Analysis of Sandbar–Trough Bed Level Changes Under Regular Wave Conditions—A Case Study of Ten-Mile Silver Beach, Hailing Island, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydrodynamic Data
2.3. Bed Level Data
3. Results
3.1. Bed Level Elevation Changes
3.2. Hydrodynamic Characteristics
4. Discussion
4.1. Spectral Analysis
4.2. Driver Factor Analysis
4.3. Limitations and Implications of the Study
5. Conclusions
- During bed surface erosion, the spectral peak shifts toward lower frequencies, accompanied by a contraction of low-frequency wave energy and an expansion toward higher frequencies. In contrast, during bed accretion, the spectral peak shifts toward higher frequencies, with a reduction in high-frequency energy and a redistribution toward lower frequencies.
- GW energy emerges as the dominant driver of variations in BLE, exhibiting an increasing trend during erosional conditions and a decreasing trend during accretional conditions.
- The process of morphological evolution regulates the influence of hydrodynamic factors on BLE. As the sandbar–trough system developed, the explanatory power of hydrodynamic factors on BLE decreased by 41% in the trough region but increased by 3.7% in the sandbar area, forming a spatially differentiated pattern characterized by attenuated forcing in the trough and enhanced response on the sandbar.
- The evolution of the sandbar–trough morphology altered not only the strength but also the direction of hydrodynamic control on BLE. In the trough region, the influence directions of GW energy, NIGW energy, FIGW energy, , and all exhibited reversals, reflecting a heightened sensitivity of this region to morphological adjustments. In contrast, the sandbar region displayed more stable hydrodynamic driving mechanisms, with only showing a shift in its mode of influence. This indicates that the processes of erosion and accretion are influenced not only by multiple factors but also by topographic feedback.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vousdoukas, M.I.; Ranasinghe, R.; Mentaschi, L.; Plomaritis, T.A.; Athanasiou, P.; Luijendijk, A.; Feyen, L. Sandy coastlines under threat of erosion. Nat. Clim. Change 2020, 10, 260–263. [Google Scholar] [CrossRef]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The state of the world’s beaches. Sci. Rep. 2018, 8, 6641–6651. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Scala, P.; Toimil, A.; Álvarez-Cuesta, M.; Manno, G.; Ciraolo, G. Mapping decadal land cover dynamics in Sicily’s coastal regions. Sci. Rep. 2024, 14, 22222–22237. [Google Scholar] [CrossRef]
- Thiéblemont, R.; Le Cozannet, G.; Rohmer, J.; Toimil, A.; Álvarez-Cuesta, M.; Losada, I.J. Deep uncertainties in shoreline change projections: An extra-probabilistic approach applied to sandy beaches. Nat. Hazards Earth Syst. Sci. 2021, 21, 2257–2276. [Google Scholar] [CrossRef]
- Feagin, R.A.; Sherman, D.J.; Grant, W.E. Coastal erosion, global sea-level rise, and the loss of sand dune plant habitats. Front. Ecol. Environ. 2005, 3, 359–364. [Google Scholar] [CrossRef]
- Narayan, S.; Beck, M.W.; Reguero, B.G.; Losada, I.J.; Van Wesenbeeck, B.; Pontee, N.; Sanchirico, J.N.; Ingram, J.C.; Lange, G.M.; Burks-Copes, K.A. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS ONE 2016, 11, e0154735. [Google Scholar] [CrossRef]
- Wright Lynn, D.; Short Andrew, D. Morphodynamic variability of surf zones and beaches: A synthesis. Mar. Geol. 1984, 56, 93–118. [Google Scholar] [CrossRef]
- Masselink, G.; Hughes, M.; Knight, J. Introduction to Coastal Processes and Geomorphology; Routledge: Oxfordshire, UK, 2014. [Google Scholar]
- Ferreira, A.M.; Coelho, C.; Silva, P.A. Numerical evaluation of the impact of sandbars on cross-shore sediment transport and shoreline evolution. J. Environ. Manag. 2024, 370, 122835–122849. [Google Scholar] [CrossRef]
- Gallagher, E.L.; Elgar, S.; Guza, R.T. Observations of sand bar evolution on a natural beach. J. Geophys. Res. Ocean. 1998, 103, 3203–3215. [Google Scholar] [CrossRef]
- Saunders, T.M.; Cohn, N.; Hesser, T. Insights into nearshore sandbar dynamics through process-based numerical and logistic regression modeling. Coast. Eng. 2024, 192, 104558–104573. [Google Scholar] [CrossRef]
- Ferreira, A.M.; Coelho, C.; Silva, P.A. Impact of Transversal and Longitudinal Sediment Transport on the Shoreline Evolution: Effects of Sandbar Volume and Wave Climate. J. Coast. Res. 2025, 113, 619–623. [Google Scholar] [CrossRef]
- Chowdhury, P.; Lakku, N.K.G.; Lincoln, S.; Seelam, J.K.; Behera, M.R. Climate change and coastal morphodynamics: Interactions on regional scales. Sci. Total Environ. 2023, 899, 166432–166443. [Google Scholar] [CrossRef] [PubMed]
- Aguilera-Vidal, M.; Muñoz-Perez, J.J.; Contreras, A.; Contreras, F.; Lopez-Garcia, P.; Jigena, B. Increase in the Erosion Rate Due to the Impact of Climate Change on Sea Level Rise: Victoria Beach, a Case Study. J. Mar. Sci. Eng. 2022, 10, 1912–1925. [Google Scholar] [CrossRef]
- Valsamidis, A.; Reeve, D.E. Modelling shoreline evolution in the vicinity of a groyne and a river. Cont. Shelf Res. 2017, 132, 49–57. [Google Scholar] [CrossRef]
- Yuhi, M.; Matsuyama, M.; Hayakawa, K. Sandbar migration and shoreline change on the Chirihama Coast, Japan. J. Mar. Sci. Eng. 2016, 4, 40. [Google Scholar] [CrossRef]
- Hu, P.; Han, J.; Li, W.; Sun, Z.; He, Z. Numerical investigation of a sandbar formation and evolution in a tide-dominated estuary using a hydro-morphodynamic model. Coast. Eng. J. 2018, 60, 466–483. [Google Scholar] [CrossRef]
- Ruessink, B.G.; Blenkinsopp, C.; Brinkkemper, J.A.; Castelle, B.; Dubarbier, B.; Grasso, F.; Puleo, J.A.; Lanckriet, T. Sandbar and beach-face evolution on a prototype coarse sandy barrier. Coast. Eng. 2016, 113, 19–32. [Google Scholar] [CrossRef]
- Splinter, K.D.; Gonzalez, M.V.; Oltman-Shay, J.; Rutten, J.; Holman, R. Observations and modelling of shoreline and multiple sandbar behaviour on a high-energy meso-tidal beach. Cont. Shelf Res. 2018, 159, 33–45. [Google Scholar] [CrossRef]
- Do, J.D.; Jin, J.Y.; Jeong, W.M.; Lee, B.; Kim, C.H.; Chang, Y.S. Observation of nearshore crescentic sandbar formation during storm wave conditions using satellite images and video monitoring data. Mar. Geol. 2021, 442, 106661. [Google Scholar] [CrossRef]
- Castelle, B.; Marieu, V.; Bujan, S.; Splinter, K.D.; Robinet, A.; Sénéchal, N.; Ferreira, S. Impact of the winter 2013–2014 series of severe Western Europe storms on a double-barred sandy coast: Beach and dune erosion and megacusp embayments. Geomorphology 2015, 238, 135–148. [Google Scholar] [CrossRef]
- Almar, R.; Castelle, B.; Ruessink, B.G.; Sénéchal, N.; Bonneton, P.; Marieu, V. Two-and three-dimensional double-sandbar system behaviour under intense wave forcing and a meso–macro tidal range. Cont. Shelf Res. 2010, 30, 781–792. [Google Scholar] [CrossRef]
- Di Leonardo, D.; Ruggiero, P. Regional scale sandbar variability: Observations from the US Pacific Northwest. Cont. Shelf Res. 2015, 95, 74–88. [Google Scholar] [CrossRef]
- Alvarez-Cuesta, M.; Toimil, A.; Losada, I.J. Modelling long-term shoreline evolution in highly anthropized coastal areas. Part 1: Model description and validation. Coast. Eng. 2021, 169, 103960–103984. [Google Scholar] [CrossRef]
- Scala, P.; Manno, G.; Cozar, L.C.; Ciraolo, G. COAST-PROSIM: A Model for Predicting Shoreline Evolution and Assessing the Impacts of Coastal Defence Structures. Water 2025, 17, 269–305. [Google Scholar] [CrossRef]
- Toimil, A.; Losada, I.J.; Nicholls, R.J.; Dalrymple, R.A.; Stive, M.J. Addressing the challenges of climate change risks and adaptation in coastal areas: A review. Coast. Eng. 2020, 156, 103611–103638. [Google Scholar] [CrossRef]
- Hu, P.; Li, Z.; Zhu, D.; Zeng, C.; Liu, R.; Chen, Z.; Su, Q. Field observation and numerical analysis of rip currents at Ten-Mile Beach, Hailing Island, China. Estuar. Coast. Shelf Sci. 2022, 276, 108014–108025. [Google Scholar] [CrossRef]
- Zhiqiang, L.; Zishen, C.; Zhilong, L. Statistical analysis and comparison on wave characteristics during wave propagating in nearshore zone. J. Guangdong Ocean. Univ. 2010, 30, 43–47. (In Chinese) [Google Scholar]
- Monbaliu, J. Spectral wave models in coastal areas. Elsevier Oceanogr. Ser. 2003, 67, 133–158. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Chen, S.; Qi, H.; Dai, W.; Zhu, H.; Sui, T.; Zheng, J. Experimental investigation on cross-shore profile evolution of reef-fronted beach. Coast. Eng. 2025, 195, 104653–104667. [Google Scholar] [CrossRef]
- Viriyakijja, K.; Chinnarasri, C. Wave flume measurement using image analysis. Aquat. Procedia 2015, 4, 522–531. [Google Scholar] [CrossRef]
- Meng, Q.; Liu, Z.; Borders, B.E. Assessment of regression kriging for spatial interpolation–comparisons of seven GIS interpolation methods. Cartogr. Geogr. Inf. Sci. 2013, 40, 28–39. [Google Scholar] [CrossRef]
- Mieras, R.S.; Puleo, J.A.; Anderson, D.; Hsu, T.J.; Cox, D.T.; Calantoni, J. Relative contributions of bed load and suspended load to sediment transport under skewed-asymmetric waves on a sandbar crest. J. Geophys. Res. Ocean. 2019, 124, 1294–1321. [Google Scholar] [CrossRef]
- van Der Zanden, J.; Hurther, D.; Cáceres, I.; O’Donoghue, T.; Hulscher, S.J.; Ribberink, J.S. Bedload and suspended load contributions to breaker bar morphodynamics. Coast. Eng. 2017, 129, 74–92. [Google Scholar] [CrossRef]
- MacMahan, J.H.; Thornton, E.B.; Reniers, A.J. Rip current review. Coast. Eng. 2006, 53, 191–208. [Google Scholar] [CrossRef]
- Dalrymple, R.A.; MacMahan, J.H.; Reniers, A.J.; Nelko, V. Rip currents. Annu. Rev. Fluid Mech. 2011, 43, 551–581. [Google Scholar] [CrossRef]
- Li, K.; Hao, Y.; Wang, N.; Feng, Y.; Song, D.; Chen, Y.; Zhang, H.; Ren, Z.; Bao, X. Hydrodynamic mechanisms of topographic evolution in straight sandy beach: A case study of Wanpingkou beach, China. Front. Mar. Sci. 2024, 11, 1488610–1488627. [Google Scholar] [CrossRef]
- Su, S.F.; Ma, G.; Hsu, T.W. Numerical modeling of low-frequency waves on a reef island in the South China Sea during typhoon events. Coast. Eng. 2021, 169, 103979–103989. [Google Scholar] [CrossRef]
- Masselink, G.; Austin, M.; Tinker, J.; O'Hare, T.; Russell, P. Cross-shore sediment transport and morphological response on a macrotidal beach with intertidal bar morphology, Truc Vert, France. Mar. Geol. 2008, 251, 141–155. [Google Scholar] [CrossRef]
- Thornton Edward, B.; Guza, R.T. Transformation of wave height distribution. J. Geophys. Res. Ocean. 1983, 88, 5925–5938. [Google Scholar] [CrossRef]
- Masselink, G.; Hughes, M. Field investigation of sediment transport in the swash zone. Cont. Shelf Res. 1998, 18, 1179–1199. [Google Scholar] [CrossRef]
- Scott, T.; Masselink, G.; Russell, P. Morphodynamic characteristics and classification of beaches in England and Wales. Mar. Geol. 2011, 286, 1–20. [Google Scholar] [CrossRef]
- De Bakker, A.T.M.; Tissier, M.F.S.; Ruessink, B.G. Shoreline dissipation of infragravity waves. Cont. Shelf Res. 2014, 72, 73–82. [Google Scholar] [CrossRef]
- Baldock, T.E. Dissipation of incident forced long waves in the surf zone—Implications for the concept of “bound” wave release at short wave breaking. Coast. Eng. 2012, 60, 276–285. [Google Scholar] [CrossRef]
- Masselink, G.; Russell, P. Flow velocities, sediment transport and morphological change in the swash zone of two contrasting beaches. Mar. Geol. 2006, 227, 227–240. [Google Scholar] [CrossRef]
- De Bakker, A.T.M.; Herbers, T.H.C.; Smit, P.B.; Tissier, M.F.S.; Ruessink, B.G. Nonlinear infragravity–wave interactions on a gently sloping laboratory beach. J. Phys. Oceanogr. 2015, 45, 589–605. [Google Scholar] [CrossRef]
- Castelle, B.; Scott, T.; Brander, R.W.; McCarroll, R.J. Rip current types, circulation and hazard. Earth-Sci. Rev. 2016, 163, 1–21. [Google Scholar] [CrossRef]
- Coco, G.; Murray, A.B. Patterns in the sand: From forcing templates to self-organization. Geomorphology 2007, 91, 271–290. [Google Scholar] [CrossRef]
- Uyanık, G.K.; Güler, N. A study on multiple linear regression analysis. Procedia-Soc. Behav. Sci. 2013, 106, 234–240. [Google Scholar] [CrossRef]
- Pascolo, S.; Petti, M.; Bosa, S. On the wave bottom shear stress in shallow depths: The role of wave period and bed roughness. Water 2018, 10, 1348–1366. [Google Scholar] [CrossRef]
- Zhang, W.; Guo, J.; Shi, L.; Liu, Z.; Ye, Q.; Kuang, C.; Peng, Y.; Qi, H. Experimental study on the evolution of submerged artificial sandbar-beach profile under the regular waves condition. Front. Mar. Sci. 2025, 11, 1530904–1530918. [Google Scholar] [CrossRef]
- Short, A.D.; Trembanis, A.C. Decadal scale patterns in beach oscillation and rotation Narrabeen Beach, Australia—Time series, PCA and wavelet analysis. J. Coast. Res. 2004, 20, 523–532. [Google Scholar] [CrossRef]
- Barnard, P.L.; van Ormondt, M.; Erikson, L.H.; Eshleman, J.; Hapke, C.; Ruggiero, P.; Adams, P.N.; Foxgrover, A.C. Development of the Coastal Storm Modeling System (CoSMoS) for predicting the impact of storms on high-energy, active-margin coasts. Nat. Hazards 2014, 74, 1095–1125. [Google Scholar] [CrossRef]
Symbol | Definition |
---|---|
surface elevation spectrum | |
pressure spectrum | |
frequency | |
wavenumber | |
water depth | |
elevation of the pressure sensor above the seabed | |
hyperbolic cosine function | |
depth of the instrument below the water surface | |
cutoff frequency | |
acceleration due to gravity | |
spectral moment of order p | |
order of the spectral moment | |
zero-order moment | |
significant wave steepness | |
mean wave period | |
hyperbolic tangent function | |
significant wave height |
A | B | |
---|---|---|
Time period 1 | 21 January 20:00–22 January 01:00 | 21 January 20:00–22 January 00:00 |
Time period 2 | 22 January 10:00–23 January 02:00 | 22 January 07:00–23 January 01:00 |
Time period 3 | 23 January 07:00–23 January 10:00 | 23 January 08:00–24 January 03:00 |
Time period 4 | 23 January 14:00–24 January 01:40 |
Date | Point | GW | NIGW | FIGW | |||
r | p | r | p | r | p | ||
22 | A | 0.564 | <0.001 | 0.437 | 0.002 | −0.357 | 0.011 |
23 | A | 0.473 | <0.001 | 0.047 | 0.357 | −0.211 | 0.048 |
22 | B | −0.757 | <0.001 | −0.341 | 0.006 | 0.321 | 0.009 |
23 | B | −0.726 | <0.001 | −0.205 | 0.063 | 0.179 | 0.092 |
Date | Regression Equation | R2 | p | Beta |
---|---|---|---|---|
22 | BLE = 0.853 + 10.2 × GW + 11.947 × NIGW − 5665.609 × FIGW − 1.155 × Hm − 0.071 × Tm− 15.958 × Ss + 0.136 × h | 94.1% | <0.001 | Beta(GW) = 0.743, Beta (NIGW) = 0.108, Beta (FIGW) = −0.019, Beta (Hm) = −0.853, Beta (Tm) = −0.363, Beta (Ss) = −0.592, Beta (h) = 0.739 |
23 | BLE = 0.138 − 2.978 × GW − 1.477 × NIGW + 11016.991 × FIGW + 0.256 × Hm − 0.011 × Tm + 0.885 × Ss + 0.027 × h | 45.1% | <0.001 | Beta(GW) = −1.907, Beta (NIGW) = −0.073, Beta (FIGW) = 0.103, Beta (Hm) = 1.692, Beta (Tm) = −0.233, Beta (Ss) = 0.052, Beta (h) = 0.749 |
Date | Regression Equation | R2 | p | Beta |
---|---|---|---|---|
22 | BLE = 0.022 + 2.369 × GW + 32.207 × NIGW + 34612.82 × FIGW + 1.414 × Hm − 0.04 × Tm + 10.01 × Ss − 0.528 × h | 84.8% | <0.001 | Beta(GW) = 0.145, Beta (NIGW) = 0.11, Beta (FIGW) = 0.04, Beta (Hm) = 0.829, Beta (Tm) = −0.099, Beta (Ss) = 0.162, Beta (h) = −1.648 |
23 | BLE = 0.369 + 0.78 × GW + 14.397 × NIGW + 25089.993 × FIGW + 0.354 × Hm − 0.025 × Tm − 4.684 × Ss − 0.173 × h | 88.5% | <0.001 | Beta(GW) = 0.218, Beta (NIGW) = 0.304, Beta (FIGW) = 0.123, Beta (Hm) = 0.935, Beta (Tm) = −0.29, Beta (Ss) = −0.28, Beta (h) = −2.166 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, X.; Li, Z.; Sun, Y.; Zhu, D.; Chen, T.; Zeng, C. Analysis of Sandbar–Trough Bed Level Changes Under Regular Wave Conditions—A Case Study of Ten-Mile Silver Beach, Hailing Island, China. J. Mar. Sci. Eng. 2025, 13, 953. https://doi.org/10.3390/jmse13050953
Bian X, Li Z, Sun Y, Zhu D, Chen T, Zeng C. Analysis of Sandbar–Trough Bed Level Changes Under Regular Wave Conditions—A Case Study of Ten-Mile Silver Beach, Hailing Island, China. Journal of Marine Science and Engineering. 2025; 13(5):953. https://doi.org/10.3390/jmse13050953
Chicago/Turabian StyleBian, Xiaodong, Zhiqiang Li, Yan Sun, Daoheng Zhu, Tao Chen, and Chunhua Zeng. 2025. "Analysis of Sandbar–Trough Bed Level Changes Under Regular Wave Conditions—A Case Study of Ten-Mile Silver Beach, Hailing Island, China" Journal of Marine Science and Engineering 13, no. 5: 953. https://doi.org/10.3390/jmse13050953
APA StyleBian, X., Li, Z., Sun, Y., Zhu, D., Chen, T., & Zeng, C. (2025). Analysis of Sandbar–Trough Bed Level Changes Under Regular Wave Conditions—A Case Study of Ten-Mile Silver Beach, Hailing Island, China. Journal of Marine Science and Engineering, 13(5), 953. https://doi.org/10.3390/jmse13050953