Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,083)

Search Parameters:
Keywords = neighborhood system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5304 KiB  
Article
Multi-Criteria Optimization and Techno-Economic Assessment of a Wind–Solar–Hydrogen Hybrid System for a Plateau Tourist City Using HOMER and Shannon Entropy-EDAS Models
by Jingyu Shi, Ran Xu, Dongfang Li, Tao Zhu, Nanyu Fan, Zhanghua Hong, Guohua Wang, Yong Han and Xing Zhu
Energies 2025, 18(15), 4183; https://doi.org/10.3390/en18154183 - 7 Aug 2025
Abstract
Hydrogen offers an effective pathway for the large-scale storage of renewable energy. For a tourist city located in a plateau region rich in renewable energy, hydrogen shows great potential for reducing carbon emissions and utilizing uncertain renewable energy. Herein, the wind–solar–hydrogen stand-alone and [...] Read more.
Hydrogen offers an effective pathway for the large-scale storage of renewable energy. For a tourist city located in a plateau region rich in renewable energy, hydrogen shows great potential for reducing carbon emissions and utilizing uncertain renewable energy. Herein, the wind–solar–hydrogen stand-alone and grid-connected systems in the plateau tourist city of Lijiang City in Yunnan Province are modeled and techno-economically evaluated by using the HOMER Pro software (version 3.14.2) with the multi-criteria decision analysis models. The system is composed of 5588 kW solar photovoltaic panels, an 800 kW wind turbine, a 1600 kW electrolyzer, a 421 kWh battery, and a 50 kW fuel cell. In addition to meeting the power requirements for system operation, the system has the capacity to provide daily electricity for 200 households in a neighborhood and supply 240 kg of hydrogen per day to local hydrogen-fueled buses. The stand-alone system can produce 10.15 × 106 kWh of electricity and 93.44 t of hydrogen per year, with an NPC of USD 8.15 million, an LCOE of USD 0.43/kWh, and an LCOH of USD 5.26/kg. The grid-connected system can generate 10.10 × 106 kWh of electricity and 103.01 ton of hydrogen annually. Its NPC is USD 7.34 million, its LCOE is USD 0.11/kWh, and its LCOH is USD 3.42/kg. This study provides a new solution for optimizing the configuration of hybrid renewable energy systems, which will develop the hydrogen economy and create low-carbon-emission energy systems. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

17 pages, 1455 KiB  
Article
Enhanced Graph Autoencoder for Graph Anomaly Detection Using Subgraph Information
by Chi Zhang and Jin-Woo Jung
Appl. Sci. 2025, 15(15), 8691; https://doi.org/10.3390/app15158691 - 6 Aug 2025
Abstract
Graph anomaly detection aims at identifying rare, unusual entities in attributed networks with respect to their patterns or structures that deviate significantly from the majority within a graph. Over the years, extensive efforts in this field have been dedicated to the powerful capability [...] Read more.
Graph anomaly detection aims at identifying rare, unusual entities in attributed networks with respect to their patterns or structures that deviate significantly from the majority within a graph. Over the years, extensive efforts in this field have been dedicated to the powerful capability of attributed networks to model real-world systems. Given the scarcity of labeled anomalies, current research primarily emphasizes model design via unsupervised learning. Graph autoencoders have been widely utilized for such purposes, leveraging the outstanding capabilities of Graph Neural Networks to model graph structured data. However, most existing graph autoencoder-based anomaly detectors do not exploit the nodes’ local subgraph information, limiting their ability to comprehensively understand the network for better representation learning. Moreover, these methods place greater emphasis on the attribute reconstruction process while neglecting the structure reconstruction aspect. This paper proposes an enhanced graph autoencoder framework for graph anomaly detection tasks that incorporates a subgraph extraction and aggregation preprocessing stage to utilize the nodes’ local topological information for enhanced embedding generation and to induce an additional node–subgraph view through model learning. A graph structure learning-based decoder is introduced as the structure decoder for better relationship learning. Finally, during the anomaly scoring stage, a node neighborhood selection technique is applied to enhance the detection performance. The effectiveness of the proposed framework is demonstrated through comprehensive experiments conducted on six commonly used real-world datasets. Full article
(This article belongs to the Special Issue Intelligent Computing for Sustainable Smart Cities)
Show Figures

Figure 1

34 pages, 7266 KiB  
Article
Relationship Between Aggregation Index and Change in the Values of Some Landscape Metrics as a Function of Cell Neighborhood Choice
by Paolo Zatelli, Clara Tattoni and Marco Ciolli
ISPRS Int. J. Geo-Inf. 2025, 14(8), 304; https://doi.org/10.3390/ijgi14080304 - 5 Aug 2025
Viewed by 30
Abstract
Landscape metrics are one of the main tools for studying changes in the landscape and the ecological structure of the territory. However, the calculation of some metrics yields significantly different values depending on the configuration of the “Cell neighborhood” (CN) used. This makes [...] Read more.
Landscape metrics are one of the main tools for studying changes in the landscape and the ecological structure of the territory. However, the calculation of some metrics yields significantly different values depending on the configuration of the “Cell neighborhood” (CN) used. This makes the comparison of different analysis results often impossible. In fact, although the metrics are defined in the same way for all software, the choice of a CN with four cells, which includes only the elements on the same row or column, or eight cells, which also includes the cells on the diagonal, changes their value. QGIS’ LecoS plugin uses the value eight while GRASS’ r.li module uses the value four and these values are not modifiable by users. A previous study has shown how the value of the CN used for the calculation of landscape metrics is rarely explicit in scientific publications and its value cannot always be deduced from the indication of the software used. The difference in value for the same metric depends on the CN configuration and on the compactness of the patches, which can be expressed through the Aggregation Index (AI), of the investigated landscape. The scope of this paper is to explore the possibility of deriving an analytical relationship between the Aggregation Index and the variation in the values of some landscape metrics as the CN varies. The numerical experiments carried out in this research demonstrate that it is possible to estimate the differences in landscape metrics evaluated with a four and eight CN configuration using polynomials only for few metrics and only for some intervals of AI values. This analysis combines different Free and Open Source Software (FOSS) systems: GRASS GIS for the creation of test maps and R landscapemetrics package for the calculation of landscape metrics and the successive statistical analysis. Full article
Show Figures

Figure 1

12 pages, 246 KiB  
Article
Tobacco-Free Schools in Practice: Policy Presence and Enforcement in Baltimore Schools
by Chidubem Egboluche, Rifath Ara Alam Barsha, Shervin Assari, Michelle Mercure, Marc Laveau, Oluwatosin Olateju and Payam Sheikhattari
Adv. Respir. Med. 2025, 93(4), 28; https://doi.org/10.3390/arm93040028 - 5 Aug 2025
Viewed by 16
Abstract
Background: School-based tobacco control policies are critical for preventing youth tobacco use. While many districts adopt formal policies to create smoke- and vape-free environments, the degree to which these policies are enforced at the school level may vary, influencing their effectiveness. Little is [...] Read more.
Background: School-based tobacco control policies are critical for preventing youth tobacco use. While many districts adopt formal policies to create smoke- and vape-free environments, the degree to which these policies are enforced at the school level may vary, influencing their effectiveness. Little is known about how consistently such policies are implemented across schools within urban school districts. Objectives: This study aimed to examine the existence and enforcement of school-level tobacco control policies in an urban public school system, using Baltimore City schools as a case example. Methods: We conducted a survey of school personnel from 20 high schools in Baltimore City in 2024. The survey instrument assessed the presence and enforcement of policies related to tobacco use prevention, communication, signage, disciplinary actions, and institutional support. Descriptive statistics (frequencies and percentages) were used to summarize responses. Spearman correlations were also used for bivariate correlations. Additional school-level and neighborhood-level contextual data were collected from the internet (neighborhood socioeconomic status and school performance). Results: While many policies existed across the 20 participating schools, their enforcement was widely inconsistent. Most schools reported the existence of policies prohibiting tobacco use in school buildings (60%) and vehicles (55%). However, few schools had visible tobacco-free signage (35%) or offered cessation programs (15%). Communication of policies to students (70%) and staff (65%) was the most commonly enforced aspect of tobacco control policies. Conclusions: Findings suggest that while tobacco control policies may be adopted across urban school systems, their enforcement at the school level remains uneven. Greater attention may be needed to support policy implementation and to reduce variability in school-level practices. Baltimore City serves as a useful case study to understand these challenges and identify opportunities for strengthening school-based tobacco prevention efforts. Full article
25 pages, 19905 KiB  
Article
Assessing Urban Park Accessibility via Population Projections: Planning for Green Equity in Shanghai
by Leiting Cen and Yang Xiao
Land 2025, 14(8), 1580; https://doi.org/10.3390/land14081580 - 2 Aug 2025
Viewed by 238
Abstract
Rapid urbanization and demographic shifts present significant challenges to spatial justice in green space provision. Traditional static assessments have become increasingly inadequate for guiding park planning, which now requires a dynamic, future-oriented analytical approach. To address this gap, this study incorporates population dynamics [...] Read more.
Rapid urbanization and demographic shifts present significant challenges to spatial justice in green space provision. Traditional static assessments have become increasingly inadequate for guiding park planning, which now requires a dynamic, future-oriented analytical approach. To address this gap, this study incorporates population dynamics into urban park planning by developing a dynamic evaluation framework for park accessibility. Building on the Gaussian-based two-step floating catchment area (Ga2SFCA) method, we propose the human-population-projection-Ga2SFCA (HPP-Ga2SFCA) model, which integrates population forecasts to assess park service efficiency under future demographic pressures. Using neighborhood-committee-level census data from 2000 to 2020 and detailed park spatial data, we identified five types of population change and forecast demographic distributions for both short- and long-term scenarios. Our findings indicate population decline in the urban core and outer suburbs, with growth concentrated in the transitional inner-suburban zones. Long-term projections suggest that 66% of communities will experience population growth, whereas short-term forecasts indicate a decline in 52%. Static models overestimate park accessibility by approximately 40%. In contrast, our dynamic model reveals that accessibility is overestimated in 71% and underestimated in 7% of the city, highlighting a potential mismatch between future population demand and current park supply. This study offers a forward-looking planning framework that enhances the responsiveness of park systems to demographic change and supports the development of more equitable, adaptive green space strategies. Full article
(This article belongs to the Special Issue Spatial Justice in Urban Planning (Second Edition))
Show Figures

Figure 1

26 pages, 2473 KiB  
Article
Predefined-Time Adaptive Neural Control with Event-Triggering for Robust Trajectory Tracking of Underactuated Marine Vessels
by Hui An, Zhanyang Yu, Jianhua Zhang, Xinxin Wang and Cheng Siong Chin
Processes 2025, 13(8), 2443; https://doi.org/10.3390/pr13082443 - 1 Aug 2025
Viewed by 191
Abstract
This paper addresses the trajectory tracking control problem of underactuated ships in ocean engineering, which faces the dual challenges of tracking error time–performance regulation and robustness design due to the system’s underactuated characteristics, model uncertainties, and external disturbances. Aiming to address the issues [...] Read more.
This paper addresses the trajectory tracking control problem of underactuated ships in ocean engineering, which faces the dual challenges of tracking error time–performance regulation and robustness design due to the system’s underactuated characteristics, model uncertainties, and external disturbances. Aiming to address the issues of traditional finite-time control (convergence time dependent on initial states) and fixed-time control (control chattering and parameter conservativeness), this paper proposes a predefined-time adaptive control framework that integrates an event-triggered mechanism and neural networks. By constructing a Lyapunov function with time-varying weights and designing non-periodic dynamically updated dual triggering conditions, the convergence process of tracking errors is strictly constrained within a user-prespecified time window without relying on initial states or introducing non-smooth terms. An adaptive approximator based on radial basis function neural networks (RBF-NNs) is employed to compensate for unknown nonlinear dynamics and external disturbances in real-time. Combined with the event-triggered mechanism, it dynamically adjusts the update instances of control inputs, ensuring prespecified tracking accuracy while significantly reducing computational resource consumption. Theoretical analysis shows that all signals in the closed-loop system are uniformly ultimately bounded, tracking errors converge to a neighborhood of the origin within the predefined-time, and the update frequency of control inputs exhibits a linear relationship with the predefined-time, avoiding Zeno behavior. Simulation results verify the effectiveness of the proposed method in complex marine environments. Compared with traditional control strategies, it achieves more accurate trajectory tracking, faster response, and a substantial reduction in control input update frequency, providing an efficient solution for the engineering implementation of embedded control systems in unmanned ships. Full article
(This article belongs to the Special Issue Design and Analysis of Adaptive Identification and Control)
Show Figures

Figure 1

26 pages, 2036 KiB  
Article
Mission Planning for UAV Swarm with Aircraft Carrier Delivery: A Decoupled Framework
by Hongyun Zhang, Bin Li, Lei Wang, Yujie Cheng, Yu Ding, Chen Lu, Haijun Peng and Xinwei Wang
Aerospace 2025, 12(8), 691; https://doi.org/10.3390/aerospace12080691 - 31 Jul 2025
Viewed by 118
Abstract
Due to the limited endurance of UAVs, especially in scenarios involving large areas and dense target nodes, it is challenging for multiple UAVs to complete diverse tasks while ensuring timely execution. Toward this, we propose a cross-platform system consisting of an aircraft carrier [...] Read more.
Due to the limited endurance of UAVs, especially in scenarios involving large areas and dense target nodes, it is challenging for multiple UAVs to complete diverse tasks while ensuring timely execution. Toward this, we propose a cross-platform system consisting of an aircraft carrier (AC) and multiple UAVs, which makes unified task planning for included heterogeneous platforms to maximize the efficiency of the entire combat system. The carrier-based UAV swarm mission planning problem is formulated to minimize completion time and resource utilization, taking into account large-scale targets, multi-type tasks, and multi-obstacle environments. Since the problem is complex, we design a decoupled framework to simplify the solution by decomposing it into two levels: upper-level AC path planning and bottom-level multi-UAV cooperative mission planning. At the upper level, a drop point determination method and a discrete genetic algorithm incorporating improved A* (DGAIIA) are proposed to plan the AC’s path in the presence of no-fly zones and radar threats. At the bottom level, an improved differential evolution algorithm with a market mechanism (IDEMM) is proposed to minimize task completion time and maximize UAV utilization. Specifically, a dual-switching search strategy and a neighborhood-first buying-and-selling mechanism are developed to improve the search efficiency of the IDEMM. Simulation results validate the effectiveness of both the DGAIIA and IDEMM. An animation of the simulation results is available at simulation section. Full article
Show Figures

Figure 1

24 pages, 4199 KiB  
Article
Hazelnut Kernel Percentage Calculation System with DCIoU and Neighborhood Relationship Algorithm
by Sultan Murat Yılmaz, Serap Çakar Kaman and Erkan Güler
Processes 2025, 13(8), 2414; https://doi.org/10.3390/pr13082414 - 30 Jul 2025
Viewed by 383
Abstract
Hazelnut (Corylus avellana L.) is a significant global agricultural product due to its high economic and nutritional worth. The traditional methods used to measure the hazelnut kernel percentage for quality assessment are often time-consuming, expensive, and prone to human errors. Inaccurate measurements [...] Read more.
Hazelnut (Corylus avellana L.) is a significant global agricultural product due to its high economic and nutritional worth. The traditional methods used to measure the hazelnut kernel percentage for quality assessment are often time-consuming, expensive, and prone to human errors. Inaccurate measurements can adversely impact the market value, shelf life, and industrial applications of hazelnuts. This research introduces a novel system for calculating hazelnut kernel percentage utilizing a non-destructive X-ray imaging technique along with deep learning methods to assess hazelnut quality more efficiently and reliably. An image dataset of hazelnut kernels has been developed using X-ray technology, and defective areas are identified employing YOLOv7 architecture. Additionally, a novel bounding box regression technique called DCIoU and an algorithm for Neighborhood Relationship have been introduced to enhance object detection capabilities and to improve the selection of the target box with greater precision, respectively. The performance of these proposed methods has been evaluated using both the created hazelnut dataset and the COCO-128 dataset. The results indicate that the system can serve as a valuable tool for measuring hazelnut kernel percentages by accurately identifying defects in hazelnuts. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

22 pages, 14160 KiB  
Article
Commute Networks as a Signature of Urban Socioeconomic Performance: Evaluating Mobility Structures with Deep Learning Models
by Devashish Khulbe, Alexander Belyi and Stanislav Sobolevsky
Smart Cities 2025, 8(4), 125; https://doi.org/10.3390/smartcities8040125 - 29 Jul 2025
Viewed by 275
Abstract
Urban socioeconomic modeling has predominantly concentrated on extensive location and neighborhood-based features, relying on the localized population footprint. However, networks in urban systems are common, and many urban modeling methods do not account for network-based effects. Additionally, network-based research has explored a multitude [...] Read more.
Urban socioeconomic modeling has predominantly concentrated on extensive location and neighborhood-based features, relying on the localized population footprint. However, networks in urban systems are common, and many urban modeling methods do not account for network-based effects. Additionally, network-based research has explored a multitude of data from urban landscapes. However, achieving a comprehensive understanding of urban mobility proves challenging without exhaustive datasets. In this study, we propose using commute information records from the census as a reliable and comprehensive source to construct mobility networks across cities. Leveraging deep learning architectures, we employ these commute networks across U.S. metro areas for socioeconomic modeling. We show that mobility network structures provide significant predictive performance without considering any node features. Consequently, we use mobility networks to present a supervised learning framework to model a city’s socioeconomic indicator directly, combining Graph Neural Network and Vanilla Neural Network models to learn all parameters in a single learning pipeline. In experiments in 12 major U.S. cities, the proposed model achieves considerable explanatory performance and is able to outperform previous conventional machine learning models based on extensive regional-level features. Providing researchers with methods to incorporate network effects in urban modeling, this work also informs stakeholders of wider network-based effects in urban policymaking and planning. Full article
Show Figures

Figure 1

29 pages, 16630 KiB  
Article
Impact of Radar Data Assimilation on the Simulation of Typhoon Morakot
by Lingkun Ran and Cangrui Wu
Atmosphere 2025, 16(8), 910; https://doi.org/10.3390/atmos16080910 - 28 Jul 2025
Viewed by 229
Abstract
The high spatial resolution of radar data enables the detailed resolution of typhoon vortices and their embedded structures; the assimilation of radar data in the initialization of numerical weather prediction exerts an important influence on the forecasting of typhoon track, intensity, and structures [...] Read more.
The high spatial resolution of radar data enables the detailed resolution of typhoon vortices and their embedded structures; the assimilation of radar data in the initialization of numerical weather prediction exerts an important influence on the forecasting of typhoon track, intensity, and structures up to at least 12 h. For the case of typhoon Morakot (2009), Taiwan radar data was assimilated to adjust the dynamic and thermodynamic structures of the vortex in the model initialization by the three-dimensional variation data assimilation system in the Advanced Region Prediction System (ARPS). The radial wind was directly assimilated to tune the original unbalanced velocity fields through a 3-dimensional variation method, and complex cloud analysis was conducted by using the reflectivity data. The influence of radar data assimilation on typhoon prediction was examined at the stages of Morakot landing on Taiwan Island and subsequently going inland. The results showed that the assimilation made some improvement in the prediction of vortex intensity, track, and structures in the initialization and subsequent forecast. For example, besides deepening the central sea level pressure and enhancing the maximum surface wind speed, the radar data assimilation corrected the typhoon center movement to the best track and adjusted the size and inner-core structure of the vortex to be close to the observations. It was also shown that the specific humidity adjustment in the cloud analysis procedure during the assimilation time window played an important role, producing more hydrometeors and tuning the unbalanced moisture and temperature fields. The neighborhood-based ETS revealed that the assimilation with the specific humidity adjustment was propitious in improving forecast skill, specifically for smaller-scale reflectivity at the stage of Morakot landing, and for larger-scale reflectivity at the stage of Morakot going inland. The calculation of the intensity-scale skill score of the hourly precipitation forecast showed the assimilation with the specific humidity adjustment performed skillful forecasting for the spatial forecast-error scales of 30–160 km. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

25 pages, 3093 KiB  
Article
Research of Hierarchical Vertiport Location Based on Lagrange Relaxation
by Yuzhen Guo, Junjie Yao, Jing Jiang and Dongxiao Qiao
Aerospace 2025, 12(8), 672; https://doi.org/10.3390/aerospace12080672 - 28 Jul 2025
Viewed by 186
Abstract
With the rise of the low-altitude urban traffic system, urban air mobility (UAM) has developed rapidly. As a critical component of the UAM system, the strategic layout of vertiports helps divert ground traffic pressure. To satisfy various demand patterns, different vertiport levels are [...] Read more.
With the rise of the low-altitude urban traffic system, urban air mobility (UAM) has developed rapidly. As a critical component of the UAM system, the strategic layout of vertiports helps divert ground traffic pressure. To satisfy various demand patterns, different vertiport levels are needed, so we focus on the hierarchical vertiport location problem. Considering the capacity limitation, a median location model is established to minimize vertiport construction cost, passenger commuting cost, and penalty cost. For the nonlinear term in the objective function, the Big-M method is employed. Based on the reformulated model, we improve the branch-and-bound algorithm (LVBB) to solve it, where the Lagrange relaxation method is used to decompose the large-scale problem into parallel subproblems and compute the lower bound, and the variable neighborhood search algorithm is used to obtain the upper bound. Numerical experiments are performed in the 11 administrative districts of Nanjing, China. The results demonstrate that the proposed location scheme effectively balances vertiport construction cost and passenger commuting cost while satisfying capacity limitations. It also significantly reduces commuting time to improve passenger satisfaction. This scheme can offer strategic guidance for infrastructure planning in UAM. Full article
(This article belongs to the Special Issue Research and Applications of Low-Altitude Urban Traffic System)
Show Figures

Figure 1

27 pages, 6977 KiB  
Article
Urbanization and Health Inequity in Sub-Saharan Africa: Examining Public Health and Environmental Crises in Douala, Cameroon
by Babette Linda Safougne Djomekui, Chrétien Ngouanet and Warren Smit
Int. J. Environ. Res. Public Health 2025, 22(8), 1172; https://doi.org/10.3390/ijerph22081172 - 24 Jul 2025
Viewed by 379
Abstract
Africa’s rapid urbanization often exceeds the capacity of governments to provide essential services and infrastructure, exacerbating structural inequalities and exposing vulnerable populations to serious health risks. This paper examines the case of Douala, Cameroon, to demonstrate that health inequities in African cities are [...] Read more.
Africa’s rapid urbanization often exceeds the capacity of governments to provide essential services and infrastructure, exacerbating structural inequalities and exposing vulnerable populations to serious health risks. This paper examines the case of Douala, Cameroon, to demonstrate that health inequities in African cities are not simply the result of urban growth but are shaped by spatial inequities, historical legacies, and systemic exclusion. Disadvantaged neighborhoods are particularly impacted, becoming epicenters of health crises. Using a mixed-methods approach combining spatial analysis, household surveys and interviews, the study identifies three key findings: (1) Healthcare services in Douala are unevenly distributed and dominated by private providers, which limits access for low-income residents. (2) Inadequate infrastructure and environmental risks in informal settlements lead to a higher disease burden and an overflow of demand into better-equipped districts, which overwhelms public health centers across the city. (3) This structural mismatch fuels widespread reliance on informal and unregulated care practices. This study positions Douala as a microcosm of broader public health challenges in rapidly urbanizing African cities. It highlights the need for integrated urban planning and health system reforms that address spatial inequalities, strengthen public health infrastructure, and prioritize equity—key principles for achieving the third Sustainable Development Goal (ensuring good health and well-being for all residents) in sub-Saharan Africa. Full article
(This article belongs to the Special Issue SDG 3 in Sub-Saharan Africa: Emerging Public Health Issues)
Show Figures

Figure 1

30 pages, 2371 KiB  
Article
Optimization of Joint Distribution Routes for Automotive Parts Considering Multi-Manufacturer Collaboration
by Lingsan Dong, Jian Wang and Xiaowei Hu
Sustainability 2025, 17(14), 6615; https://doi.org/10.3390/su17146615 - 19 Jul 2025
Viewed by 463
Abstract
The swift expansion of China’s automotive manufacturing industry has spurred a constant rise in the demand for automotive parts production and distribution, making the optimization of distribution routes in complex environments a crucial research topic. Efficiently optimizing these routes not only boosts production [...] Read more.
The swift expansion of China’s automotive manufacturing industry has spurred a constant rise in the demand for automotive parts production and distribution, making the optimization of distribution routes in complex environments a crucial research topic. Efficiently optimizing these routes not only boosts production efficiency and cuts costs for automotive manufacturers but also enhances supply chain management and advances sustainable development. This study focuses on the optimization of automotive parts distribution routes under a multi-manufacturer collaboration framework. An optimization model is proposed to minimize the total operational costs within a joint distribution system, incorporating an improved Ant Colony Optimization (ACO) algorithm to formulate an effective solution approach. The model considers complex factors such as dynamic demand, time-window constraints, and periodic distribution. A PIVNS algorithm integrating a virtual distribution center with an enhanced variable neighborhood search is designed to efficiently address the problem. The efficacy of the proposed model and algorithm is substantiated through extensive experiments grounded in real-world case studies. The results confirm the high computational efficiency of the proposed approach in solving large-scale problems, which significantly reduces distribution costs while improving overall supply chain performance. Specifically, the PIVNS algorithm achieves an average travel distance of 2020.85 km, an average runtime of 112.25 s, a total transportation cost of CNY 12,497.99, and a loading rate of 86.775%. These findings collectively highlight the advantages of the proposed method in enhancing efficiency, reducing costs, and optimizing resource utilization. Overall, this study provides valuable insights for logistics optimization in automotive manufacturing and offers a significant reference for future research and practical applications in the field. Full article
Show Figures

Figure 1

25 pages, 1714 KiB  
Article
Geospatial Patterns of Property Crime in Thailand: A Socioeconomic Perspective for Sustainable Cities
by Hiranya Sritart, Hiroyuki Miyazaki, Sakiko Kanbara and Somchat Taertulakarn
Sustainability 2025, 17(14), 6567; https://doi.org/10.3390/su17146567 - 18 Jul 2025
Viewed by 478
Abstract
Property crime is a pressing issue in maintaining social order and urban sustainability, particularly in regions marked by pronounced socioeconomic disparity. While the link between socioeconomic stress and crime is well established, regional variations in Thailand have not been fully examined. Therefore, the [...] Read more.
Property crime is a pressing issue in maintaining social order and urban sustainability, particularly in regions marked by pronounced socioeconomic disparity. While the link between socioeconomic stress and crime is well established, regional variations in Thailand have not been fully examined. Therefore, the purpose of this research was to examine spatial patterns of property crime and identify the potential associations between property crime and socioeconomic environment across Thailand. Using nationally compiled property-crime data from official sources across all provinces of Thailand, we employed geographic information system (GIS) tools to conduct a spatial cluster analysis at the sub-national level across 76 provinces. Both global and local statistical techniques were applied to identify spatial associations between property-crime rates and neighborhood-level socioeconomic conditions. The results revealed that property-crime clusters are primarily concentrated in the south, while low-crime areas dominate parts of the north and northeast regions. To analyze the spatial dynamics of property crime, we used geospatial statistical models to investigate the influence of socioeconomic variables across provinces. We found that property-crime rates were significantly associated with monthly income, areas experiencing high levels of household debt, migrant populations, working-age populations, an uneducated labor force, and population density. Identifying associated factors and mapping geographic regions with significant spatial clusters is an effective approach for determining where issues concentrate and for deepening understanding of the underlying patterns and drivers of property crime. This study offers actionable insights for enhancing safety, resilience, and urban sustainability in Thailand’s diverse regional contexts by highlighting geographies of vulnerability. Full article
(This article belongs to the Special Issue GIS Implementation in Sustainable Urban Planning—2nd Edition)
Show Figures

Figure 1

21 pages, 2832 KiB  
Article
A Crossover Adjustment Method Considering the Beam Incident Angle for a Multibeam Bathymetric Survey Based on USV Swarms
by Qiang Yuan, Weiming Xu, Shaohua Jin and Tong Sun
J. Mar. Sci. Eng. 2025, 13(7), 1364; https://doi.org/10.3390/jmse13071364 - 17 Jul 2025
Viewed by 280
Abstract
Multibeam echosounder systems (MBESs) are widely used in unmanned surface vehicle swarms (USVs) to perform various marine bathymetry surveys because of their excellent performance. To address the challenges of systematic error superposition and edge beam error propagation in multibeam bathymetry surveying, this study [...] Read more.
Multibeam echosounder systems (MBESs) are widely used in unmanned surface vehicle swarms (USVs) to perform various marine bathymetry surveys because of their excellent performance. To address the challenges of systematic error superposition and edge beam error propagation in multibeam bathymetry surveying, this study proposes a novel error adjustment method integrating crossover error density clustering and beam incident angle (BIA) compensation. Firstly, a bathymetry error detection model was developed based on adaptive Density-Based Spatial Clustering of Applications with Noise (DBSCAN). By optimizing the neighborhood radius and minimum sample threshold through analyzing sliding-window curvature, the method achieved the automatic identification of outliers, reducing crossover discrepancies from ±150 m to ±50 m in the deep sea at a depth of approximately 5000 m. Secondly, an asymmetric quadratic surface correction model was established by incorporating the BIA as a key parameter. A dynamic weight matrix ω = 1/(1 + 0.5θ2) was introduced to suppress edge beam errors, combined with Tikhonov regularization to resolve ill-posed matrix issues. Experimental validation in the Western Pacific demonstrated that the RMSE of crossover points decreased by about 30.4% and the MAE was reduced by 57.3%. The proposed method effectively corrects residual systematic errors while maintaining topographic authenticity, providing a reference for improving the quality of multibeam bathymetric data obtained via USVs and enhancing measurement efficiency. Full article
(This article belongs to the Special Issue Technical Applications and Latest Discoveries in Seafloor Mapping)
Show Figures

Figure 1

Back to TopTop