterations is essential for the development of effective diagnostic and therapeutic strategies. Molecular diagnostics and the use of biomarkers are increasingly playing a role in treatment decisions. However, further research is urgently needed to elucidate the relationships between complex genetic alterations and the effectiveness of target therapies (although BRAF mutation is still the only targeted genetic alteration). Further research is required to exploit other targetable genetic alterations such as NRAS, KIT or rare mutations. Treatment guidelines for cutaneous melanoma are continually evolving based on data from recent and ongoing clinical trials. These advancements reflect changes mainly in the optimal timing of systemic therapy and the choice of combination therapies increasingly tailored to molecular profiles of individual tumors. Mono- or combination immunotherapies demonstrated unprecedented success of melanoma treatment; still, there is room for improvement: though several factors of primary or acquired resistance are known, they are not part of patient management as biomarkers. The novel developments of cancer vaccines to treat melanoma (melanoma-marker-based or personalized neoantigen-based) are encouraging; introduction of them into clinical practice without proper biomarkers would be the same mistake made in the case of first-generation immunotherapies. Full article
(This article belongs to the Special Issue Metastatic Progression of Human Melanoma: 2nd Edition)
28 pages, 1428 KiB  
Review
Immune-Based Strategies for Pancreatic Cancer in the Adjuvant Setting
by Kai-Li Liang and Nilofer S. Azad
Cancers 2025, 17(7), 1246; https://doi.org/10.3390/cancers17071246 - 7 Apr 2025
Viewed by 1766
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related mortality in the United States, with poor overall survival across all stages. Less than 20% of patients are eligible for curative surgical resection at diagnosis, and despite adjuvant chemotherapy, most will experience [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related mortality in the United States, with poor overall survival across all stages. Less than 20% of patients are eligible for curative surgical resection at diagnosis, and despite adjuvant chemotherapy, most will experience disease recurrence within two years. The incorporation of immune-based strategies in the adjuvant setting remains an area of intense investigation with unrealized promise. It offers the potential of providing durable disease control for micro-metastatic disease following curative intent surgery and enabling personalized treatments based on mutational neoantigen profiles derived from resected specimens. However, most of these attempts have failed to demonstrate significant clinical success, likely due to the immunosuppressive tumor microenvironment (TME) and individual genetic heterogeneity. Despite these challenges, immune-based strategies, such as therapeutic vaccines targeted towards neoantigens, have demonstrated promise via immune activation and induction of T-cell tumor infiltration. In this review, we will highlight the foundational lessons learned from previous clinical trials of adjuvant immunotherapy, discussing the knowledge gained from analyses of trials with disappointing results. In addition, we will discuss how these data have been incorporated to design new agents and study concepts that are proving to be exciting in more recent trials, such as shared antigen vaccines and combination therapy with immune-checkpoint inhibitors and chemotherapy. This review will evaluate novel approaches in ongoing and future clinical studies and provide insight into how these immune-based strategies might evolve to address the unique challenges for treatment of PDAC in the adjuvant setting. Full article
(This article belongs to the Special Issue Adjuvant Therapy for Pancreatic Cancer)
Show Figures

Figure 1

15 pages, 740 KiB  
Review
Advances in Personalized Cancer Vaccine Development: AI Applications from Neoantigen Discovery to mRNA Formulation
by Hyunseung Kong
BioChem 2025, 5(2), 5; https://doi.org/10.3390/biochem5020005 - 31 Mar 2025
Cited by 1 | Viewed by 3028
Abstract
Personalized cancer vaccines are a promising immunotherapy targeting patient-specific tumor neoantigens, yet their design and efficacy remain challenging. Recent advances in artificial intelligence (AI) provide powerful tools to enhance multiple stages of cancer vaccine development. This review systematically evaluates AI applications in personalized [...] Read more.
Personalized cancer vaccines are a promising immunotherapy targeting patient-specific tumor neoantigens, yet their design and efficacy remain challenging. Recent advances in artificial intelligence (AI) provide powerful tools to enhance multiple stages of cancer vaccine development. This review systematically evaluates AI applications in personalized cancer vaccine research over the past five years, focusing on four key areas: neoantigen discovery, codon optimization, untranslated region (UTR) sequence generation, and mRNA vaccine design. We examine AI model architectures (e.g., neural networks), datasets (from omics to high-throughput assays), and outcomes in improving vaccine development. In neoantigen discovery, machine learning and deep learning models integrate peptide–MHC binding, antigen processing, and T cell receptor recognition to enhance immunogenic neoantigen identification. For sequence optimization, deep learning models for codon and UTR design improve protein expression and mRNA stability beyond traditional methods. AI-driven strategies also optimize mRNA vaccine constructs and formulations, including secondary structures and nanoparticle delivery systems. We discuss how these AI approaches converge to streamline effective personalized vaccine development, while addressing challenges such as data scarcity, tumor heterogeneity, and model interpretability. By leveraging AI innovations, the future of personalized cancer immunotherapy may see unprecedented improvements in both design efficiency and clinical effectiveness. Full article
(This article belongs to the Special Issue Feature Papers in BioChem, 2nd Edition)
Show Figures

Figure 1

Back to TopTop