Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = natural lignocellulosic fibers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2657 KiB  
Article
Damage Analysis and a Novel Mathematical Relation Between the Interface Quality and the Impact Fracture Energy for Epoxy Composites Reinforced with Medium and High Ramie Woven Fabric Volume Fractions
by Marcelo Vitor Ferreira Machado, Felipe Perissé Duarte Lopes, Noan Tonini Simonassi, Eduardo Atem de Carvalho, Carlos Maurício Fontes Vieira and Sergio Neves Monteiro
Polymers 2025, 17(15), 2105; https://doi.org/10.3390/polym17152105 - 31 Jul 2025
Viewed by 243
Abstract
A literature review about polymer composites reveals that natural fibers have been widely used as a reinforcement phase in recent years. In this framework, the lignocellulosic fibers have received marked attention because of their environmental, thermomechanical, and economic advantages for many industrial sectors. [...] Read more.
A literature review about polymer composites reveals that natural fibers have been widely used as a reinforcement phase in recent years. In this framework, the lignocellulosic fibers have received marked attention because of their environmental, thermomechanical, and economic advantages for many industrial sectors. This research aims to identify the impact behavior of ramie reinforced epoxy composites with medium- and high-volume fractions of fibers in intact (nonaged) and aged conditions as well as to analyze if the influence of interface quality on the impact fracture energy can be described by a novel mathematical model. To reach these objectives, the study is designed with three groups (40%, 50%, and 60% of fiber theoretical volume fractions) of intact specimens and three groups of aged samples by condensation and ultraviolet radiation (C-UV) simulation containing the same fiber percentages. Consecutively, impact strength and fracture surface analyses are done to expand the comprehension of the damage mechanisms suffered by the biocomposites and to support the development of the mathematical relation. Certainly, this novel model can contribute to more sustainable and greener industries in the near future. Full article
(This article belongs to the Special Issue Biodegradable Polymer Composites, 2nd Edition)
Show Figures

Figure 1

17 pages, 661 KiB  
Article
An Ultrasonication-Assisted Green Process for Simultaneous Production of a Bioactive Compound-Rich Extract and a Multifunctional Fibrous Ingredient from Spent Coffee Grounds
by Jaquellyne B. M. D. Silva, Mayara T. P. Paiva, Henrique F. Fuzinato, Nathalia Silvestre, Marta T. Benassi and Suzana Mali
Molecules 2025, 30(15), 3117; https://doi.org/10.3390/molecules30153117 - 25 Jul 2025
Viewed by 305
Abstract
Spent coffee grounds (SCGs) are lignocellulosic residues generated from producing espresso or soluble coffee and have no commercial value. This study aimed to develop a new single-step process for extracting bioactive compounds from SCGs based on ultrasonication in an aqueous medium and simultaneously [...] Read more.
Spent coffee grounds (SCGs) are lignocellulosic residues generated from producing espresso or soluble coffee and have no commercial value. This study aimed to develop a new single-step process for extracting bioactive compounds from SCGs based on ultrasonication in an aqueous medium and simultaneously recovering the residual solid fraction, resulting in the integral utilization of the residue. This process resulted in a liquid aqueous extract (LAE) rich in bioactive compounds (caffeine: 400.1 mg/100 g; polyphenols: 800.4 mg GAE/100 g; melanoidins: 2100.2 mg/100 g) and, simultaneously, a solid multifunctional ingredient from modified spent coffee grounds (MSCGs) rich in bioactive compounds and dietary fibers (73.0 g/100 g). The liquid extract can be used as a natural ingredient for drinks or to isolate caffeine, while the solid matrix can be used to produce functional foods. This technique proved to be a promising eco-friendly alternative for the simultaneous production of two different materials from SCGs, maximizing resource efficiency, with some advantages, including short time, simplicity, and cost-effectiveness; using water as a solvent; and requiring no further purification processing. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Graphical abstract

17 pages, 2863 KiB  
Article
Thermodynamic Aspects of Ion Exchange Properties of Bio-Resins from Phosphorylated Cellulose Fibers
by Lahbib Abenghal, Adrien Ratier, Hamid Lamoudan, Dan Belosinschi and François Brouillette
Polymers 2025, 17(15), 2022; https://doi.org/10.3390/polym17152022 - 24 Jul 2025
Viewed by 403
Abstract
Phosphorylated cellulose is proposed as a bio-resin for the removal of heavy metals, as a substitute for synthetic polymer-based materials. Phosphorylation is carried out using kraft pulp fibers as the cellulose source, with phosphate esters and urea as reactants to prevent significant fiber [...] Read more.
Phosphorylated cellulose is proposed as a bio-resin for the removal of heavy metals, as a substitute for synthetic polymer-based materials. Phosphorylation is carried out using kraft pulp fibers as the cellulose source, with phosphate esters and urea as reactants to prevent significant fiber degradation. Herein, phosphorylated fibers, with three types of counterions (sodium, ammonium, or hydrogen), are used in adsorption trials involving four individual metals: nickel, copper, cadmium, and lead. The Langmuir isotherm model is applied to determine the maximum adsorption capacities at four different temperatures (10, 20, 30, and 50 °C), enabling the calculation of the Gibbs free energy (ΔG), entropy (ΔS), and enthalpy (ΔH) of adsorption. The results show that the adsorption capacity of phosphorylated fibers is equal or even higher than that of commercially available resins (1.7–2.9 vs. 2.4–2.6 mmol/g). However, the nature of the phosphate counterion plays an important role in the adsorption capacity, with the alkaline form showing a superior ion exchange capacity than the hybrid form and acid form (2.7–2.9 vs. 2.3–2.7 vs. 1.7–2.5 mmol/g). The thermodynamic analysis indicates the spontaneous (ΔG = (-)16–(-)30 kJ/mol) and endothermic nature of the adsorption process with positive changes in enthalpy (0.45–15.47 kJ/mol) and entropy (0.07–0.14 kJ/mol·K). These results confirm the high potential of phosphorylated lignocellulosic fibers for ion exchange applications, such as the removal of heavy metals from process or wastewaters. Full article
(This article belongs to the Special Issue New Advances in Cellulose and Wood Fibers)
Show Figures

Figure 1

17 pages, 2808 KiB  
Article
Development and Characterization of Mycelium-Based Composite Using Agro-Industrial Waste and Ganoderma lucidum as Insulating Material
by Gustavo Jiménez-Obando, Juan Sebastian Arcila, Ricardo Augusto Tolosa-Correa, Yenny Leandra Valencia-Cardona and Sandra Montoya
J. Fungi 2025, 11(6), 460; https://doi.org/10.3390/jof11060460 - 17 Jun 2025
Viewed by 1179
Abstract
Mycelium-based composites (MBCs) have emerged as eco-friendly alternatives, utilizing fungal mycelium as a natural binder for agro-industrial residues. This study focuses on developing an MBC based on abundant waste in Colombia, pith Arboloco (A) (Montanoa quadrangularis), a plant endemic to the [...] Read more.
Mycelium-based composites (MBCs) have emerged as eco-friendly alternatives, utilizing fungal mycelium as a natural binder for agro-industrial residues. This study focuses on developing an MBC based on abundant waste in Colombia, pith Arboloco (A) (Montanoa quadrangularis), a plant endemic to the Colombian–Venezuelan Andes with outstanding insulating properties, and natural fiber of Kikuyu grass (G) (Cenchrus clandestinus), utilizing Ganoderma lucidum as an agent to form a mycelium network in the MBC. Three formulations, T (100% A), F1 (70% A/30% G), and F2 (30% A/70% G), were evaluated under two different Arboloco particle size ranges (1.0 to 5.6 mm) for their physical, mechanical, and thermal properties. The Arboloco particle sizes did not show significant differences in the MBC properties. An increase in Kikuyu grass proportion (F2) demonstrated superior density (60.4 ± 4.5 kg/m3), lower water absorption (56.6 ± 18.4%), and better compressive strength (0.1686 MPa at 50% deformation). Both mixing formulations (F1–F2) achieved promising average thermal conductivity and specific heat capacity values of 0.047 ± 0.002 W m−1 K−1 and 1714 ± 105 J kg−1 K−1, comparable to commercial insulation materials. However, significant shrinkage (up to 53.6%) and high water absorption limit their scalability for broader applications. These findings enhance the understanding of MBC’s potential for non-structural building materials made of regional lignocellulosic waste, promoting a circular economy in waste management for developing countries. Full article
(This article belongs to the Special Issue Fungal Biotechnology and Application 3.0)
Show Figures

Graphical abstract

21 pages, 4029 KiB  
Article
Virginia Mallow: The Lost Fiber of the Future?
by Gabriela Vanja, Sandra Bischof and Zorana Kovačević
Fibers 2025, 13(5), 63; https://doi.org/10.3390/fib13050063 - 13 May 2025
Viewed by 1469
Abstract
Virginia mallow or Sida hermaphrodita (L.) Rusby (SH) is a perennial plant from the Malvaceae family (mallows) that is used for medicinal purposes, reducing soil erosion, cleaning soil, and most recently for energy production. The potential of sustainable lignocellulosic agro-waste is immense as [...] Read more.
Virginia mallow or Sida hermaphrodita (L.) Rusby (SH) is a perennial plant from the Malvaceae family (mallows) that is used for medicinal purposes, reducing soil erosion, cleaning soil, and most recently for energy production. The potential of sustainable lignocellulosic agro-waste is immense as it represents Earth’s most abundant organic compound. This paper explores fibers isolated from SH stems, a plant with significant industrial application potential, including technical textiles and biocomposites. The fibers were harvested in January, March, and November of 2020 and in January and March of 2021, and their yield, mechanical properties, moisture content, and density were thoroughly analyzed. The fiber yield showed slight variations depending on the harvest time, with consistent results observed across different years, suggesting stable productivity. The SH fibers demonstrated a favorable moisture content, making them suitable for storage and processing, and their density ranged between 1.52 and 1.58 g/cm3, comparable to that of other natural fibers. According to this research, the best mechanical properties were observed in the winter harvest. Furthermore, the high percentage of solid residue left after fiber extraction shows promise for sustainable utilization, primarily for biofuel production. This study underscores the versatility and sustainability of SH fibers, positioning them as a valuable resource for a wide range of industrial applications. Full article
Show Figures

Graphical abstract

18 pages, 2491 KiB  
Review
Use and Roles of Tannins in Polysaccharide-Based Bioplastics and Biocomposites
by Carlo Santulli, Serena Gabrielli and Graziella Roselli
Organics 2025, 6(2), 19; https://doi.org/10.3390/org6020019 - 1 May 2025
Cited by 1 | Viewed by 1467
Abstract
Most bioplastics are based on polysaccharides, which are either synthesized from a variously sourced monomer or extracted from some biomass waste. In many cases, some lignocellulosic fibers are then added to the obtained bioplastics to form biocomposites and extend their range of applications [...] Read more.
Most bioplastics are based on polysaccharides, which are either synthesized from a variously sourced monomer or extracted from some biomass waste. In many cases, some lignocellulosic fibers are then added to the obtained bioplastics to form biocomposites and extend their range of applications beyond packaging films and generically easily biodegradable materials. Plant-extracted tannins, which, as such, might also be building blocks for bioplastics, do nonetheless represent a useful complement in their production when added to polysaccharide-based plastics and biocomposites, since they offer other functions, such as bioadhesion, coloration, and biocidal effect. The variety of species used for tannin extraction and condensation is becoming very wide and is also connected with the local availability of amounts of bio-waste from other productions, such as from the food system. This work tries to summarize the evolution and recent developments in tannin extraction and their increasing centrality in the production of polysaccharide-based plastics, adhesives, and natural fiber composites. Full article
(This article belongs to the Special Issue Chemistry of Heterocyclic Compounds)
Show Figures

Figure 1

37 pages, 14520 KiB  
Article
Computational and Experimental Ballistic Behavior of Epoxy Composites Reinforced with Carnauba Fibers: A Stand-Alone Target and Multilayered Armor System
by Raí Felipe Pereira Junio, Bernardo Soares Avila de Cêa, Douglas Santos Silva, Édio Pereira Lima Júnior, Sergio Neves Monteiro and Lucio Fabio Cassiano Nascimento
Polymers 2025, 17(4), 534; https://doi.org/10.3390/polym17040534 - 19 Feb 2025
Cited by 1 | Viewed by 932
Abstract
The development of efficient and sustainable armor systems is crucial for protecting bodies and vehicles. In this study, epoxy composites reinforced with natural lignocellulosic fibers (NLFs) from carnauba (Copernicia prunifera) were produced with 0, 10, 20, 30, and 40% fiber volume [...] Read more.
The development of efficient and sustainable armor systems is crucial for protecting bodies and vehicles. In this study, epoxy composites reinforced with natural lignocellulosic fibers (NLFs) from carnauba (Copernicia prunifera) were produced with 0, 10, 20, 30, and 40% fiber volume fractions. Their ballistic performance was evaluated by measuring residual velocity and absorbed energy after impact with 7.62 mm ammunition, as well as their application in a multilayer armor system (MAS). Scanning electron microscopy (SEM) was used to analyze fracture regions, and explicit dynamic simulations were performed for comparison with experimental tests. Residual velocity tests indicated a limit velocity (VL) between 213 and 233 m/s and absorbed energy (Eabs) between 221 and 264 J, surpassing values reported for aramid fabric. All formulations showed indentation depths below the National Institute of Justice (NIJ) limit, with the 40% fiber sample achieving the lowest depth (31.2 mm). The simulation results correlated well with the experimental data, providing insight into deformation mechanisms during a level III ballistic event. These findings demonstrate the high potential of carnauba fibers in epoxy-based polymer composites, particularly as an intermediate layer in MAS, offering a sustainable alternative for ballistic protection. Full article
Show Figures

Figure 1

33 pages, 2657 KiB  
Review
Prevention of Biofouling Due to Water Absorption of Natural Fiber Composites in the Aquatic Environment: A Critical Review
by Cristiano Fragassa, Sara Mattiello, Martina Fronduti, Jo’ Del Gobbo, Radmila Gagic and Carlo Santulli
J. Compos. Sci. 2024, 8(12), 532; https://doi.org/10.3390/jcs8120532 - 15 Dec 2024
Cited by 6 | Viewed by 4444
Abstract
Introducing lignocellulosic fibers as the matrix reinforcement in composites is an opportunity for weight reduction and also for the use of by-products and biomass waste from other systems, such as agriculture and textiles. In the case of nautical applications, biofouling, meaning damage during [...] Read more.
Introducing lignocellulosic fibers as the matrix reinforcement in composites is an opportunity for weight reduction and also for the use of by-products and biomass waste from other systems, such as agriculture and textiles. In the case of nautical applications, biofouling, meaning damage during service by marine organisms, represents a significant issue. To address this problem, a number of measures can be taken: these include the introduction of various types of fillers, mainly mineral, in composites, tailored treatment of fibers, and hybrid approaches, including a number of different modifications, such as matrix or fiber grafting. This review reports the state of the art in the various studies carried out to elucidate the performance of natural fiber composites and hybrids as regards water absorption and more specifically exposure to seawater for a prolonged time so as to simulate service conditions. The perspectives on the use of natural fiber composites (NFCs) in aquatic environments will be discussed with respect to the possible onset of degradation by biofouling. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Graphical abstract

14 pages, 17007 KiB  
Article
Study of the Influence of Bamboo Suspension Water-Removal Processes on the Properties of Bamboo-Based Molding Materials
by Xiaowei Zhuang, Weichen Li, Xin Pan, Hui Qiao, Baoyong Liu, Weiming Yang and Yongshun Feng
Polymers 2024, 16(23), 3337; https://doi.org/10.3390/polym16233337 - 28 Nov 2024
Viewed by 968
Abstract
Bamboo is a fast-growing lignocellulosic plant in nature. It is an abundant and renewable resource with wide applications. The processing of bamboo results in a large amount of residue. In this paper, we developed a method to utilize bamboo residue to prepare a [...] Read more.
Bamboo is a fast-growing lignocellulosic plant in nature. It is an abundant and renewable resource with wide applications. The processing of bamboo results in a large amount of residue. In this paper, we developed a method to utilize bamboo residue to prepare a novel lightweight porous molding material. A hydrated thermochemical grinding process was proposed to disintegrate bamboo fibers and activate bamboo’s own binding components. The influence of the water removal by pressure from bamboo suspension and subsequent different drying methods on the product’s properties was evaluated. The two-step drying ensured a low production cost and high product quality. The bamboo molding material was characterized based on thermal stability, morphology, functional groups, particle size distribution, crystallinity, and mechanical strength. A lightweight porous material was obtained with a density of 0.23–0.35 g/cm3 by freeze-drying. A high mechanical strength was obtained with a tensile strength of 0.62 MPa and a compressive strength of 10.31 MPa by oven drying. The auto-adhesive mechanisms, including fiber anchorage, polymerization, water plasticization, and heat plasticization, were discussed. The bamboo molding material is a reconstruction of bamboo cell wall components and is easy to recycle. It has potential applications in construction and buildings, packaging, and indoor furnishings. Full article
Show Figures

Graphical abstract

12 pages, 2097 KiB  
Article
Development of a Composite Filament Based on Polypropylene and Garlic Husk Particles for 3D Printing Applications
by Cynthia Graciela Flores-Hernández, Juventino López-Barroso, Claudia Esmeralda Ramos-Galván, Beatriz Adriana Salazar-Cruz, María Yolanda Chávez-Cinco and José Luis Rivera-Armenta
Appl. Sci. 2024, 14(19), 9139; https://doi.org/10.3390/app14199139 - 9 Oct 2024
Cited by 2 | Viewed by 2063
Abstract
Lignocellulosic waste materials are among the most abundant raw materials on Earth, and they have been widely studied as natural additives in materials, especially for polymer composites, with interesting results when it comes to improving physiochemical properties. The main components of these materials [...] Read more.
Lignocellulosic waste materials are among the most abundant raw materials on Earth, and they have been widely studied as natural additives in materials, especially for polymer composites, with interesting results when it comes to improving physiochemical properties. The main components of these materials are cellulose, hemicellulose, and lignin, as well as small amounts of other polysaccharides, proteins, and other extractives. Several kinds of lignocellulosic materials, mainly fibers, have been evaluated in polymer matrices, and recently, the use of particles has increased due to their high surface area. Garlic is a spice seed that generates a waste husk that does not have applications, and there are no reports of industrial use of this kind of lignocellulosic material. Additive manufacturing, also known as 3D printing, is a polymer processing technique that allows for obtaining complex shapes that are hard to obtain with ordinary techniques. The use of composites based on synthetic polymers and lignocellulosic materials is a growing field of research. In the present work, the elaboration and evaluation of 3D-printed polypropylene–garlic husk particle (PP-GHP) composites are reported. First, the process of obtaining a filament by means of a single extrusion was carried out, using different GHP contents in the composites. Once the filament was obtained, it was taken to a 3D printer to obtain probes that were characterized using differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) was performed with the aim of evaluating the thermal behavior of the 3D-printed PP-GHP composites. According to the obtained results, the crystallization process and thermal stability of the PP-GHP composites were modified with the presence of GHP compared with pristine PP. Dynamic mechanical analysis (DMA) showed that the addition of GHP decreased the storage modulus of the printed composites and that the Tan δ peak width increased, which was associated with an increase in toughness and a more complex structure of the 3D-printed composites. X-ray diffraction (XRD) showed that the addition of GHP favored the presence of the β-phase of PP in the printed composites. Full article
(This article belongs to the Special Issue Advanced Composites Processing and Manufacturing)
Show Figures

Graphical abstract

38 pages, 14828 KiB  
Article
Novel Recycling, Defibrillation, and Delignification Methods for Isolating α-Cellulose from Different Lignocellulosic Precursors for the Eco-Friendly Fiber Industry
by Sherif S. Hindi
Polymers 2024, 16(17), 2430; https://doi.org/10.3390/polym16172430 - 27 Aug 2024
Cited by 3 | Viewed by 1741
Abstract
Alpha-cellulose, a unique, natural, and essential polymer for the fiber industry, was isolated in an ecofriendly manner using eleven novel systems comprising recycling, defibrillation, and delignification of prosenchyma cells (vessels and fibers) of ten lignocellulosic resources. Seven hardwood species were selected, namely Conocorpus [...] Read more.
Alpha-cellulose, a unique, natural, and essential polymer for the fiber industry, was isolated in an ecofriendly manner using eleven novel systems comprising recycling, defibrillation, and delignification of prosenchyma cells (vessels and fibers) of ten lignocellulosic resources. Seven hardwood species were selected, namely Conocorpus erectus, Leucaena leucocephala, Simmondsia chinensis, Azadirachta indica, Moringa perigrina, Calotropis procera, and Ceiba pentandra. Moreover, three recycled cellulosic wastes were chosen due to their high levels of accumulation annually in the fibrous wastes of Saudi Arabia, namely recycled writing papers (RWPs), recycled newspapers (RNPs), and recycled cardboard (RC). Each of the parent samples and the resultant alpha-cellulose was characterized physically, chemically, and anatomically. The properties examined differed significantly among the ten resources studied, and their mean values lies within the cited ranges. Among the seven tree species, L. leucocephala was the best cellulosic precursor due to its higher fiber yield (55.46%) and holocellulose content (70.82%) with the lowest content of Klasson lignin (18.86%). Moreover, RWP was the best α-cellulose precursor, exhibiting the highest holocellulose (87%) and the lowest lignin (2%) content. Despite the high content of ash and other additives accompanied with the three lignocellulosic wastes that were added upon fabrication to enhance their quality (10%, 11%, and 14.52% for RWP, RNP, and RC, respectively), they can be considered as an inexhaustible treasure source for cellulose production due to the ease and efficiency of discarding their ash minerals using the novel CaCO3-elimination process along with the other innovative techniques. Besides its main role for adjusting the pH of the delignification process, citric acid serves as an effective and environmentally friendly additive enhancing lignin breakdown while preserving cellulose integrity. Comparing the thermal behavior of the ten cellulosic resources, C. procera and C. pentandra exhibited the highest moisture content and void volume as well as having the lowest specific gravity, crystallinity index, and holocellulose content and were found to yield the highest mass loss during their thermal degradation based on thermogravimetric and differential thermal analysis in an inert atmosphere. However, the other resources used were found to yield lower mass losses. The obtained results indicate that using the innovative procedures of recycling, defibrillation, and delignification did not alter or distort either the yield or structure of the isolated α-cellulose. This is a clear indicator of their high efficiency for isolating cellulose from lignocellulosic precursors. Full article
Show Figures

Figure 1

10 pages, 2282 KiB  
Article
Comparative Life Cycle Assessment of Bacterial and Thermochemical Retting of Hemp
by Yu Fu, Hongmei Gu, H. Felix Wu and Sheldon Q. Shi
Materials 2024, 17(16), 4164; https://doi.org/10.3390/ma17164164 - 22 Aug 2024
Cited by 1 | Viewed by 1284
Abstract
The processes of hemp bast fiber retting, forming, and drying offer the opportunity for value-added products such as natural fiber-reinforced composites. A new process for the retting of raw bast fibers through enzyme-triggered self-cultured bacterial retting was developed in the lab-scale setup. This [...] Read more.
The processes of hemp bast fiber retting, forming, and drying offer the opportunity for value-added products such as natural fiber-reinforced composites. A new process for the retting of raw bast fibers through enzyme-triggered self-cultured bacterial retting was developed in the lab-scale setup. This study focused on comparing the energy consumption and environmental impacts of this bacterial retting process with the thermochemical retting process currently widely used to obtain lignocellulosic fibers for composites. The gate-to-gate life cycle assessment (LCA) models of the two retting processes were constructed to run a comparison analysis using the TRACI (the tool for the reduction and assessment of chemical and other environmental impacts) method for environmental impacts and the cumulative energy demand (CED) method for energy consumptions. This work has demonstrated the advantages of the bacterial retting method from an environmental standpoint. The result of our research shows about a 24% gate-to-gate reduction in CED for bacterial retting and 20–25% lower environmental impacts relating to global warming, smog formation, acidification, carcinogenics, non-carcinogenics, respiratory effects, ecotoxicity, and fossil fuel depletion when compared to that of thermochemical retting. Full article
(This article belongs to the Special Issue Bio-Based Natural Fiber Composite Materials)
Show Figures

Figure 1

29 pages, 10900 KiB  
Review
Recent Developments of Pineapple Leaf Fiber (PALF) Utilization in the Polymer Composites—A Review
by Murugan Sethupathi, Mandla Vincent Khumalo, Sifiso John Skosana and Sudhakar Muniyasamy
Separations 2024, 11(8), 245; https://doi.org/10.3390/separations11080245 - 12 Aug 2024
Cited by 20 | Viewed by 15966
Abstract
Plant fibers’ wide availability and accessibility are the main causes of the growing interest in sustainable technologies. The two primary factors to consider while concentrating on composite materials are their low weight and highly specific features, as well as their environmental friendliness. Pineapple [...] Read more.
Plant fibers’ wide availability and accessibility are the main causes of the growing interest in sustainable technologies. The two primary factors to consider while concentrating on composite materials are their low weight and highly specific features, as well as their environmental friendliness. Pineapple leaf fiber (PALF) stands out among natural fibers due to its rich cellulose content, cost-effectiveness, eco-friendliness, and good fiber strength. This review provides an intensive assessment of the surface treatment, extraction, characterization, modifications and progress, mechanical properties, and potential applications of PALF-based polymer composites. Classification of natural fibers, synthetic fibers, chemical composition, micro cellulose, nanocellulose, and cellulose-based polymer composite applications have been extensively reviewed and reported. Besides, the reviewed PALF can be extracted into natural fiber cellulose and lignin can be used as reinforcement for the development of polymer biocomposites with desirable properties. Furthermore, this review article is keen to study the biodegradation of natural fibers, lignocellulosic biopolymers, and biocomposites in soil and ocean environments. Through an evaluation of the existing literature, this review provides a detailed summary of PALF-based polymer composite material as suitable for various industrial applications, including energy generation, storage, conversion, and mulching films. Full article
(This article belongs to the Special Issue Degradation and Separation of Fibre-Based Materials)
Show Figures

Figure 1

16 pages, 4729 KiB  
Article
Mechanical Characterization, Water Absorption, and Thickness Swelling of Lightweight Pineapple Leaf/Ramie Fabric-Reinforced Polypropylene Hybrid Composites
by Lin Feng Ng, Mohd Yazid Yahya, Chandrasekar Muthukumar, Jyotishkumar Parameswaranpillai, Quanjin Ma, Muhammad Rizal Muhammad Asyraf and Rohah Abdul Majid
Polymers 2024, 16(13), 1847; https://doi.org/10.3390/polym16131847 - 28 Jun 2024
Cited by 15 | Viewed by 2566
Abstract
Fiber-reinforced composites are among the recognized competing materials in various engineering applications. Ramie and pineapple leaf fibers are fascinating natural fibers due to their remarkable material properties. This research study aims to unveil the viability of hybridizing two kinds of lignocellulosic plant fiber [...] Read more.
Fiber-reinforced composites are among the recognized competing materials in various engineering applications. Ramie and pineapple leaf fibers are fascinating natural fibers due to their remarkable material properties. This research study aims to unveil the viability of hybridizing two kinds of lignocellulosic plant fiber fabrics in polymer composites. In this work, the hybrid composites were prepared with the aid of the hot compression technique. The mechanical, water-absorbing, and thickness swelling properties of ramie and pineapple leaf fiber fabric-reinforced polypropylene hybrid composites were identified. A comparison was made between non-hybrid and hybrid composites to demonstrate the hybridization effect. According to the findings, hybrid composites, particularly those containing ramie fiber as a skin layer, showed a prominent increase in mechanical strength. In comparison with non-hybrid pineapple leaf fabric-reinforced composites, the tensile, flexural, and Charpy impact strengths were enhanced by 52.10%, 18.78%, and 166.60%, respectively, when the outermost pineapple leaf fiber layers were superseded with ramie fabric. However, increasing the pineapple leaf fiber content reduced the water absorption and thickness swelling of the hybrid composites. Undeniably, these findings highlight the potential of hybrid composites to reach a balance in mechanical properties and water absorption while possessing eco-friendly characteristics. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

13 pages, 5774 KiB  
Article
The Development of Biocomposite Filaments for 3D Printing by Utilizing a Polylactic Acid (PLA) Polymer Matrix Reinforced with Cocoa Husk Cellulose Fibers
by Victor Hugo Martins de Almeida, Raildo Mota de Jesus, Gregório Mateus Santana, Sabir Khan, Erickson Fabiano Moura Sousa Silva, Iago Silva da Cruz, Ian de Souza Santos and Paulo Neilson Marques dos Anjos
Polymers 2024, 16(13), 1757; https://doi.org/10.3390/polym16131757 - 21 Jun 2024
Cited by 5 | Viewed by 2683
Abstract
Vegetable fibers are increasingly used in biocomposites, but there is a need for further development in utilizing by-products like cocoa husks. Three-dimensional printing, through Fused Filament Fabrication (FFF), is advancing rapidly and may be of great interest for applying biocomposite materials. This study [...] Read more.
Vegetable fibers are increasingly used in biocomposites, but there is a need for further development in utilizing by-products like cocoa husks. Three-dimensional printing, through Fused Filament Fabrication (FFF), is advancing rapidly and may be of great interest for applying biocomposite materials. This study focuses on developing innovative and fully biodegradable filaments for the FFF process. PLA filaments were prepared using cellulose fibers derived from cocoa husks (5% mass ratio). One set of filaments incorporated fibers from untreated husks (UCFFs), while another set utilized fibers from chemically treated husks (TCFFs). The fabricated materials were analyzed using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) techniques, and they were also tested for tensile strength. ANOVA reveals that both UCFFs and TCFFs significantly predict tensile strength, with the UCFFs demonstrating an impressive R2 value of 0.9981. The optimal tensile strength for the filament test specimens was 16.05 MPa for TCFF8 and 13.58 MPa for UCFF8, utilizing the same printing parameters: 70% infill and a layer thickness of 0.10 mm. Additionally, there was an 18% improvement in the tensile strength of the printed specimens using the filaments filled with chemically treated cocoa husk fibers compared to the filaments with untreated fibers. Full article
(This article belongs to the Special Issue Additive Manufacturing of Fibre Reinforced Polymer Composites)
Show Figures

Figure 1

Back to TopTop