Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (399)

Search Parameters:
Keywords = nearshore areas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3804 KiB  
Article
Geospatial Analysis of Heavy Metal Concentrations in the Coastal Marine Environment of Beihai, Guangxi During April 2021
by Chaolu, Bo Miao and Na Qian
Coasts 2025, 5(3), 27; https://doi.org/10.3390/coasts5030027 - 1 Aug 2025
Viewed by 138
Abstract
Heavy metal pollution from human activities is an increasing environmental concern. This study investigates the concentrations of Cu, Pb, Zn, Cd, Hg, and As in the coastal seawater offshore of Beihai, Guangxi, in April 2021, and explores their relationships with dissolved inorganic nitrogen, [...] Read more.
Heavy metal pollution from human activities is an increasing environmental concern. This study investigates the concentrations of Cu, Pb, Zn, Cd, Hg, and As in the coastal seawater offshore of Beihai, Guangxi, in April 2021, and explores their relationships with dissolved inorganic nitrogen, phosphate, and salinity. Our results reveal higher heavy metal concentrations in the northern nearshore waters and lower levels in southern offshore areas, with surface waters generally exhibiting greater enrichment than bottom waters. Surface concentrations show a decreasing trend from the northeast to the southwest, likely influenced by prevailing northeast monsoon winds. While bottom water concentrations decline from the northwest to the southeast, which indicates the influence of riverine runoff, particularly from the Qinzhou Bay estuary. Heavy metal levels in southern Beihai waters are comparable to those in the Beibu Gulf, except for Hg and Zn, which are significantly higher in the water of the Beibu Gulf. Notably, heavy metal concentrations in both Beihai and Beibu Gulf remain considerably lower than those observed in the coastal waters of Guangdong. Overall, Beihai’s coastal seawater meets China’s Class I quality standards. Nonetheless, continued monitoring is essential, especially of the potential ecological impacts of Hg and Zn on marine life. Full article
Show Figures

Figure 1

32 pages, 6657 KiB  
Article
Mechanisms of Ocean Acidification in Massachusetts Bay: Insights from Modeling and Observations
by Lu Wang, Changsheng Chen, Joseph Salisbury, Siqi Li, Robert C. Beardsley and Jackie Motyka
Remote Sens. 2025, 17(15), 2651; https://doi.org/10.3390/rs17152651 - 31 Jul 2025
Viewed by 316
Abstract
Massachusetts Bay in the northeastern United States is highly vulnerable to ocean acidification (OA) due to reduced buffering capacity from significant freshwater inputs. We hypothesize that acidification varies across temporal and spatial scales, with short-term variability driven by seasonal biological respiration, precipitation–evaporation balance, [...] Read more.
Massachusetts Bay in the northeastern United States is highly vulnerable to ocean acidification (OA) due to reduced buffering capacity from significant freshwater inputs. We hypothesize that acidification varies across temporal and spatial scales, with short-term variability driven by seasonal biological respiration, precipitation–evaporation balance, and river discharge, and long-term changes linked to global warming and river flux shifts. These patterns arise from complex nonlinear interactions between physical and biogeochemical processes. To investigate OA variability, we applied the Northeast Biogeochemistry and Ecosystem Model (NeBEM), a fully coupled three-dimensional physical–biogeochemical system, to Massachusetts Bay and Boston Harbor. Numerical simulation was performed for 2016. Assimilating satellite-derived sea surface temperature and sea surface height improved NeBEM’s ability to reproduce observed seasonal and spatial variability in stratification, mixing, and circulation. The model accurately simulated seasonal changes in nutrients, chlorophyll-a, dissolved oxygen, and pH. The model results suggest that nearshore areas were consistently more susceptible to OA, especially during winter and spring. Mechanistic analysis revealed contrasting processes between shallow inner and deeper outer bay waters. In the inner bay, partial pressure of pCO2 (pCO2) and aragonite saturation (Ωa) were influenced by sea temperature, dissolved inorganic carbon (DIC), and total alkalinity (TA). TA variability was driven by nitrification and denitrification, while DIC was shaped by advection and net community production (NCP). In the outer bay, pCO2 was controlled by temperature and DIC, and Ωa was primarily determined by DIC variability. TA changes were linked to NCP and nitrification–denitrification, with DIC also influenced by air–sea gas exchange. Full article
Show Figures

Figure 1

34 pages, 13488 KiB  
Review
Numeric Modeling of Sea Surface Wave Using WAVEWATCH-III and SWAN During Tropical Cyclones: An Overview
by Ru Yao, Weizeng Shao, Yuyi Hu, Hao Xu and Qingping Zou
J. Mar. Sci. Eng. 2025, 13(8), 1450; https://doi.org/10.3390/jmse13081450 - 29 Jul 2025
Viewed by 236
Abstract
Extreme surface winds and wave heights of tropical cyclones (TCs)—pose serious threats to coastal community, infrastructure and environments. In recent decades, progress in numerical wave modeling has significantly enhanced the ability to reconstruct and predict wave behavior. This review offers an in-depth overview [...] Read more.
Extreme surface winds and wave heights of tropical cyclones (TCs)—pose serious threats to coastal community, infrastructure and environments. In recent decades, progress in numerical wave modeling has significantly enhanced the ability to reconstruct and predict wave behavior. This review offers an in-depth overview of TC-related wave modeling utilizing different computational schemes, with a special attention to WAVEWATCH III (WW3) and Simulating Waves Nearshore (SWAN). Due to the complex air–sea interactions during TCs, it is challenging to obtain accurate wind input data and optimize the parameterizations. Substantial spatial and temporal variations in water levels and current patterns occurs when coastal circulation is modulated by varying underwater topography. To explore their influence on waves, this study employs a coupled SWAN and Finite-Volume Community Ocean Model (FVCOM) modeling approach. Additionally, the interplay between wave and sea surface temperature (SST) is investigated by incorporating four key wave-induced forcing through breaking and non-breaking waves, radiation stress, and Stokes drift from WW3 into the Stony Brook Parallel Ocean Model (sbPOM). 20 TC events were analyzed to evaluate the performance of the selected parameterizations of external forcings in WW3 and SWAN. Among different nonlinear wave interaction schemes, Generalized Multiple Discrete Interaction Approximation (GMD) Discrete Interaction Approximation (DIA) and the computationally expensive Wave-Ray Tracing (WRT) A refined drag coefficient (Cd) equation, applied within an upgraded ST6 configuration, reduce significant wave height (SWH) prediction errors and the root mean square error (RMSE) for both SWAN and WW3 wave models. Surface currents and sea level variations notably altered the wave energy and wave height distributions, especially in the area with strong TC-induced oceanic current. Finally, coupling four wave-induced forcings into sbPOM enhanced SST simulation by refining heat flux estimates and promoting vertical mixing. Validation against Argo data showed that the updated sbPOM model achieved an RMSE as low as 1.39 m, with correlation coefficients nearing 0.9881. Full article
(This article belongs to the Section Ocean and Global Climate)
Show Figures

Figure 1

25 pages, 13635 KiB  
Article
Microplastics in Nearshore and Subtidal Sediments in the Salish Sea: Implications for Marine Habitats and Exposure
by Frances K. Eshom-Arzadon, Kaitlyn Conway, Julie Masura and Matthew R. Baker
J. Mar. Sci. Eng. 2025, 13(8), 1441; https://doi.org/10.3390/jmse13081441 - 28 Jul 2025
Viewed by 382
Abstract
Plastic debris is a pervasive and persistent threat to marine ecosystems. Microplastics (plastics < 5 mm) are increasing in a variety of marine habitats, including open water systems, shorelines, and benthic sediments. It remains unclear how microplastics distribute and accumulate in marine systems [...] Read more.
Plastic debris is a pervasive and persistent threat to marine ecosystems. Microplastics (plastics < 5 mm) are increasing in a variety of marine habitats, including open water systems, shorelines, and benthic sediments. It remains unclear how microplastics distribute and accumulate in marine systems and the extent to which this pollutant is accessible to marine taxa. We examined subtidal benthic sediments and beach sediments in critical nearshore habitats for forage fish species—Pacific sand lance (Ammodytes personatus), Pacific herring (Clupea pallasi), and surf smelt (Hypomesus pretiosus)—to quantify microplastic concentrations in the spawning and deep-water habitats of these fish and better understand how microplastics accumulate and distribute in nearshore systems. In the San Juan Islands, we examined an offshore subtidal bedform in a high-flow channel and beach sites of protected and exposed shorelines. We also examined 12 beach sites proximate to urban areas in Puget Sound. Microplastics were found in all samples and at all sample sites. Microfibers were the most abundant, and flakes were present proximate to major shipyards and marinas. Microplastics were significantly elevated in Puget Sound compared to the San Juan Archipelago. Protected beaches had elevated concentrations relative to exposed beaches and subtidal sediments. Microplastics were in higher concentrations in sand and fine-grain sediments, poorly sorted sediments, and artificial sediments. Microplastics were also elevated at sites confirmed as spawning habitats for forage fish. The model results indicate that both current speed and proximate urban populations influence nearshore microplastic concentrations. Our research provides new insights into how microplastics are distributed, deposited, and retained in marine sediments and shorelines, as well as insight into potential exposure in benthic, demersal, and shoreline habitats. Further analyses are required to examine the relative influence of urban populations and shipping lanes and the effects of physical processes such as wave exposure, tidal currents, and shoreline geometry. Full article
(This article belongs to the Special Issue Benthic Ecology in Coastal and Brackish Systems—2nd Edition)
Show Figures

Figure 1

25 pages, 3764 KiB  
Article
An Improved Size and Direction Adaptive Filtering Method for Bathymetry Using ATLAS ATL03 Data
by Lei Kuang, Mingquan Liu, Dongfang Zhang, Chengjun Li and Lihe Wu
Remote Sens. 2025, 17(13), 2242; https://doi.org/10.3390/rs17132242 - 30 Jun 2025
Viewed by 369
Abstract
The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) employs a photon-counting detection mode with a 532 nm laser to obtain high-precision Earth surface elevation data and offers a new remote sensing method for nearshore bathymetry. [...] Read more.
The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) employs a photon-counting detection mode with a 532 nm laser to obtain high-precision Earth surface elevation data and offers a new remote sensing method for nearshore bathymetry. The key issues in using ATLAS ATL03 data for bathymetry are achieving automatic and accurate extraction of signal photons in different water environments. Especially for areas with sharply fluctuating topography, the interaction of various impacts, such as topographic fluctuations, sea waves, and laser pulse direction, can result in a sharp change in photon density and distribution at the seafloor, which can cause the signal photon detection at the seafloor to be misinterpreted or omitted during analysis. Therefore, an improved size and direction adaptive filtering (ISDAF) method was proposed for nearshore bathymetry using ATLAS ATL03 data. This method can accurately distinguish between the original photons located above the sea surface, on the sea surface, and the seafloor. The size and direction of the elliptical density filter kernel automatically adapt to the sharp fluctuations in topography and changes in water depth, ensuring precise extraction of signal photons from both the sea surface and the seafloor. To evaluate the precision and reliability of the ISDAF, ATLAS ATL03 data from different water environments and seafloor terrains were used to perform bathymetric experiments. Airborne LiDAR bathymetry (ALB) data were also used to validate the bathymetric accuracy and reliability. The experimental findings show that the ISDAF consistently exhibits effectiveness in detecting and retrieving signal photons, regardless of whether the seafloor terrain is stable or dynamic. After applying refraction correction, the high accuracy of bathymetry was evidenced by a strong coefficient of determination (R2) and a low root mean square error (RMSE) between the ICESat-2 bathymetry data and ALB data. This research offers a promising approach to advancing remote sensing technologies for precise nearshore bathymetric mapping, with implications for coastal monitoring, marine ecology, and resource management. Full article
Show Figures

Figure 1

21 pages, 8541 KiB  
Article
Infrared Ship Detection in Complex Nearshore Scenes Based on Improved YOLOv5s
by Xiuwen Liu, Mingchen Liu and Yong Yin
Sensors 2025, 25(13), 3979; https://doi.org/10.3390/s25133979 - 26 Jun 2025
Viewed by 307
Abstract
Ensuring navigational safety in nearshore waters is essential for the sustainable development of the shipping economy. Accurate ship identification and classification are central to this objective, underscoring the critical importance of ship detection technology. However, compared to open-sea surface, dense vessel distributions and [...] Read more.
Ensuring navigational safety in nearshore waters is essential for the sustainable development of the shipping economy. Accurate ship identification and classification are central to this objective, underscoring the critical importance of ship detection technology. However, compared to open-sea surface, dense vessel distributions and complex backgrounds in nearshore areas substantially limit detection efficacy. Infrared vision sensors offer distinct advantages over visible light by enabling reliable target detection in all weather conditions. This study therefore proposes CGSE-YOLOv5s, an enhanced YOLOv5s-based algorithm specifically designed for complex infrared nearshore scenarios. Three key improvements are introduced: (1) Contrast Limited Adaptive Histogram Equalization integrated with Gaussian Filtering enhances target edge sharpness; (2) Replacement of the feature pyramid network’s C3 module with a Swin Transformer-based C3STR module reduces multi-scale false detections; and (3) Implementation of an Efficient Channel Attention mechanism amplifies critical target features. Experimental results demonstrate that CGSE-YOLOv5s achieves a mean average precision (mAP@0.5) of 94.8%, outperforming YOLOv5s by 1.3% and surpassing other detection algorithms. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

21 pages, 8446 KiB  
Article
Regional Wave Analysis in the East China Sea Based on the SWAN Model
by Songnan Ma, Fuwu Ji, Qunhui Yang, Zhinan Mi and Wenhui Cao
J. Mar. Sci. Eng. 2025, 13(6), 1196; https://doi.org/10.3390/jmse13061196 - 19 Jun 2025
Viewed by 597
Abstract
High-precision wave data serve as a foundation for investigating the wave characteristics of the East China Sea (ECS) and wave energy development. Based on the simulating waves nearshore (SWAN) model, this study uses the ERA5 (ECMWF Reanalysis v5) reanalysis wind field data and [...] Read more.
High-precision wave data serve as a foundation for investigating the wave characteristics of the East China Sea (ECS) and wave energy development. Based on the simulating waves nearshore (SWAN) model, this study uses the ERA5 (ECMWF Reanalysis v5) reanalysis wind field data and ETOPO1 bathymetric data to perform high-precision simulations at a resolution of 0.05° × 0.05° for the waves in the area of 25–35° N and 120–130° E in the ECS from 2009 to 2023. The simulation results indicate that the application of the whitecapping dissipation parameter Komen and the bottom friction parameter Collins yields an average RMSE of 0.374 m and 0.369 m when compared to satellite-measured data, demonstrating its superior suitability for wave simulation in shallow waters such as the ESC over the other whitecapping dissipation parameter, Westhuysen, and the other two bottom friction parameters, Jonswap and Madsen, in the SWAN model. The monthly average significant wave height (SWH) ranges from 0 to 3 m, exhibiting a trend that it is more important in autumn and winter than in spring and summer and gradually increases from the northwest to the southeast. Due to the influence of the Kuroshio current, topography, and events such as typhoons, areas with significant wave heights are found in the northwest of the Ryukyu Islands and north of the Taiwan Strait. The wave energy flux density in most areas of the ECS is >2 kW/m, particularly in the north of the Ryukyu Islands, where the annual average value remains above 8 kW/m. Because of the influence of climate events such as El Niño and extreme heatwaves, the wave energy flux density decreased significantly in some years (a 21% decrease in 2015). The coefficient of variation of wave energy in the East China Sea exhibits pronounced regional heterogeneity, which can be categorized into four distinct patterns: high mean wave energy with high variation coefficient, high mean wave energy with low variation coefficient, low mean wave energy with high variation coefficient, and low mean wave energy with low variation coefficient. This classification fundamentally reflects the intrinsic differences in dynamic environments across various maritime regions. These high-precision numerical simulation results provide methodological and theoretical support for exploring the spatiotemporal variation laws of waves in the ECS region, the development and utilization of wave resources, and marine engineering construction. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

20 pages, 4833 KiB  
Article
Seasonal Spatial Distribution Characteristics and Patterns of the Squid Uroteuthis duvauceli, Uroteuthis edulis, Loliolus sumatrensis, and Loliolus japonica in the Southern Yellow and East China Seas: Predictions Under Different Climate Scenarios
by Min Xu, Hui Zhang, Bingqing Xu, Yong Liu and Linlin Yang
Animals 2025, 15(12), 1744; https://doi.org/10.3390/ani15121744 - 13 Jun 2025
Viewed by 579
Abstract
For successful economic management of cephalopod fisheries, short-lived squid with a 1-year life span require stock assessment over a short timescale, accompanied by both in-season and real-time stock management. However, insufficient information is available about the dynamic distribution patterns of the squid Uroteuthis [...] Read more.
For successful economic management of cephalopod fisheries, short-lived squid with a 1-year life span require stock assessment over a short timescale, accompanied by both in-season and real-time stock management. However, insufficient information is available about the dynamic distribution patterns of the squid Uroteuthis duvauceli, Uroteuthis edulis, Loliolus sumatrensis, and Loliolus japonica in China. Such information is vital for establishing a sustainable fisheries management system. In this study, seasonal fishery-independent bottom-trawling surveys were performed from 2018 to 2019 in the southern Yellow and East China Seas to assess the seasonal changes in the distribution of these species. Most U. duvauceli occurred at sea bottom temperatures (SBTs) of 24.52–26.96 °C and sea bottom salinity (SBS) of 30.2–31.54‰ during the summer and at 20.02–22.75 °C and 33.46–34.22‰ during the autumn. Most U. edulis occurred at an SBT of 18.29–19.61 °C and SBS 34.78–35.08‰ during the spring, at 18.63–19.43 °C and 34.43–34.66‰ during the summer, at 8.78–21.81 °C and 34.39–34.77‰ during the autumn, and at 17.90–21.55 °C and 34.34–34.61‰ during the winter. Overall, most L. sumatrensis occurred at 21.00–23.15 °C and 34.11–34.50‰ in autumn. U. duvauceli concentrated in the fishing grounds of Zhoushan during the spring, Lvsi and Zhoushan-Changjiangkou during the summer, Zhoushan and Yushan-Mindong during the autumn, and Wentai-Yushan during the winter. L. sumatrensis mainly occurred in the fishing grounds of Dasha, Changjiangkou-Zhoushan, and Mindong during the summer, Yushan during the autumn, and nearshore areas during the winter. Most L. japonica occurred in the fishing grounds of Haizhou Bay and Zhoushan-Yushan during the spring, Haizhou Bay during the summer, Lvsi during the autumn, and Haizhou Bay during the winter. Our results will be useful for determining the total allowable catch from squid fisheries in these areas in China. Full article
Show Figures

Figure 1

27 pages, 8210 KiB  
Article
Estimation of Wind Conditions in the Offshore Direction Using Multiple Numerical Models and In Situ Observations
by Mizuki Konagaya, Teruo Ohsawa, Yuki Itoshima, Masaki Kambayashi, Edouard Leonard, Eric Tromeur, Takeshi Misaki, Erika Shintaku, Ryuzo Araki and Kohei Hamada
Energies 2025, 18(11), 3000; https://doi.org/10.3390/en18113000 - 5 Jun 2025
Cited by 1 | Viewed by 783
Abstract
This study aims to estimate nearshore wind conditions using multiple numerical models and evaluate their accuracy at heights relevant to offshore wind turbines. An intensive observation campaign was conducted from December 2021 to February 2022 at Mutsu Ogawara Port, Japan. The observed data [...] Read more.
This study aims to estimate nearshore wind conditions using multiple numerical models and evaluate their accuracy at heights relevant to offshore wind turbines. An intensive observation campaign was conducted from December 2021 to February 2022 at Mutsu Ogawara Port, Japan. The observed data were used to validate the accuracy of numerical models (mesoscale, computational fluid dynamics (CFD), and linear models) to estimate wind conditions and investigate thermal environments, including atmospheric stability. The results demonstrated that the accuracy of period-averaged wind speed estimation in the offshore direction improved significantly when using an offshore observation point as a reference, with biases within ±2.5% up to 5 km offshore for all models. However, the accuracy of vertical shear estimation varies widely among models, with several models overestimating vertical shear, particularly in the sea wind sector. The mesoscale model, which accounts for spatiotemporal variations in atmospheric stability, consistently achieves high estimation accuracy. In contrast, standalone CFD models, which typically assume neutral atmospheric stability, are difficult to estimate accurately. Nonetheless, incorporating specific atmospheric stability conditions into the CFD models significantly enhanced their accuracy. These findings underscore the importance of atmospheric stability when estimating offshore wind conditions, particularly in nearshore areas. Full article
(This article belongs to the Special Issue Computational and Experimental Fluid Dynamics for Wind Energy)
Show Figures

Graphical abstract

22 pages, 4940 KiB  
Article
GIS-Based Suitability Assessment for the Ecological Restoration of Oyster Reefs: A Case Study of the Tianjin Coast in Bohai Bay
by Yuxuan Zhao, Zifei Wang, Yunan Lin, Ruijia Jing, Zhiyun Wang and Xianhua Liu
Sustainability 2025, 17(11), 4759; https://doi.org/10.3390/su17114759 - 22 May 2025
Cited by 1 | Viewed by 556
Abstract
The ecological restoration of oyster reef ecosystems enhances their ecological functions and strengthens carbon sequestration capacity in coastal zones. Identifying suitable restoration sites is a crucial prerequisite for initiating oyster reef restoration projects. This study developed an oyster reef restoration suitability index model [...] Read more.
The ecological restoration of oyster reef ecosystems enhances their ecological functions and strengthens carbon sequestration capacity in coastal zones. Identifying suitable restoration sites is a crucial prerequisite for initiating oyster reef restoration projects. This study developed an oyster reef restoration suitability index model for the Tianjin coast of Bohai Bay by integrating the Analytic Hierarchy Process (AHP) with the Geographic Information System (GIS). It was then applied to assess the region’s suitability for oyster reef restoration. The suitability analysis identified favorable environmental conditions for oyster reef restoration in most of the Tianjin coastal area, with high suitability for factors like dissolved oxygen, pH, and seabed slope. However, excessive water depth in the eastern bay mouth and strong currents in the southwestern region made these areas unsuitable. The northern and western coastal regions were deemed optimal restoration sites, while proximity to shipping lanes and industrial activities limited feasibility in some nearshore zones. The model outputs exhibited strong spatial concordance with existing oyster reef distributions, validating its predictive accuracy. This framework offers a robust foundation for oyster reef restoration planning, with an adaptable index system that allows for regional extrapolation. By leveraging this model, decision-makers can systematically evaluate site-specific restoration suitability, optimize resource allocation, and guide strategic conservation planning. Full article
(This article belongs to the Section Sustainable Oceans)
Show Figures

Figure 1

15 pages, 1752 KiB  
Article
Suitability Evaluation of the Water Environment for Seagrass Growth Areas in the Changshan Archipelago
by Yanzhen Song, Yanzhao Fu, Jun Song, Jun Yang, Yahe Wang, Wei Hu and Junru Guo
Sustainability 2025, 17(10), 4645; https://doi.org/10.3390/su17104645 - 19 May 2025
Viewed by 505
Abstract
Seagrass beds provide essential ecosystem services, such as habitat for marine life, water quality purification, carbon sequestration, and climate regulation. For the Changshan Archipelago, which relies heavily on marine resources, the growth and development of seagrass beds are key factors affecting aquaculture. This [...] Read more.
Seagrass beds provide essential ecosystem services, such as habitat for marine life, water quality purification, carbon sequestration, and climate regulation. For the Changshan Archipelago, which relies heavily on marine resources, the growth and development of seagrass beds are key factors affecting aquaculture. This study is based on data collected from a survey conducted in the nearshore waters of the Changshan Archipelago in August 2022, encompassing seagrass distribution and water sample data. The water samples were analyzed for various parameters, including salinity, suspended solids, pH, dissolved oxygen, sea temperature, nitrite-nitrogen, nitrate-nitrogen, and ammonia-nitrogen concentrations. A habitat suitability assessment of the seagrass beds in the Changshan Archipelago was conducted. The study calculated the suitability index for each environmental variable based on the abundance index, and then established a Habitat Suitability Index model using a weighted allocation method. The results indicate that the seagrass bed area in the study region is primarily composed of excellent and suitable habitats. The concentration of inorganic nutrients is a key factor influencing seagrass growth. The HSI model not only identifies the hierarchical distribution of habitats in seagrass areas, but also detects potential suitable habitats for seagrass. This provides scientific reference for future seagrass bed resource protection and artificial cultivation efforts. Full article
(This article belongs to the Topic Marine Renewable Energy, 2nd Edition)
Show Figures

Figure 1

17 pages, 6571 KiB  
Article
Effects of Land-Use Patterns on Heavy Metal Pollution and Health Risk in the Surface Water of the Nandu River, China
by Changchao Chen, Wen Zhang, Ping Li, Yuanhao Ma, Longru Liang, Wanman Wu, Jianlei Li and Xiaoshan Zhu
Sustainability 2025, 17(10), 4622; https://doi.org/10.3390/su17104622 - 18 May 2025
Viewed by 727
Abstract
Rapid land-use changes have significantly changed the occurrence of heavy metals (HMs) in tropical watershed systems. However, the influence of land-use patterns on the spatial and temporal distribution of HMs in tropical river systems remains poorly understood. This study aims to explore the [...] Read more.
Rapid land-use changes have significantly changed the occurrence of heavy metals (HMs) in tropical watershed systems. However, the influence of land-use patterns on the spatial and temporal distribution of HMs in tropical river systems remains poorly understood. This study aims to explore the relationship between land-use types and HM pollution in the China’s largest tropical watershed, the Nandu River. Eight heavy metals (Cd, Pb, Cr, Cu, Zn, As, Hg, and Sb) in the surface water were monitored across river, estuary, and nearshore zones during wet and dry seasons. Our findings show a higher total concentration of eight heavy metals (ΣHMs) in the wet season (30.52 μg/L) compared to the dry season (21.53 μg/L). In the wet season, ΣHM concentrations followed the order: estuary (70.96 μg/L) > basin (31.03 μg/L) > nearshore (8.07 μg/L). In the dry season, it was basin (31.56 μg/L) > estuary (23.26 μg/L) > nearshore (7.49 μg/L). Land-use patterns had higher interpretation rates for HM distribution in the dry season (65.8–73.0%) compared to the wet season (31.0–42.4%). The 2000 m buffer zone had a greater impact on HM distribution than the 500 m and 1000 m zones. Agricultural land and construction areas were the primary contributors to HM pollution in the dry and wet seasons, respectively. Noteworthy, in the river basin, chromium (Cr) presented carcinogenic risks to both children and adults through ingestion in both seasons and arsenic (As) posed a risk to children in the dry season. This study provides valuable insights for the sustainable management of land use and improving river water quality by highlighting the relationship between land use and HM contamination in tropical river ecosystems. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Graphical abstract

19 pages, 14125 KiB  
Article
Spatio-Temporal Dynamics of Particulate Organic Carbon and Its Response to Climate Change: Evidence of the East China Sea from 2003 to 2022
by Zhenghan Liu, Yingfeng Chen, Xiaofeng Lin and Wei Yang
J. Mar. Sci. Eng. 2025, 13(5), 963; https://doi.org/10.3390/jmse13050963 - 15 May 2025
Viewed by 567
Abstract
Particulate organic carbon (POC) plays a crucial role in oceanic climate change. However, existing research is limited by several factors, including the scarcity of long-term data, extensive datasets, and a comprehensive understanding of POC dynamics. This study utilizes monthly average POC remote sensing [...] Read more.
Particulate organic carbon (POC) plays a crucial role in oceanic climate change. However, existing research is limited by several factors, including the scarcity of long-term data, extensive datasets, and a comprehensive understanding of POC dynamics. This study utilizes monthly average POC remote sensing data from the MODIS/AQUA satellite to analyze the spatiotemporal variations of POC in the East China Sea from 2003 to 2022. Employing correlation analysis, spatial autocorrelation models, and the Geodetector model, we explore responses to key influencing factors such as climatic elements. The results indicate that POC concentrations are higher in the western nearshore areas and lower in the eastern offshore regions of the East China Sea (ECS). Additionally, concentrations are observed to be lower in southern regions compared to northern ones. From 2003 to 2022, POC concentrations exhibited a fluctuating downward trend with an average annual concentration of 121.05 ± 4.57 mg/m3. Seasonally, monthly average POC concentrations ranged from 105.48 mg/m3 to 158.36 mg/m3; notably higher concentrations were recorded during spring while summer showed comparatively lower levels. Specifically, POC concentrations peaked in April before rapidly declining from May to June—reaching a minimum—and then gradually increasing again from June through December. Correlation analysis revealed significant influences on POC levels by particulate inorganic carbon (PIC), sea surface temperature (SST), chlorophyll (Chl), and photosynthetically active radiation (PAR). The Geodetector model further elucidated that these factors vary in their impact: Chl was identified as having the strongest influence (q = 0.84), followed by PIC (q = 0.75) and SST (q = 0.64) as primary influencing factors; PAR was recognized as a secondary factor with q = 0.30. This study provides new insights into marine carbon cycling dynamics within the context of climate change. Full article
(This article belongs to the Section Marine Ecology)
Show Figures

Figure 1

16 pages, 7784 KiB  
Article
Analysis of Sandbar–Trough Bed Level Changes Under Regular Wave Conditions—A Case Study of Ten-Mile Silver Beach, Hailing Island, China
by Xiaodong Bian, Zhiqiang Li, Yan Sun, Daoheng Zhu, Tao Chen and Chunhua Zeng
J. Mar. Sci. Eng. 2025, 13(5), 953; https://doi.org/10.3390/jmse13050953 - 14 May 2025
Viewed by 472
Abstract
Understanding the evolution of the sandbar–trough system under regular wave conditions is essential for revealing the dynamic responses of coastal morphology in non-extreme environments and provides a scientific basis for long-term beach stability assessments and coastal erosion management. This study conducted a three-day [...] Read more.
Understanding the evolution of the sandbar–trough system under regular wave conditions is essential for revealing the dynamic responses of coastal morphology in non-extreme environments and provides a scientific basis for long-term beach stability assessments and coastal erosion management. This study conducted a three-day field observation on Ten-Mile Silver Beach, Hailing Island, China, to investigate the coupling relationships between hydrodynamic factors and bed elevation changes during the morphological evolution of the sandbar–trough system. The results indicate that gravity wave (>0.04 Hz) energy is a key driver of bed elevation changes. During the erosion phase, gravity wave energy increases, and the peak wave energy frequency shifts toward lower frequencies, accompanied by a contraction of low-frequency energy and an expansion of high-frequency energy. In contrast, the accretion phase exhibits the opposite pattern. As the sandbar–trough system developed, the explanatory power of hydrodynamic factors on bed elevation decreased by 41% in the trough region and increased by 3.7% in the sandbar region, indicating a spatially differentiated pattern characterized by weakened forcing in the trough and enhanced response over the sandbar. During the geomorphic adjustment process, the trough area exhibited increased sensitivity, with gravity wave energy, near-infragravity wave (0.01–0.04 Hz) energy, far-infragravity wave (0.004–0.01 Hz) energy, mean wave height, and significant wave steepness reversing their influence directions on bed elevation. In contrast, the sandbar area maintained a more stable hydrodynamic control mechanism, with only the influence pattern of significant wave steepness undergoing a shift. This study enhances the understanding of geomorphology–hydrodynamics coupling within nearshore sandbar–trough systems and provides theoretical insights and technical support for monitoring and evaluating coastal erosion and accretion processes under normal wave conditions. Full article
(This article belongs to the Special Issue Morphological Changes in the Coastal Ocean)
Show Figures

Figure 1

18 pages, 6257 KiB  
Article
Submarine Groundwater Discharge in the Nice Airport Landslide Area
by Christoph Witt and Achim Kopf
J. Mar. Sci. Eng. 2025, 13(5), 909; https://doi.org/10.3390/jmse13050909 - 3 May 2025
Cited by 1 | Viewed by 481
Abstract
Natural radioactivity was measured and analyzed at the Nice Slope for over a month using radon daughters in order to trace groundwater movement from a coastal aquifer to a nearshore continental shelf. Such groundwater movement may have resulted in submarine groundwater discharge (SGD) [...] Read more.
Natural radioactivity was measured and analyzed at the Nice Slope for over a month using radon daughters in order to trace groundwater movement from a coastal aquifer to a nearshore continental shelf. Such groundwater movement may have resulted in submarine groundwater discharge (SGD) and potentially sediment weakening and slope failure. The relationship among major hydrological parameters (precipitation, Var discharge, groundwater level, salinity and water origin) in the area is demonstrated in this study. Time series analyses also helped to detect tidal fluctuations in freshwater input, highlighting the crucial role SGD plays in the slope stability of the still failure-prone Nice Slope, parts of which collapsed in a tsunamigenic submarine landslide in 1979. Earlier deployments of the underwater mass spectrometer KATERINA showed that SGD is limited to the region of the 1979 landslide scar, suggesting that the spatially heterogenous lithologies do not support widespread groundwater charging. The calculated volumetric activities from groundwater tracing isotopes revealed peaks up to ca. 150 counts 214Bi, which is similar to those measured at other prominent SGD sites along the Mediterranean shoreline. Therefore, this rare long-term radioisotope dataset is a valuable contribution to the collaborative research at the Nice Slope and may not remain restricted to the unconfined landslide scar but may charge permeable sub-bottom areas nearby. Hence, it has to be taken into account for further slope stability studies. Full article
Show Figures

Figure 1

Back to TopTop