Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = nature gas flooding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2129 KiB  
Article
Chemotypic and Seasonal Variations in Essential Oils from Mespilodaphne cymbarum (Kunth) Trofimov and Their Antibacterial and Antibiofilm Activities
by Amanda Galdi Boaretto, Darlene Gris, Jéssica Scherer, Katyuce Souza Farias, Jean Carlo Quadros, Alexandre José Macedo, Carlos Alexandre Carollo and Denise Brentan Silva
Plants 2025, 14(13), 1939; https://doi.org/10.3390/plants14131939 - 24 Jun 2025
Viewed by 474
Abstract
This study investigated the essential oils (EOs) from leaf, bark, and fruit of Mespilodaphne cymbarum (Kunth) Trofimov (Lauraceae), focusing on their chemical composition and antimicrobial and antibiofilm activities. EOs were extracted from plants collected in the Amazon during dry and flood seasons and [...] Read more.
This study investigated the essential oils (EOs) from leaf, bark, and fruit of Mespilodaphne cymbarum (Kunth) Trofimov (Lauraceae), focusing on their chemical composition and antimicrobial and antibiofilm activities. EOs were extracted from plants collected in the Amazon during dry and flood seasons and analyzed by gas chromatography–mass spectrometry. Although chemical differences were evident among plant organs and chemotypes, the influence of seasonality was not pronounced. Fruit EO was dominated by α- and β-santalene and limonene. Bark EO was rich in phenylpropanoids, including methyl eugenol, myristicin, and elemicin. Leaf EO showed the greatest metabolic diversity, with chemotype-specific variations. Leaf and bark EOs demonstrated superior antibacterial and antibiofilm activities compared to fruit EO, especially against Gram-positive bacteria such as Staphylococcus epidermidis, Staphylococcus aureus, and Micrococcus luteus. Chemotype-1 leaf and bark EOs inhibited S. epidermidis biofilm formation, while chemotype-2 reduced bacterial growth. The leaf EOs from both chemotypes reduced bacterial growth against S. aureus, and bark EO decreased biofilm formation. All leaf and bark EOs showed antibiofilm activity against M. luteus. These findings highlight the potential of M. cymbarum EOs as natural sources of bioactive compounds and emphasize the importance of chemotype and plant organ selection for optimized applications. Full article
Show Figures

Figure 1

26 pages, 8715 KiB  
Article
Climate Resilience and Adaptive Strategies for Flood Mitigation: The Valencia Paradigm
by Nuno D. Cortiços and Carlos C. Duarte
Sustainability 2025, 17(11), 4980; https://doi.org/10.3390/su17114980 - 29 May 2025
Viewed by 1087
Abstract
The Valencia region exemplifies the intricate interplay of climate, urbanization, and human interventions in managing hydrological systems amidst increasing environmental challenges. This study explores the escalating risks posed by flood events, emphasizing how anthropogenic factors—such as urban expansion, sediment exploitation, and inadequate land [...] Read more.
The Valencia region exemplifies the intricate interplay of climate, urbanization, and human interventions in managing hydrological systems amidst increasing environmental challenges. This study explores the escalating risks posed by flood events, emphasizing how anthropogenic factors—such as urban expansion, sediment exploitation, and inadequate land use—amplify the vulnerabilities to extreme weather patterns driven by abnormal Greenhouse Gas (GHG) concentration. Nature-based solutions (NBS) like floodplain restoration and dam removal are analyzed for their benefits in enhancing ecosystem resilience and biodiversity but are critiqued for unintended consequences, including accelerated river flow and sedimentation issues. This study further examines the impacts of forest fires, exacerbated by land abandonment and insufficient management practices, on soil erosion and runoff. A critical evaluation of global policies like the Sustainable Development Goals (SDGs) reveals the tension between aspirational targets and practical, locally-driven implementations. By advocating historical insights, ecological restoration practices, and community engagement, the findings highlight the importance of adaptive strategies to harmonize global frameworks with local realities through modeling and scaling simulations, offering a replicable model for sustainable flood mitigation and resilience building in Mediterranean contexts and beyond. Full article
Show Figures

Figure 1

26 pages, 2575 KiB  
Article
Bi-Level Resilience-Oriented Sitting and Sizing of Energy Hubs in Electrical, Thermal and Gas Networks Considering Energy Management System
by Dhafer M. Dahis, Seyed Saeedallah Mortazavi, Mahmood Joorabian and Alireza Saffarian
Energies 2025, 18(10), 2569; https://doi.org/10.3390/en18102569 - 15 May 2025
Cited by 1 | Viewed by 338
Abstract
In this article, the planning and energy administration of energy hubs in electric, thermal and gas networks are presented, considering the resilience of the system against natural phenomena like floods and earthquakes. Each hub consists of bio-waste, wind and solar renewable units. These [...] Read more.
In this article, the planning and energy administration of energy hubs in electric, thermal and gas networks are presented, considering the resilience of the system against natural phenomena like floods and earthquakes. Each hub consists of bio-waste, wind and solar renewable units. These include non-renewable units such as boilers and combined heat and power (CHP) units. Compressed air and thermal energy storage are used in each hub. The design is formed as a bi-level optimization framework. In the upper level of the scheme, the energy management of networks bound to system resiliency is provided. This considers the minimization of annual operating and resilience costs based on optimal power flow equations in networks. In the lower-level model, the planning (placement and sizing) of hubs is considered. This minimizes the total building and operation costs of hubs based on the operation-planning equations for power supplies and storages. Scenario-based stochastic optimization models are used to determine the uncertainties of demand, the power of renewable systems, energy price and the accessibility of distribution networks’ elements against natural disasters. In this study, the Karush–Kuhn–Tucker technique is used to extract the single-level formulation. A numerical report for case studies verifies the potential of the plan to enhance the economic, operation and resilience status of networks with energy administration and the optimal planning of hubs in the mentioned networks. By determining the optimal capacity for resources and storage in the hubs located in the optimal places and the optimal energy administration of the hubs, the economic, exploitation and resilience situation of the networks are improved by about 27.1%, 97.7% and 23–50%, respectively, compared to load flow studies. Full article
(This article belongs to the Special Issue Advanced Forecasting Methods for Sustainable Power Grid)
Show Figures

Figure 1

27 pages, 9953 KiB  
Article
City Diagnosis as a Strategic Component in Preparing Urban Areas for Climate Change: Insights from the ‘City with Climate’ Project
by Katarzyna Samborska-Goik, Marta Pogrzeba, Joachim Bronder, Patrycja Obłój and Magdalena Głogowska
Appl. Sci. 2025, 15(8), 4092; https://doi.org/10.3390/app15084092 - 8 Apr 2025
Viewed by 687
Abstract
The aim of this study is to present a methodology for diagnosing cities in terms of hydrological and meteorological threats, with the goal of improving water management and helping cities adapt to changing conditions. Urbanisation is expected to progress unevenly across countries and [...] Read more.
The aim of this study is to present a methodology for diagnosing cities in terms of hydrological and meteorological threats, with the goal of improving water management and helping cities adapt to changing conditions. Urbanisation is expected to progress unevenly across countries and cities, influenced by factors such as climatic conditions, economic disparities, and governance structures. Consequently, urban landscapes should strive for a balanced approach that integrates safety and risk management, commercial spaces, emotional well-being, and the promotion of biodiversity. Cities play a pivotal role in addressing climate change, as they account for a significant share of global energy consumption and greenhouse gas emissions. In Poland, numerous national and international projects are being implemented to help cities mitigate the impacts of climate change. Among these, the City with Climate project aimed to enhance residents’ quality of life while facilitating a pro-climate transition for cities. A holistic and multifaceted approach was adopted, incorporating the analysis of historical flood events based on archival documents and rescue service reports, detailed GIS data such as soil sealing, non-drained basins, NDVI, NDBI, and a multi-criteria analysis targeting hydrological and water management factors to develop effective solutions for urban retention challenges. The main findings indicate that: (1) combining insightful analyses using well-established methods provides a robust foundation for informed decision-making by city authorities; (2) overlaying information layers, such as local flooding interventions, non-drained areas, drainage networks, and soil sealing, helps identify areas requiring large-scale, technical, or nature-based solutions; and (3) regardless of city size, there is a concerning trend of increasing impervious surfaces replacing green areas, alongside urban sprawl altering land use in flood-prone regions, including mountainous, forested, and floodplain areas that should be protected. These findings illustrate that employing a structured project methodology alongside a comprehensive approach can significantly contribute to urban landscape planning, addressing the challenges of climate change while enhancing urban biodiversity through blue and green infrastructure. Full article
(This article belongs to the Special Issue Ecosystems and Landscape Ecology)
Show Figures

Figure 1

19 pages, 5335 KiB  
Article
Evaluating Nitrogen Gas Injection Performance for Enhanced Oil Recovery in Fractured Basement Complex Reservoirs: Experiments and Modeling Approaches
by Ying Jia, Jingqi Ouyang, Feng Xu, Xiaocheng Gao, Juntao Zhang, Shiliang Liu and Da Li
Processes 2025, 13(2), 326; https://doi.org/10.3390/pr13020326 - 24 Jan 2025
Viewed by 987
Abstract
This study explored the effectiveness of gas injection for enhanced oil recovery (EOR) in fractured basement complex reservoirs, combining laboratory experiments with numerical simulation analyses. The experiments simulated typical field conditions, focusing on understanding the interaction between the injected gas and the reservoir’s [...] Read more.
This study explored the effectiveness of gas injection for enhanced oil recovery (EOR) in fractured basement complex reservoirs, combining laboratory experiments with numerical simulation analyses. The experiments simulated typical field conditions, focusing on understanding the interaction between the injected gas and the reservoir’s fracture–matrix system. The laboratory results showed that under the current reservoir pressure and temperature conditions, nitrogen gas flooding in the fractured matrix achieved a superior oil recovery efficiency compared to that of the other gases tested (CO2, APG, and oxygen-reduced air), exhibiting the most favorable movable oil saturation range and the lowest residual oil saturation. To evaluate the performance of nitrogen gas injection in a fractured basement complex reservoir, a 3D reservoir model with complex natural fractures was built in a numerical reservoir simulator. Special methods were required for the geological modeling and reservoir simulation, with the specific principles outlined. Numerical simulations of gas injection into fractured basement complex reservoirs revealed that cyclic gas injection was identified as the most effective strategy, balancing incremental oil recovery with minimized gas channeling risks. This study demonstrated that the optimal injection location and rate are crucial factors affecting the recovery performance. These findings provided actionable insights for implementing gas injection EOR strategies in fractured basement complex reservoirs, highlighting the importance of optimizing the injection parameters to maximize the recovery. Full article
(This article belongs to the Special Issue Advances in Enhancing Unconventional Oil/Gas Recovery, 2nd Edition)
Show Figures

Figure 1

14 pages, 3294 KiB  
Article
Research on Modifying the Development Plan to Enhanced Oil Recovery in the Middle and Late Stages of Water Flooding in Deep Clastic Rock Reservoirs
by Fuquan Song, Lu Tian and Hui Li
Processes 2025, 13(1), 177; https://doi.org/10.3390/pr13010177 - 10 Jan 2025
Viewed by 685
Abstract
The exploitation of Block L within the Tarim Basin oilfield commenced in 1989 and it has transitioned from the natural energy development stage to the current water injection development stage. Despite this, the efficacy of water flooding remains suboptimal, with the low degree [...] Read more.
The exploitation of Block L within the Tarim Basin oilfield commenced in 1989 and it has transitioned from the natural energy development stage to the current water injection development stage. Despite this, the efficacy of water flooding remains suboptimal, with the low degree of control, uneven utilization of reserves, and subpar mining outcomes. The block still contains substantial remaining oil resources, necessitating continued extraction. Notably, the primary oil produced in this block is condensate oil, which commands a high economic value. To enhance the oil recovery efficiency of the block reservoir, a development plan employing alternating and water-natural gas flooding has been proposed. The objective of this study is to evaluate the feasibility of the proposed alternating displacement scheme involving natural gas and water in this reservoir. The specific steps include PVT fitting, historical matching, residual oil evaluation, and the optimization of gas injection parameters. Results show that for this reservoir the water-natural gas flooding (WAG) is the optimal option. And this article has the application of WAG flooding simulation, simulating 15 years of operation. Compared with the original development scheme of the original well pattern, the recovery of this reservoir is increased by 12.05%, which provided a reference basis for the on-site application of WAG in this reservoir. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

16 pages, 3315 KiB  
Article
Feasibility of Carbon Dioxide as Cushion Gas in Depleted Gas Reservoirs: An Experiment Study on CO2–CH4 Dispersion during Flow Alternation
by Jinhui Yang, Binshan Ju, An Yang, Zixian Cui, Meng Wang, Yapeng Tian and Hengchen Qi
Energies 2024, 17(18), 4676; https://doi.org/10.3390/en17184676 - 20 Sep 2024
Cited by 1 | Viewed by 1169
Abstract
This study investigates the feasibility of utilizing carbon dioxide (CO2) as a cushion gas in depleted reservoirs for enhanced gas storage efficiency and carbon sequestration against the backdrop of rising natural gas stable supply demand and climate change concerns. Simulations of [...] Read more.
This study investigates the feasibility of utilizing carbon dioxide (CO2) as a cushion gas in depleted reservoirs for enhanced gas storage efficiency and carbon sequestration against the backdrop of rising natural gas stable supply demand and climate change concerns. Simulations of gas storage reservoir scenarios require accurate dispersion parameters at flow alternation conditions to quantify the size of the miscible displacement front. Several experimental studies using core-flooding equipment aimed at measuring related parameters have been reported over the last decade but did not take flow alternation into consideration. We simulated directionally variable displacements to mimic the cyclic injection and extraction processes in gas storage, focusing on the dispersion characteristics of CO2 and methane (CH4) during flow alternation. Key findings were observed using Nuclear Magnetic Resonance (NMR) imaging, which provided real-time data on the spatial distribution and temporal changes of CH4 signals in rock cores. The results revealed that dispersion, influenced predominantly by dispersion coefficients rather than molecular diffusion, was significantly higher during alternating flow compared to concurrent displacement. Additionally, CO2 exhibited a greater dispersion effect when displacing CH4 than the reverse. This enhanced mixing efficiency during flow alternation supports the potential of CO2 as a cost-effective and efficient cushion gas, offering both improved storage performance and the added benefit of CO2 sequestration. These findings contribute valuable insights for the numerical simulation and operational adaptation of CO2 in gas storage reservoirs, emphasizing the importance of understanding fluid interactions under varying flow conditions to optimize storage efficiency and environmental benefits. Full article
(This article belongs to the Section B3: Carbon Emission and Utilization)
Show Figures

Figure 1

14 pages, 4869 KiB  
Article
Research on Inter-Fracture Gas Flooding for Horizontal Wells in Changqing Yuan 284 Tight Oil Reservoir
by Lingfang Tan, Yi Yang, Wei Xiong, Rui Shen, Yu Xiong, Yuanhang Qi and Zewei Sun
Energies 2024, 17(17), 4254; https://doi.org/10.3390/en17174254 - 26 Aug 2024
Viewed by 892
Abstract
In tight reservoir development, traditional enhanced oil recovery (EOR) methods are incapable of effectively improving oil recovery in tight reservoirs. Given this, inter-fracture flooding is proposed as a new EOR method, and physical model simulation and numerical simulation are performed for inter-fracture water [...] Read more.
In tight reservoir development, traditional enhanced oil recovery (EOR) methods are incapable of effectively improving oil recovery in tight reservoirs. Given this, inter-fracture flooding is proposed as a new EOR method, and physical model simulation and numerical simulation are performed for inter-fracture water flooding. Compared with inter-fracture water flooding, inter-fracture gas flooding has a higher application prospect. However, few studies on inter-fracture gas flooding have been reported, and its EOR mechanisms and performance are unclear. This paper used the geological model of the actual tight reservoir to carry out numerical simulations for two horizontal wells in the Changqing Yuan 284 block. The results showed that (1) inter-fracture gas flooding can effectively supplement formation energy and increase formation pressure; (2) inter-fracture gas flooding delivers simultaneous displacement, which can effectively increase the swept area in tight reservoirs; (3) injected CO2 dissolves into the reservoir fluid, reduces fluid viscosity, and improves fluid flow through the reservoir; and (4) the recovery factor increment of the CO2 injection is higher than those of natural gas injection and N2 injection. The findings of this research provide references for the production and development of tight reservoirs. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

23 pages, 6394 KiB  
Article
Trade-Off and Synergy Mechanism of Agricultural Water Resource Spatial Allocation in Monsoon Climate Areas Based on Machine Learning: A Case Study of Reservoir Layout Optimization in Shandong Province, China
by Mingyu Zou, Danfeng Xie, Liwen Xu, Ke Dai, Shuang Liang, Mengdie Guo, Xushuai Qin and Weijun Zhao
Agronomy 2024, 14(9), 1902; https://doi.org/10.3390/agronomy14091902 - 25 Aug 2024
Cited by 1 | Viewed by 1377
Abstract
Influenced by increasing global extreme weather and the uneven spatiotemporal distribution of water resources in monsoon climate areas, the balance of agricultural water resources supply and demand currently faces significant challenges. Conducting research on the spatial allocation trade-offs and synergistic mechanisms of agricultural [...] Read more.
Influenced by increasing global extreme weather and the uneven spatiotemporal distribution of water resources in monsoon climate areas, the balance of agricultural water resources supply and demand currently faces significant challenges. Conducting research on the spatial allocation trade-offs and synergistic mechanisms of agricultural water resources in monsoon climate areas is extremely important. This study takes the spatial layout of reservoir site selection in water conservancy projects as an example, focusing on Shandong Province as the research area. During the site selection process, the concept of water resource demand is introduced, and the suitability of reservoir siting is integrated. It clarifies ten influencing factors for suitability degree and five influencing factors for demand. A bi-objective optimization model that includes suitability degree and demand degree is established. Utilizing machine learning methods such as the GA_BP neural network model and the GA-bi-objective optimization model to balance and coordinate the supply and demand relationship of agricultural water resources in the monsoon region. The study found that: (1) in the prediction of suitability degree, the influencing factors are most strongly correlated with the regulatory storage capacity (regulatory storage capacity > total storage capacity > regulating storage coefficient); (2) compared with single-objective optimization of suitability degree, the difference between water supply and demand can be reduced by 74.3% after bi-objective optimization; (3) according to the spatial layout optimization analysis, the utilization of water resources in the central and western parts of Shandong Province is not sufficient, and the construction of agricultural reservoirs should be carried out in a targeted manner. This study provides new ideas for promoting the efficient use of water resources in monsoon climate zones and the coordinated development of humans and nature, reflecting the importance of supply and demand balance in the spatial allocation of agricultural water resources, reducing the risk of agricultural production being affected by droughts and floods. Full article
(This article belongs to the Special Issue Influence of Irrigation and Water Use on Agronomic Traits of Crop)
Show Figures

Figure 1

11 pages, 5895 KiB  
Article
Simulation Study of Microscopic Seepage in Aquifer Reservoirs with Water–Gas Alternated Flooding
by Zhao Yang and Ziyu Zhou
Energies 2024, 17(16), 4149; https://doi.org/10.3390/en17164149 - 21 Aug 2024
Viewed by 1128
Abstract
Underground gas storage (UGS) is a beneficial economic method of compensating for the imbalance between natural gas supply and demand. This paper addresses the problem of a lack of research on the two-phase distribution pattern and seepage law during the water–gas alternated flooding [...] Read more.
Underground gas storage (UGS) is a beneficial economic method of compensating for the imbalance between natural gas supply and demand. This paper addresses the problem of a lack of research on the two-phase distribution pattern and seepage law during the water–gas alternated flooding in gas storage reservoirs. The study constructed a three-dimensional digital core of the aquifer reservoir based on Computed Tomography (CT) scanning technology, and extracted the connecting pore structure to establish the tetrahedral mesh model. A two-phase microscopic seepage model was established based on the Volume of Fluid (VOF)method, and microscopic gas and gas–liquid two-phase unsaturated microscopic seepage simulation was carried out. The results show that the effective reservoir capacity increases with the increase in the number of alternated flooding cycles. The irreducible water is mainly distributed in the dead-end of the pore space and small pore throats, and the residual gas is mainly distributed as a band in the gas–water interface and the dead-end of the pore space of the previous round. The reservoir capacity can be increased by appropriately increasing the intensity of injection and extracting and decreasing the pressure of the reservoir. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

14 pages, 482 KiB  
Article
Impacts of Local Government Perceptions of Disaster Risks on Land Resilience Planning Implementation
by Soyoung Kim, Simon A. Andrew, Edgar Ramirez de la Cruz, Woo-Je Kim and Richard Clark Feiock
Land 2024, 13(7), 1085; https://doi.org/10.3390/land13071085 - 19 Jul 2024
Cited by 2 | Viewed by 1591
Abstract
Local government managers play a critical role in sustainability and climate adaptation planning, and in relation to land-use policy, but little is known about how managers’ hazard risk concerns influence the implementation of resilience policy or how this relationship may vary across different [...] Read more.
Local government managers play a critical role in sustainability and climate adaptation planning, and in relation to land-use policy, but little is known about how managers’ hazard risk concerns influence the implementation of resilience policy or how this relationship may vary across different landscapes and types of hazards. Linking managers’ disaster concerns to their planning choices is particularly relevant to resilience planning for adaptation to climate change, since greenhouse gas emissions are global but the harms produced by climate change are local. Moreover, climate adaptation planning encompasses risks from multiple hazards. For a sample of cities in the state of Florida, USA, we report the findings of empirical analysis of the relationships between local government managers’ hazard-specific climate-related disaster concerns and their resilience-planning priorities for four types of hazards: river flooding, sea-level rise, storm surge and hurricane/tornado winds. Drawing on data from a survey of local disaster managers and policy data on the implementation of adaptation-planning actions, the link between managers’ concerns and plan implementation is identified and compared across communities and across types of hazards. The pooled logit regression results reveal that the differences observed among these hazards persist even after controlling for objective risks and relevant community characteristics. We discuss the nature of the differences across four hazards and explore the implications of the findings for the literature on land use and climate adaptation and for the education of local government managers. Full article
Show Figures

Figure 1

22 pages, 9597 KiB  
Article
Dynamic Change Characteristics and Main Controlling Factors of Pore Gas and Water in Tight Reservoir of Yan’an Gas Field in Ordos Basin
by Yongping Wan, Zhenchuan Wang, Meng Wang, Xiaoyan Mu, Jie Huang, Mengxia Huo, Ye Wang, Kouqi Liu and Shuangbiao Han
Processes 2024, 12(7), 1504; https://doi.org/10.3390/pr12071504 - 17 Jul 2024
Viewed by 996
Abstract
Tight sandstone gas has become an important field of natural gas development in China. The tight sandstone gas resources of Yan’an gas field in Ordos Basin have made great progress. However, due to the complex gas–water relationship, its exploration and development have been [...] Read more.
Tight sandstone gas has become an important field of natural gas development in China. The tight sandstone gas resources of Yan’an gas field in Ordos Basin have made great progress. However, due to the complex gas–water relationship, its exploration and development have been seriously restricted. The occurrence state of water molecules in tight reservoirs, the dynamic change characteristics of gas–water two-phase seepage and its main controlling factors are still unclear. In this paper, the water-occurrence state, gas–water two-phase fluid distribution and dynamic change characteristics of different types of tight reservoir rock samples in Yan’an gas field were studied by means of water vapor isothermal adsorption experiment and nuclear magnetic resonance methane flooding experiment, and the main controlling factors were discussed. The results show that water molecules in different types of tight reservoirs mainly occur in clay minerals and their main participation is in the formation of fractured and parallel plate pores. The adsorption characteristics of water molecules conform to the Dent model; that is, the adsorption is divided into single-layer adsorption, multi-layer adsorption and capillary condensation. In mudstone, limestone and fine sandstone, water mainly occurs in small-sized pores with a diameter of 0.001 μm–0.1 μm. The dynamic change characteristics of gas and water are not obvious and no longer change under 7 MPa displacement pressure, and the gas saturation is low. The gas–water dynamic change characteristics of conglomerate and medium-coarse sandstone are obvious and no longer change under 9 MPa displacement pressure. The gas saturation is high, and the water molecules mainly exist in large-sized pores with a diameter of 0.1 μm–10 μm. The development of organic matter in tight reservoir mudstone is not conducive to the occurrence of water molecules. Clay minerals are the main reason for the high water saturation of different types of tight reservoir rocks. Tight rock reservoirs with large pore size and low clay mineral content are more conducive to natural gas migration and occurrence, which is conducive to tight sandstone gas accumulation. Full article
Show Figures

Figure 1

29 pages, 18921 KiB  
Article
RadWet-L: A Novel Approach for Mapping of Inundation Dynamics of Forested Wetlands Using ALOS-2 PALSAR-2 L-Band Radar Imagery
by Gregory Oakes, Andy Hardy, Pete Bunting and Ake Rosenqvist
Remote Sens. 2024, 16(12), 2078; https://doi.org/10.3390/rs16122078 - 8 Jun 2024
Cited by 4 | Viewed by 2083
Abstract
The ability to accurately map tropical wetland dynamics can significantly contribute to a number of areas, including food and water security, protection and enhancement of ecosystems, flood hazard management, and our understanding of natural greenhouse gas emissions. Yet currently, there is not a [...] Read more.
The ability to accurately map tropical wetland dynamics can significantly contribute to a number of areas, including food and water security, protection and enhancement of ecosystems, flood hazard management, and our understanding of natural greenhouse gas emissions. Yet currently, there is not a tractable solution for mapping tropical forested wetlands at high spatial and temporal resolutions at a regional scale. This means that we lack accurate and up-to-date information about some of the world’s most significant wetlands, including the Amazon Basin. RadWet-L is an automated machine-learning classification technique for the mapping of both inundated forests and open water using ALOS ScanSAR data. We applied and validated RadWet-L for the Amazon Basin. The proposed method is computationally light and transferable across the range of landscape types in the Amazon Basin allowing, for the first time, regional inundation maps to be produced every 42 days at 50 m resolution over the period 2019–2023. Time series estimates of inundation extent from RadWet-L were significantly correlated with NASA-GFZ GRACE-FO water thickness (Pearson’s r = 0.96, p < 0.01), USDA G-REALM lake hight (Pearson’s r between 0.63 and 0.91, p < 0.01), and in situ river stage measurements (Pearson’s r between 0.78 and 0.94, p < 0.01). Additionally, we conducted an evaluation of 11,162 points against the input ScanSAR data revealing spatial and temporal consistency in the approach (F1 score = 0.97). Serial classifications of ALOS-2 PALSAR-2 ScanSAR data by RadWet-L can provide unique insights into the spatio-temporal inundation dynamics within the Amazon Basin. Understanding these dynamics can inform policy in the sustainable use of these wetlands, as well as the impacts of inundation dynamics on biodiversity and greenhouse gas budgets. Full article
Show Figures

Graphical abstract

15 pages, 671 KiB  
Article
Vehicle Route Planning for Relief Item Distribution under Flood Uncertainty
by Thanan Toathom and Paskorn Champrasert
Appl. Sci. 2024, 14(11), 4482; https://doi.org/10.3390/app14114482 - 24 May 2024
Cited by 3 | Viewed by 1892
Abstract
Flooding, a pervasive and severe natural disaster, significantly damages environments and infrastructure and endangers human lives. In affected regions, disruptions to transportation networks often lead to critical shortages of essential supplies, such as food and water. The swift and adaptable delivery of relief [...] Read more.
Flooding, a pervasive and severe natural disaster, significantly damages environments and infrastructure and endangers human lives. In affected regions, disruptions to transportation networks often lead to critical shortages of essential supplies, such as food and water. The swift and adaptable delivery of relief goods via vehicle is vital to sustain life and facilitate community recovery. This paper introduces a novel model, the Vehicle Routing Problem for Relief Item Distribution under Flood Uncertainty (VRP-RIDFU), which focuses on optimizing the speed of route generation and minimizing waiting times for aid delivery in flood conditions. The Genetic Algorithm (GA) is employed because it effectively handles the uncertainties typical of NP-Hard problems. This model features a dual-population strategy: random and enhanced populations, with the latter specifically designed to manage uncertainties through anticipated route performance evaluations, incorporating factors like waiting times and flood risks. The Population Sizing Module (PSM) is implemented to dynamically adjust the population size based on the dispersion of affected nodes, using standard deviation assessments. Introducing the Complete Subtour Order Crossover (CSOX) method improves solution quality and accelerates convergence. The model’s efficacy is validated through simulated flood scenarios that emulate various degrees of uncertainty in road conditions, affirming its practicality for real-life rescue operations. Focusing on prioritizing waiting times over travel times in routing decisions has proven effective. The model has been tested using standard CVRP problems with 20 distinct sets, each with varying node numbers and patterns, demonstrating superior performance and efficiency in generating vehicle routing plans compared to the shortest routes, which serve as the benchmark for optimal solutions. The results highlight the model’s capability to deliver high-quality solutions more rapidly across all tested scenarios. Full article
Show Figures

Figure 1

20 pages, 10570 KiB  
Article
Monte Carlo Simulation of the CO2 Flooding Efficiency at a Core Scale for Different Oil Compositions
by Anna Andreeva and Andrey Afanasyev
Energies 2024, 17(10), 2259; https://doi.org/10.3390/en17102259 - 8 May 2024
Cited by 1 | Viewed by 1544
Abstract
The evaluation of water-alternating-gas (WAG) efficiency and profitability is complicated by a large number of reservoir, operating, and economic parameters and constraints. This study aims at understanding the influence of the oil composition on different WAG injections. By employing compositional reservoir modeling and [...] Read more.
The evaluation of water-alternating-gas (WAG) efficiency and profitability is complicated by a large number of reservoir, operating, and economic parameters and constraints. This study aims at understanding the influence of the oil composition on different WAG injections. By employing compositional reservoir modeling and the Monte Carlo method to characterize the diversity of oils occurring in nature, we simulate the microscopic displacement efficiency of CO2 flooding when it is applied to both light- and heavy-oil reservoirs. We find that the economic performance of WAG in both miscible and immiscible scenarios is mainly characterized by the dimensionless injection rate and the oil density at surface conditions. Neither the bubble point pressure nor the minimum miscibility pressure can be used for the quantification of the optimal WAG parameters. We present our estimates of the best strategies for the miscible and immiscible injections and verify some of our previous results for randomly sampled oils. In particular, we demonstrate that CO2 flooding is better to apply at higher-dimensionless injection rates. We show that the injection of CO2 organized at a light-oil reservoir results in a higher profitability of WAG, although this comes at the cost of lower carbon storage efficiency. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

Back to TopTop