Recent Developments of Pineapple Leaf Fiber (PALF) Utilization in the Polymer Composites—A Review
Abstract
:1. Introduction
2. Pineapple Production in South Africa
2.1. Pineapple Waste: An Environmental Risk
2.2. Classification of Natural and Synthetic Fibers
3. Classifications of Cellulose and Structure
3.1. Classifications of Nanocellulose
Chemical Composition
4. Extraction of PALF
4.1. Retting of PALF
4.2. Acid Hydrolysis
4.3. Pre-Treatments of PALF
4.3.1. Hot Water Treatment
4.3.2. Alkali Treatment
5. Characterization of PALF Cellulose Nanofibers Confirmed by FTIR Spectroscopy and FESEM, TEM Microscopy
6. Micro- and Nanocellulose-Based Polymer Composites
6.1. Applications of the Extracted PALF Cellulose Nanofibers
6.1.1. Drug Delivery
6.1.2. PALF Uses and Prospects for the Future
7. PALF-Based Biocomposites
- Non-biodegradable biocomposites: PALF composite materials can be made into both petroleum-based plastics or renewable-based plastics, but if both polymers are conventional non-biodegradable polymers (PE, PP, and nylon) and biobased non-biodegradable polymers (Bio-PE, Bio-PP, and Bio-nylon), then the cellulose fiber composites are non-biodegradable biocomposites.
- Biodegradable biocomposites: if PALF natural fiber composite is made from biodegradable polymer matrix incorporating petroleum-based biodegradable polymers (PBAT, PCL) and/or renewable-based biodegradable polymers (PLA, starch, PHA), then these cellulose fiber composites are biodegradable.
- Biocomposites: PALF fiber-based composites are made from petrol-based polymers, but the biodegradability of these biocomposites depends on the polymeric matrix used. For example: cellulose fibers create a PP-based non-biodegradable composite, whereas cellulose results in BAT-based biodegradable composites.
- Whole green composites: PALF-based composites are made from renewable resource-based polymers, but the biodegradability of these green composites depends on the polymeric matrix used. For example: cellulose—PLA-based biodegradable composites; cellulose—bio-nylon-based non-biodegradable composites, etc.
Parameter | Material | Fiber Length | Fabrication Method | Feed Rate | Observations | Ref. |
---|---|---|---|---|---|---|
Fiber loading | PALF/epoxy | 160 mm | Hand layup | TS = 0.5 mm/min | Increase in longitudinal Young’s modulus, transverse and longitudinal shear modulus observed | [99] |
Fiber loading | PALF/polyester | - | Hand layup | TS = 100 mm/min | (1) TS and TM was comparatively high during NaOH treatment | [100] |
Fiber loading | PALF/epoxy | - | Hand layup | FS = 5 mm/min | Linear increase in FS with the increase in volume fraction | [101] |
Fiber loading | PALF/epoxy | 35 mm | Hand layup | - | Average TS and FS found to increase with increasing fiber volume fraction | [102] |
Fiber loading | PALF/Epoxy | 2–5 mm | Hand layup | - | 10% PALF loading delivered better mechanical properties. | [103] |
Fiber loading | PALF/E-glass/epoxy | - | Hand-layup | - | TS and elasticity modulus: PALF/E-glass/epoxy > PALF composites | [80] |
Fiber loading | PALF/Glass Fiber/epoxy | - | Hand-layup | - | 15% PALF loading delivered better mechanical properties. | [81] |
Fiber loading | PALF/Steel wire mesh/epoxy | - | Hand-layup | - | TS: PALF/Steel wire mesh/epoxy > PALF/epoxy | [82] |
Fiber loading | PALF/jute fiber/epoxy | - | Hand-layup | - | TS: PALF/jute fiber/epoxy > PALF/jute fiber | [83] |
Fiber loading | PALF/sisal fiber/epoxy | 100 µM | Hand-layup | 50 mm/10 min | PALF/sisal fiber loading delivered better mechanical properties | [104] |
Fiber loading | PALF/banana/sisal/epoxy | - | Hand-layup | 5 mm/min | The treated PALF/banana/sisal/epoxy improved the TM, and TS. | [105] |
Parameter | Material | Fiber Length | Fabrication Method | Feed Rate | Observations | Ref. |
---|---|---|---|---|---|---|
Strain rate | PALF/LDPE | 6 mm | Solution-mixing technique | TS = 50 mm/ min | TS and TM = 500 mm/min > 50 mm/min >5 mm/min and elongation at break goes on reducing | [106] |
Fiber loading | PALF/PP | 50 mm | Injection molding | - | 50/50 fiber matrix loading exhibited highest TM, FS and FM | [107] |
Fiber extraction process | PALF/PP, PALF Loading -5 and 30 wt% | 5–8 mm, Longitudinal direction loading | Melt mixing, prepreg, compression molding | 5 mm/min | PALF with 30 wt% > 5 wt% fiber loading | [108] |
Fiber loading | Randomly oriented PALF/ PP | 100 mm | Compression molding machine | - | PALF with 30 wt% offered highest TS and hardness due to good adhesion between fiber matrix | [109] |
Fiber type | PALF/PF/PP | Powder size—0.2 mm | Twin screw extrude | TS = 10 mm/ min. | TM and elasticity modulus: PALF/PP > PF/PP composites | [110] |
Fiber type | PALF/LDPE | 17.5 mm | Heat press | TS = 10 mm/min | TS, and elasticity modulus: PALF/LDPE > LDPEcomposites | [85] |
Fiber loading | PALF/GCN/polyester | 500 nm | Hand-layup | 15 mm/4 min | TS modulus: PALF/GCN/polyester > PALF/polyester composites | [86] |
Fiber loading | PALF/PP/PLA | - | Molten mixing | 50 mm/min | TS: PALF/PLA > PP | [87] |
Fiber loading | PALF/PP | 60 µM | Compression molding machine | 2 mm/min | TS: PALF/PP > PALF | [88] |
Fiber loading | PALF/MA-g-PP | 500 µM | Twin-screw extruder machine | 50 mm/min | TS: PALF/MA-g-PP > PALF/PP | [89] |
Fiber loading | PALF/Ramie Fabric-PP | 500 µM | Hand-layup | 2 mm/min | TS and flexural: PALF/Ramie Fabric-PP > Ramie Fabric | [90] |
Fiber loading | PALF/polyester | 10 µM | Hand-layup | 1 m/s | 16 mm length PALF/polyester composites have good wear resistance | [91] |
Fiber loading | Paddy straw/PALF/polyester | - | Compression molding | - | TS and flexural: Paddy straw/PALF/polyester > polyester | [111] |
Fiber loading | PALF/kenaf fiber/vinyl ester | - | Compression molding technique | - | Increasing fiber loading by 20% improved the TM and TS of the Composite | [112] |
Fiber loading | PALF/Palm/PP | 500 µM | Molten mixing | - | Increasing fiber loading by 15% improved the blending strength of the composite | [113] |
Parameter | Material | Fiber Length | Fabrication Method | Feed Rate | Observations | Ref. |
---|---|---|---|---|---|---|
Fiber loading | Unidirectional PALF/PHBV | - | Hot compression molding, with alternate layers of PALF and PHBV in 0/90/ 0 orientation | TS- strain rate = 0.04/min, FS = 0.043 mm/ min | Tensile and flexural properties high PALF/PHBV composites | [92] |
Fiber varieties | PALF/PLA, PALF/PP | - | Melt mixing, compression molding | - | TS and FS: PALF/PP > PALF/PLA | [93] |
Fiber length | PALF/PLA | short- 30 mm, Long-100 mm | Short PALF and melt mixing, long PALF and hand lamination | TS, FS = 2 mm/ min | (1) Long PALF composites delivered the highest TS and FS compared to the short PALF | [94] |
Fiber loading | PALF/TPS | 1 mm | and single-screw extruder Compression molding machine | 100 mm/min | Increasing fiber loading improved the TM and TS of the Composite | [95] |
Fiber loading | PALF/PLA | 50µM | Injection molding process | 1 mm/s | TS and elasticity modulus: PALF/PLA > PLA composites | [96] |
Fiber loading | PALF/TBP/DG | 200 µM | Brabender Palatograph EC internal mixing | 1.28/min | TM, TS: PALF-TBP with 10% DG > DG | [97] |
8. Lignocellulosic Fibers
8.1. Lignocellulosic Materials and Their Composites
8.2. Lignin-Based Polymer Composites
8.3. Biodegradation of Lignocellulosic Composites
9. Biodegradation of Nature Fibers, Biopolymers, and Biocomposites in Environmental Conditions
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Devnani, G.L.; Sinha, S. Effect of nanofillers on the properties of natural fiber reinforced polymer composites. Mater. Today 2019, 18, 647–654. [Google Scholar] [CrossRef]
- Kiruthika, A.V. A review on physico-mechanical properties of bast fibre reinforced polymer composites. J. Build. Eng. 2017, 9, 91–99. [Google Scholar] [CrossRef]
- Subramanya, R.; Satyanarayana, K.G.; Shetty Pilar, B. Evaluation of structural, tensile and thermal properties of banana fibers. J. Nat. Fibers 2017, 14, 485–497. [Google Scholar]
- Jebadurai, S.G.; Raj, R.E.; Sreenivasan, V.S.; Binoj, J.S. Comprehensive characterization of natural cellulosic fiber from Coccinia grandis stem. Carbohydr. Polym. 2019, 207, 675–683. [Google Scholar] [CrossRef]
- Ardanuy, M.; Claramunt, J.; Toledo Filho, R.D. Cellulosic fiber reinforced cement-based composites: A review of recent research. J. Build. Eng. 2015, 79, 115–128. [Google Scholar] [CrossRef]
- Koronis, G.; Silva, A.; Fontul, M. Green composites: A review of adequate materials for automotive applications. Compos. Part B 2013, 44, 120–127. [Google Scholar] [CrossRef]
- La Mantia, F.P.; Morreale, M. Green composites: A brief review. Compos. Part A 2011, 42, 579–588. [Google Scholar] [CrossRef]
- Selke, S.E.; Wichman, I. Wood fiber/polyolefin composites. Compos. Part A 2004, 35, 321–326. [Google Scholar] [CrossRef]
- Mondal, S. Preparation, properties and applications of nanocellulosic materials. Carbohydr. Polym. 2017, 163, 301–316. [Google Scholar] [CrossRef]
- Helland, A.; Kastenholz, H. Development of nanotechnology in light of sustainability. J. Clean. Prod. 2008, 16, 885–888. [Google Scholar] [CrossRef]
- Williams, G.I.; Wool, R.P. Composites from natural fibers and soy oil resins. Appl. Compos. Mater. 2000, 7, 421–432. [Google Scholar] [CrossRef]
- Torres, F.G.; Diaz, R.M. Morphological characterisation of natural fibre reinforced thermoplastics (NFRTP) processed by extrusion, compression and rotational moulding. Polym. Polym. Compos. 2004, 12, 705–718. [Google Scholar] [CrossRef]
- Arib, R.M.; Sapuan, S.M.; Ahmad, M.M.; Paridah, M.T.; Zaman, H.K. Mechanical properties of pineapple leaf fibre reinforced polypropylene composites. Mater. Des. 2006, 27, 391–396. [Google Scholar] [CrossRef]
- Fukuda, Y.; Hayakawa, T.; Ichihara, E.; Inoue, K.; Ishihara, K.; Ishino, H.; Itow, Y.; Kajita, T.; Kameda, J.; Kasuga, S.; et al. Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 1998, 81, 1562. [Google Scholar] [CrossRef]
- von Koskull-Döring, P.; Scharf, K.D.; Nover, L. The diversity of plant heat stress transcription factors. Trends Plant Sci. 2007, 12, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Karthika, M.; Shaji, N.; Johnson, A.; Neelakandan, M.S.; Gopakumar, D.A.; Thomas, S. Biodegradation of green polymeric composites materials. Bio Monomers Green Polym. Compos. Mater. 2019, 30, 141–159. [Google Scholar]
- Van Tran, A. Chemical analysis and pulping study of pineapple crown leaves. Ind. Crops Prod. 2006, 24, 66–74. [Google Scholar] [CrossRef]
- Othman, N.; Hassan, A.; Rahmat, A.R.; Wahit, M.U. Preparation and characterisation of polyethylene-octene grafted maleic anhydride-toughened 70: 30 PA6/PP/MMT nanocomposites. Polym. Polym. Compos. 2007, 15, 217–227. [Google Scholar] [CrossRef]
- Kumar, A. Utilization of bioactive components present in pineapple waste: A review. J. Pharm. Innov. 2021, 10, 954–961. [Google Scholar]
- Bos, H.L.; Müssig, J.; van den Oever, M.J. Mechanical properties of short-flax-fibre reinforced compounds. Compos. Part A 2006, 37, 1591–1604. [Google Scholar] [CrossRef]
- Gurunathan, T.; Mohanty, S.; Nayak, S.K. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. Part A Appl. Sci. Manuf. 2015, 77, 1–25. [Google Scholar] [CrossRef]
- Mishra, S.; Mohanty, A.K.; Drzal, L.T.; Misra, M.; Hinrichsen, G. A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromol. Mater. Eng. 2004, 289, 955–974. [Google Scholar] [CrossRef]
- Odusote, J.K.; Oyewo, A.T. Mechanical properties of pineapple leaf fiber reinforced polymer composites for application as a prosthetic socket. J. Eng. Technol. 2016, 7, 125–139. [Google Scholar]
- Neto, J.; Queiroz, H.; Aguiar, R.; Lima, R.; Cavalcanti, D.; Banea, M.D. A review of recent advances in hybrid natural fiber reinforced polymer composites. J. Renew. Mater. 2022, 10, 561. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Reihmane, S.; Gassan, J. Properties and modification methods for vegetable fibers for natural fiber composites. J. Appl. Polym. Sci. 1996, 59, 1329–1336. [Google Scholar] [CrossRef]
- Karlson, B.; Andersen, P.; Arneborg, L.; Cembella, A.; Eikrem, W.; John, U.; West, J.J.; Klemm, K.; Kobos, J.; Lehtinen, S.; et al. Harmful algal blooms and their effects in coastal seas of Northern Europe. Harmful Algae 2021, 102, 101989. [Google Scholar] [CrossRef]
- Thokchom, R.; Das, M.J.; Muchahary, S.; Ghosh, T.; Deka, S.C. Nanocellulose Fibers Derived from Culinary Banana Flower (Musa ABB) Waste: Its Characterization and Application. J. Packag. Technol. Res. 2023, 7, 113–125. [Google Scholar] [CrossRef]
- Klemm, D.; Kramer, F.; Moritz, S.; Lindstrom, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A new family of nature-based materials. Angew. Chem. Int. Ed. 2011, 50, 5438–5466. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.M.; Atikah, M.S.; Asyraf, M.R.; Rafiqah, S.A.; Aisyah, H.A.; Nurazzi, N.M.; Norrrahim, M.N. Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm nanocrystalline cellulose. Text. Res. J. 2021, 91, 152–167. [Google Scholar] [CrossRef]
- Rusli, R.; Eichhorn, S.J. Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy. Appl. Phys. Lett. 2008, 93, 033111. [Google Scholar] [CrossRef]
- Guhados, G.; Wan, W.; Hutter, J.L. Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 2005, 21, 6642–6646. [Google Scholar] [CrossRef]
- Cranston, E.D.; Eita, M.; Johansson, E.; Netrval, J.; Salajkova, M.; Arwin, H.; Wagberg, L. Determination of Young’s modulus for nanofibrillated cellulose multilayer thin films using buckling mechanics. Biomacromolecules 2011, 12, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Thamba, N.B.; Shinde, A.; Duraiswamy, R.P.; Joshi, R.; Kalonia, Y.; Mohammed, N.M.; Wahab, R.S.; Venugopa, S. Mechanical behaviour of pineapple leaf fibre reinforced epoxy composites at different orientations. J. Chem. Technol. Metall. 2023, 58, 851–858. [Google Scholar] [CrossRef]
- Reddy, N.; Yang, Y. Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol. 2005, 23, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Wirawan, R.; Zainudin, E.S.; Sapuan, S.M. Mechanical properties of natural fibre reinforced PVC composites: A review. Sains Malays. 2009, 38, 531–535. [Google Scholar]
- Kannojiya, R.; Gaurav, K.; Ranjan, R.; Tiyer, N.K.; Pandey, K.M. Extraction of pineapple fibres for making commercial products. J. Environ. Res. Dev. 2013, 7, 1385–1390. [Google Scholar]
- TAPPI Standard T203 cm-99; Technical Association of the Pulp and Paper Industry: Alpha-, beta- and gamma-cellulose in pulp. Technical Association of the Pulp and Paper Industry: Atlanta, GA, USA, 1999.
- TAPPI Standard T222 om-02; Technical Association of the Pulp and Paper Industry: Sampling and Preparing Wood for Analysis. Technical Association of the Pulp and Paper Industry: Atlanta, GA, USA, 2002.
- Wise, L.E.; Murphy, M.; d’Addieco, A.A. Chlorite Holocellulose, its Fractionnation and Bearing on Summative Wood Analysis and on Studies on the Hemicelluloses. Pap. Trade J. 1946, 122, 35–43. [Google Scholar]
- Wisittanawat, U.; Thanawan, S.; Amornsakchai, T. Mechanical properties of highly aligned short pineapple leaf fiber reinforced–nitrile rubber composite: Effect of fiber content and bonding agent. Polym. Test. 2014, 35, 20–27. [Google Scholar] [CrossRef]
- Banik, S.; Basak, M.K.; Paul, D.; Nayak, P.; Sardar, D.; Sil, S.C.; Sanpui, B.C.; Ghosh, A. Ribbon retting of jute a prospective and eco-friendly method for improvement of fibre quality. Ind. Crops Prod. 2003, 17, 183–190. [Google Scholar] [CrossRef]
- Kengkhetkit, N.; Amornsakchai, T. A new approach to “Greening” plastic composites using pineapple leaf waste for performance and cost effectiveness. Mater. Des. 2014, 55, 292–299. [Google Scholar] [CrossRef]
- Razalli, R.L.; Abdi, M.M.; Tahir, P.M.; Moradbak, A.; Sulaiman, Y.; Heng, L.Y. Polyaniline-modified nanocellulose prepared from Semantan bamboo by chemical polymerization: Preparation and characterization. RSC Adv. 2017, 7, 25191–25198. [Google Scholar] [CrossRef]
- Pereira, P.H.; Arantes, V.; Pereira, B.; Ornaghi Jr, H.L.; De Oliveira, D.M.; Santagneli, S.H.; Cioffi, M.O. Effect of the chemical treatment sequence on pineapple peel fiber: Chemical composition and thermal degradation behavior. Cellulose 2022, 29, 8587–8598. [Google Scholar] [CrossRef]
- Moya, R.; Camacho, D.; Mata, J.; Fallas, R.S. The manufacture and properties of oil palm and pineapple leaf fiberboard panels. Waste Manag. Environ. 2014, 180, 431–441. [Google Scholar]
- Fitriani, F.; Aprilia, S.; Arahman, N.; Bilad, M.R.; Amin, A.; Huda, N.; Roslan, J. Isolation and characterization of nanocrystalline cellulose isolated from pineapple crown leaf fiber agricultural wastes using acid hydrolysis. Polymers 2021, 13, 4188. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Ji, Y.; Wang, L.; Wei, Y.; Yu, Z. A green and environmental benign method to extract cellulose nanocrystal by ball mill assisted solid acid hydrolysis. J. Clean. Prod. 2018, 196, 1169–1175. [Google Scholar] [CrossRef]
- Hakeem, K.R.; Jawaid, M.; Rashid, U. Biomass and Bioenergy; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Moya, R.; Tenorio, C.; Puente-Urbina, A.; Rosales-Lopez, C.; Vega-Baudrit, J. Production of Paper Using Biopulping of Pineapple Leaves Fibers (PALF) Followed by Chemical and Xylanase-Enzymatic Processing. J. Nat. Fibers. 2023, 20, 2163025. [Google Scholar] [CrossRef]
- Rigg-Aguilar, P.; Moya, R.; Oporto-Velásquez, G.S.; Vega-Baudrit, J.; Starbird, R.; Puente-Urbina, A.; Méndez, D.; Potosme, L.D.; Esquivel, M. Micro- and Nanofibrillated Cellulose (MNFC) from Pineapple (Ananas comosus) Stems and Their Application on Polyvinyl Acetate (PVAc) and Urea-Formaldehyde (UF) Wood Adhesives. J. Nanomater. 2020, 2020, 1393160. [Google Scholar] [CrossRef]
- Moya, R.; Solano, M. Behavior of a portable solar dryer for pineapple fiber. Cienc. Agrotecnol. 2012, 36, 674–683. [Google Scholar] [CrossRef]
- Klinthoopthamrong, N.; Thanawan, S.; Schrodj, G.; Mougin, K.; Goh, K.L.; Amornsakchai, T. Synergistic Toughening of Epoxy Composite with Cellulose Nanofiber and Continuous Pineapple Leaf Fiber as Sustainable Reinforcements. Nanomaterials 2023, 13, 1703. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, L.; Sreekala, M.S.; Thomas, S. Novel processing parameters for the extraction of cellulose nanofibres (CNF) from environmentally benign pineapple leaf fibres (PALF): Structure-property relationships. Int. J. Biol. Macromol. 2019, 131, 858–870. [Google Scholar] [CrossRef]
- Omran, A.A.; Mohammed, A.A.; Sapuan, S.M.; Ilyas, R.A.; Asyraf, M.R.; Rahimian Koloor, S.S.; Petru, M. Micro-and nanocellulose in polymer composite materials: A review. Polymers 2021, 13, 231. [Google Scholar] [CrossRef]
- Elfaleh, I.; Abbassi, F.; Habibi, M.; Ahmad, F.; Guedri, M.; Nasri, M.; Garnier, C. A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials. Results Eng. 2023, 19, 101271. [Google Scholar] [CrossRef]
- Asyraf, M.R.; Ishak, M.R.; Sapuan, S.M.; Yidris, N.; Ilyas, R.A. Woods and composites cantilever beam: A comprehensive review of experimental and numerical creep methodologies. J. Mater. Res. Technol. 2020, 9, 6759–6776. [Google Scholar] [CrossRef]
- Sukwijit, C.; Seubsai, A.; Charoenchaitrakool, M.; Sudsakorn, K.; Niamnuy, C.; Roddecha, S.; Prapainainar, P. Production of PLA/cellulose derived from pineapple leaves as bio-degradable mulch film. Int. J. Biol. Macromol. 2024, 270, 132299. [Google Scholar] [CrossRef] [PubMed]
- Pornbencha, K.; Sringam, S.; Piyanirund, S.; Seubsai, A.; Prapainainar, P.; Niumnuy, C.; Roddecha, S.; Dittanet, P. Functionalization of cellulose nanocrystals extracted from pineapple leaves as a UV-absorbing agent in poly (lactic acid). RSC Adv. 2023, 13, 15311–15321. [Google Scholar] [CrossRef]
- Moreno, G.; Ramirez, K.; Esquivel, M.; Jimenez, G. Biocomposite films of polylactic acid reinforced with microcrystalline cellulose from pineapple leaf fibers. J. Renew. Mater. 2019, 7, 9–20. [Google Scholar] [CrossRef]
- Fitriani, F.; Dzulhijjah, W.A.; Aprilia, S.; Arahman, N.; Bilad, M.R.; Rahmah, K.; Akbar, E.H.; Raqib, M. Formulation optimization of bionanocomposite film based on polyvinyl alcohol/glycerol/cellulose nanocrystal from pineapple crown leave fibers using response surface methodology. Environ. Earth Sci. 2024, 1290, 012010. [Google Scholar]
- Balakrishnan, P.; Sreekala, M.S.; Kunaver, M.; Huskić, M.; Thomas, S. Morphology, transport characteristics and viscoelastic polymer chain confinement in nanocomposites based on thermoplastic potato starch and cellulose nanofibers from pineapple leaf. Carbohydr. Polym. 2017, 169, 176–188. [Google Scholar] [CrossRef]
- Mukherjee, T.; Tobin, M.J.; Puskar, L.; Sani, M.A.; Kao, N.; Gupta, R.K.; Pannirselvam, M.; Quazi, N.; Bhattacharya, S. Chemically imaging the interaction of acetylated nanocrystalline cellulose (NCC) with a polylactic acid (PLA) polymer matrix. Cellulose 2017, 24, 1717–1729. [Google Scholar] [CrossRef]
- Sullivan, E.M.; Moon, R.J.; Kalaitzidou, K. Processing and characterization of cellulose nanocrystals/polylactic acid nanocomposite films. Materials 2015, 8, 8106–8116. [Google Scholar] [CrossRef]
- Rahmat, M.; Karrabi, M.; Ghasemi, I.; Zandi, M.; Azizi, H. Silane crosslinking of electrospun poly (lactic acid)/nanocrystalline cellulose bionanocomposite. Mater. Sci. Eng. C 2016, 68, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Y. Reinforcement effect of poly (butylene succinate) (PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends. Carbohydr. Polym. 2016, 140, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Takkalkar, P.; Griffin, G.; Kao, N. Enhanced mechanical and barrier performance of poly (lactic acid) based nanocomposites using surface acetylated starch nanocrystals. J. Polym. Environ. 2019, 27, 2078–2088. [Google Scholar] [CrossRef]
- Farid, T.; Herrera, V.N.; Kristiina, O. Investigation of crystalline structure of plasticized poly (lactic acid)/Banana nanofibers composites. IOP Conf. Ser. Mater. Sci. Eng. 2018, 369, 012031. [Google Scholar] [CrossRef]
- Dhar, P.; Tarafder, D.; Kumar, A.; Katiyar, V. Thermally recyclable polylactic acid/cellulose nanocrystal films through reactive extrusion process. Polymers 2016, 87, 268–282. [Google Scholar] [CrossRef]
- Hussin, M.H.; Tajudin, N.A.; Azani, N.F.; Paramasivam, M.; Haafiz, M.M.; Kumar, S.; Yemloul, M. Physicochemical studies of Kenaf nanocrystaline cellulose and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) as filler for lithium perchlorate based polymer electrolyte. Int. J. Electrochem. Sci. 2019, 14, 1620–1633. [Google Scholar] [CrossRef]
- Vaezi, K.; Asadpour, G.; Sharifi, S.H. Effect of coating with novel bio nanocomposites of cationic starch/cellulose nanocrystals on the fundamental properties of the packaging paper. Polym. Test. 2019, 80, 106080. [Google Scholar] [CrossRef]
- Zheng, T.; Zhang, Z.; Shukla, S.; Agnihotri, S.; Clemons, C.M.; Pilla, S. PHBV-graft-GMA via reactive extrusion and its use in PHBV/nanocellulose crystal composites. Carbohydr. Polym. 2019, 205, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, R.A.; Sapuan, S.M.; Ishak, M.R.; Zainudin, E.S. Water transport properties of bio-nanocomposites reinforced by sugar palm (Arenga Pinnata) nanofibrillated cellulose. J. Adv. Res. Fluid Mech. Therm. Sci. 2018, 51, 234–246. [Google Scholar]
- Marmol, G.; Gauss, C.; Fangueiro, R. Potential of cellulose microfibers for PHA and PLA biopolymers reinforcement. Molecules 2020, 25, 4653. [Google Scholar] [CrossRef]
- Jun, D.; Guomin, Z.; Mingzhu, P.; Leilei, Z.; Dagang, L.; Rui, Z. Crystallization and mechanical properties of reinforced PHBV composites using melt compounding: Effect of CNCs and CNFs. Carbohydr. Polym. 2017, 168, 255–262. [Google Scholar] [CrossRef]
- Xu, J.; Manepalli, P.H.; Zhu, L.; Narayan-Sarathy, S.; Alavi, S. Morphological, barrier and mechanical properties of films from poly (butylene succinate) reinforced with nanocrystalline cellulose and chitin whiskers using melt extrusion. J. Polym. Res. 2019, 26, 188. [Google Scholar] [CrossRef]
- Kale, R.D.; Gorade, V.G.; Madye, N.; Chaudhary, B.; Bangde, P.S.; Dandekar, P.P. Preparation and characterization of biocomposite packaging film from poly (lactic acid) and acylated microcrystalline cellulose using rice bran oil. Int. J. Biol. Macromol. 2018, 118, 1090–1102. [Google Scholar] [CrossRef]
- Gumrah Dumanli, A. Nanocellulose and its composites for biomedical applications. Curr. Med. Chem. 2017, 24, 512–528. [Google Scholar] [CrossRef]
- Kampeerapappun, P. Extraction and characterization of cellulose nanocrystals produced by acid hydrolysis from corn husk. J. Met. Mater. Miner. 2015, 25, 19–26. [Google Scholar]
- Bureekhampun, S.; Boonnasubphatthana, L.; Supavarasuwat, P. Using Traditional Wisdom and Goat Dung in Sustainable Textile Fabric Dyeing for Consumer Home Products. J. Posit. Psychol. Wellbeing 2023, 7, 881–896. [Google Scholar]
- Asim, M.; Abdan, K.; Jawaid, M.; Nasir, M.; Dashtizadeh, Z.; Ishak, M.R.; Hoque, M.E. A review on pineapple leaves fibre and its composites. J. Polym. Sci. 2015, 16, 950567. [Google Scholar] [CrossRef]
- Sundeep, M.; Limbadri, K.; Manikandan, N.; Savio, A.P.; Joseph, J. Study of mechanical properties of pineapple leaf fiber and E-glass fiber reinforced hybrid epoxy matrix composite materials. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Venkatesan, S.; Gokul, G.; Gowrishankar, K.; Kowshik, R. Investigation on Mechanical Attributes of Pineapple Leaf and Glass Fiber with Epoxy Resin. Appl. Math. 2023, 18. [Google Scholar]
- Kumar, A.; Singh, A. Mechanical Characterization of Pineapple Leaf Fiber Epoxy Composites with Steel Wire Mesh. Key Eng. Mater. 2023, 960, 205–217. [Google Scholar] [CrossRef]
- Baigh, T.A.; Nanzeeba, F. Integration and Mechanical Characterization of PALF and Jute Fibre in Epoxy Polymer to Fabricate Structural Hybrid Biocomposites; Islamic University of Technology: Gazipur, Bangladesh, 2023. [Google Scholar]
- George, J.; Thomas, S.; Bhagawan, S.S. Effect of strain rate and temperature on the tensile failure of pineapple fiber reinforced polyethylene composites. J. Thermoplast. Compos. Mater. 1999, 12, 443–464. [Google Scholar] [CrossRef]
- Rahman, H.; Yeasmin, F.; Khan, S.A.; Hasan, M.Z.; Roy, M.; Uddin, M.B.; Khan, R.A. Fabrication and analysis of physico-mechanical characteristics of NaOH treated PALF reinforced LDPE composites: Effect of gamma irradiation. J. Mater. Res. Technol. 2021, 11, 914–928. [Google Scholar] [CrossRef]
- Nurunnabi, M.; Shah Alimuzzaman Belal, B.U.; Khan, R.A. Influence of Graphitic Carbon Nitride (gC 3N4) on Mechanical and Thermal Properties of Pineapple Leaf Fibre Reinforced Polyester Resin Composites. Text. Leather Rev. 2024, 7, 433–452. [Google Scholar] [CrossRef]
- Zainudin, A.S.; Othman, A.R. Tensile properties of pineapple leaf fibre reinforced polypropylene (PP) and polylactic acid (PLA). AIP Conf. Proc. 2024, 2991, 1. [Google Scholar]
- Rahman, H.; Rana, S.; Das, A.; Alagirusamy, R. Physically processed waste pineapple leaf fibre for high performance composite with polypropylene. Cellulose 2024, 31, 2881–2901. [Google Scholar] [CrossRef]
- Ghani, N.F.; Salim, N.; Bakar, N.H.; Bin Roslan, R.; Sutjipto, A.G. Effect of Coupling Agent on the Properties of Pineapple Leaf Fiber/Polypropylene Composite. Key Eng. Mater. 2024, 975, 95–101. [Google Scholar] [CrossRef]
- Ng, L.F.; Yahya, M.; Muthukumar, C.; Parameswaranpillai, J.; Ma, Q.; Muhammad Asyraf, M.R.; Abdul Majid, R. Mechanical Characterization, Water Absorption, and Thickness Swelling of Lightweight Pineapple Leaf/Ramie Fabric-Reinforced Polypropylene Hybrid Composites. Polymers 2024, 16, 1847. [Google Scholar] [CrossRef] [PubMed]
- Krishnakumar, S.; Mohanavel, V.; Venkatesh, R.; Balasubramanian, K. Enhancement of tribology behaviour by the addition of different fiber length of pineapple fiber reinforced polyester composite. J. Mech. Sci. Technol. 2024, 38, 201–206. [Google Scholar] [CrossRef]
- Luo, S.; Netravali, A.N. Mechanical and thermal properties of environment-friendly “green” composites made from pineapple leaf fibers and poly (hydroxybutyrate-co-valerate) resin. Polym. Compos. 1999, 20, 367–378. [Google Scholar] [CrossRef]
- Nagarjun, J.; Kanchana, J.; RajeshKumar, G.; Manimaran, S.; Krishnaprakash, M. Enhancement of mechanical behavior of PLA matrix using tamarind and date seed micro fillers. J. Nat. Fibers 2022, 19, 4662–4674. [Google Scholar] [CrossRef]
- Ramli, S.N.; Fadzullah, S.H.; Mustafa, Z. The effect of alkaline treatment and fiber length on pineapple leaf fiber reinforced poly lactic acid biocomposites. J. Teknol. 2017, 79, 111–115. [Google Scholar] [CrossRef]
- Smitthipong, W.; Tantatherdtam, R.; Chollakup, R. Effect of pineapple leaf fiber-reinforced thermoplastic starch/poly (lactic acid) green composite: Mechanical, viscosity, and water resistance properties. J. Thermoplast. Compos. Mater. 2015, 28, 717–729. [Google Scholar] [CrossRef]
- Rao, G.S.; Debnath, K.; Mahapatra, R.N. Degradation characteristics of the pineapple leaf fibre reinforced green composite developed by injection moulding under different environmental conditions. Ind. Crops Prod. 2024, 214, 118429. [Google Scholar] [CrossRef]
- Alias, L.H.; Jaafar, J.; Siregar, J.P.; Cionita, T.; Piah, M.B.; Irawan, A.P.; Fitriyana, D.F.; Salleh, H.; Oumer, A.N. Influence of dammar gum application on the mechanical properties of pineapple leaf fiber reinforced tapioca biopolymer composites. Polym. Compos. 2024, 45, 2858–2868. [Google Scholar] [CrossRef]
- Todkar, S.S.; Patil, S.A. Review on mechanical properties evaluation of pineapple leaf fibre (PALF) reinforced polymer composites. Compos. Part B 2019, 174, 106927. [Google Scholar] [CrossRef]
- Lopattananon, N.; Panawarangkul, K.; Sahakaro, K.; Ellis, B. Performance of pineapple leaf fiber–natural rubber composites: The effect of fiber surface treatments. J. Appl. Polym. Sci. 2006, 102, 1974–1984. [Google Scholar] [CrossRef]
- Hossain, M.; Elahi, A.; Afrin, S.; Khan, M.; Jalil, M.; Nazmul Hossain, M. Mechanical Property Evaluation of PALF Polyester Bio-Composite. In Proceedings of the 11th International Conference on Mechanical Engineering, Dhaka, Bangladesh, 18–20 December 2015; pp. 18–20. [Google Scholar]
- Chin, S.C.; Tong, F.S.; Doh, S.I.; Gimbun, J.; Ong, H.R.; Serigar, J.P. Strengthening performance of PALF-epoxy composite plate on reinforced concrete beams. IOP Conf. Ser. Mater. Sci. Eng. 2018, 318, 012026. [Google Scholar] [CrossRef]
- Gloria, G.O.; Teles, M.C.; Neves, A.C.; Vieira, C.M.; Lopes, F.P.; de Almeida Gomes, M.; Margem, F.M.; Monteiro, S.N. Bending test in epoxy composites reinforced with continuous and aligned PALF fibers. J. Mater. Res. Technol. 2017, 6, 411–416. [Google Scholar] [CrossRef]
- Jain, J.; Jain, S.; Sinha, S. Characterization and thermal kinetic analysis of pineapple leaf fibers and their reinforcement in epoxy. J. Elastomers Plast. 2019, 51, 224–243. [Google Scholar] [CrossRef]
- Mayakannan, S.; Raj, J.B.; Raja, V.L.; Nagaraj, M. Effectiveness of silicon nanoparticles on the mechanical, wear, and physical characteristics of PALF/sisal fiber–based polymer hybrid nanocomposites. Biomass Convers. Biorefin. 2023, 13, 13291–13305. [Google Scholar] [CrossRef]
- Badyankal, P.V.; Manjunatha, T.S.; Gouda, P.S.; BH, M.P.; Srinivasa, C.S. An inquisition on alkaline treated Banana/Sisal/Pineapple fiber epoxy composites for light to moderate load applications. Eng. Res. Express 2024, 6, 015507. [Google Scholar] [CrossRef]
- George, J.; Bhagawan, S.S.; Thomas, S. Thermogravimetric and dynamic mechanical thermal analysis of pineapple fibre reinforced polyethylene composites. J. Therm. Anal. Calorim. 1996, 47, 1121–1140. [Google Scholar] [CrossRef]
- Cherian, B.M.; Leão, A.L.; De Souza, S.F.; Thomas, S.; Pothan, L.A.; Kottaisamy, M. Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr. Polym. 2010, 81, 720–725. [Google Scholar] [CrossRef]
- Kengkhetkit, N.; Amornsakchai, T. Utilisation of pineapple leaf waste for plastic reinforcement: 1. A novel extraction method for short pineapple leaf fiber. Ind. Crops Prod. 2012, 40, 55–61. [Google Scholar] [CrossRef]
- Kasim, A.N.; Selamat, M.Z.; Aznan, N.; Sahadan, S.N.; Daud, M.A.; Salleh, S.; Jumaidin, R. Effect of pineapple leaf fiber loading on the properties of pineapple leaf fiber–polypropylene composite. In Proceedings of the Mechanical Engineering Research Day 2015, Melaka, Malaysia, 31 March 2015; pp. 3–4. [Google Scholar]
- Chollakup, R.; Askanian, H.; Delor-Jestin, F. Initial properties and ageing behaviour of pineapple leaf and palm fibre as reinforcement for polypropylene. J. Thermoplast. Compos. Mater. 2017, 30, 174–195. [Google Scholar] [CrossRef]
- Sathiyamurthy, S.; Vinoth, V.; Ananthi, N.; Devi, P. The effect of fiber stacking sequence on mechanical and morphological behavior of paddy straw/pineapple leaf fiber-reinforced ortho-laminated polyester hybrid composites. Proc. Inst. Mech. Eng. Part E 2024, 238, 463–473. [Google Scholar] [CrossRef]
- Jothiprakash, V.M.; Gurijala, C.; Sathish, K.; Balachandar, M.; Sakthi Sadhasivam, R.M. Mechanical and tribological behavior of pineapple leaf and kenaf fiber reinforced vinyl ester hybrid composites. Proc. Inst. Mech. Eng. Part E 2024, 177, 09544089241233968. [Google Scholar] [CrossRef]
- Ahmadi, N.; Ramadhan, E.S.; Subarjo, A.H. Effect of Addition of Pineapple Leaf Fiber and Palm Fiber on The Bending Strength of Polypropylene Composites as Materials Candidate Unmanned Aerial Vehicle. Adv. Eng. Res. 2024, 229, 169. [Google Scholar]
- Rangappa, S.M.; Siengchin, S.; Parameswaranpillai, J.; Jawaid, M.; Ozbakkaloglu, T. Lignocellulosic fiber reinforced composites: Progress, performance, properties, applications, and future perspectives. Polym. Compos. 2022, 43, 645–691. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Vivekanandhan, S.; Pin, J.M.; Misra, M. Composites from renewable and sustainable resources: Challenges and innovations. Science 2018, 362, 536–542. [Google Scholar] [CrossRef]
- Brodin, M.; Vallejos, M.; Opedal, M.T.; Area, M.C.; Chinga-Carrasco, G. Lignocellulosics as sustainable resources for production of bioplastics—A review. J. Clean. Prod. 2017, 162, 646–664. [Google Scholar] [CrossRef]
- Okolie, J.A.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Chemistry and specialty industrial applications of lignocellulosic biomass. Waste Biomass Valorization 2021, 12, 2145–2169. [Google Scholar] [CrossRef]
- Muniyasamy, S.; Anstey, A.; Reddy, M.M.; Misra, M.; Mohanty, A. Biodegradability and compostability of lignocellulosic based composite materials. J. Renew. Mater. 2013, 1, 253–272. [Google Scholar] [CrossRef]
- Santos, C.C.; Ferreira, F.V.; Pinheiro, I.F.; Lona, L.M. Lignin valorization through polymer grafting by ring-opening polymerization and its application in health, packaging, and coating. J. Environ. Chem. Eng. 2023, 11, 109691. [Google Scholar] [CrossRef]
- Tillet, G.; Boutevin, B.; Ameduri, B. Chemical reactions of polymer crosslinking and post-crosslinking at room and medium temperature. Prog. Polym. Sci. 2011, 36, 191–217. [Google Scholar] [CrossRef]
- Shafiq, A.; Bhatti, I.A.; Amjed, N.; Zeshan, M.; Zaheer, A.; Kamal, A.; Naz, S.; Rasheed, T. Lignin derived polyurethanes: Current advances and future prospects in synthesis and applications. Eur. Polym. J. 2024, 209, 112899. [Google Scholar] [CrossRef]
- Taher, M.A.; Wang, X.; Faridul Hasan, K.M.; Miah, M.R.; Zhu, J.; Chen, J. Lignin Modification for Enhanced Performance of Polymer Composites. ACS Appl. Bio Mater. 2023, 6, 5169–5192. [Google Scholar] [CrossRef] [PubMed]
- Dehne, L.; Babarro, C.V.; Saake, B.; Schwarz, K.U. Influence of lignin source and esterification on properties of lignin-polyethylene blends. Ind. Crops Prod. 2016, 86, 320–328. [Google Scholar] [CrossRef]
- Feldman, D. Lignin and its polyblends—A review. In Chemical Modification, Properties, and Usage of Lignin; Springer: New York, NY, USA, 2002; pp. 81–99. [Google Scholar]
- Nitz, H.; Semke, H.; Mülhaupt, R. Influence of lignin type on the mechanical properties of lignin based compounds. Macromol. Mater. Eng. 2001, 286, 737–743. [Google Scholar] [CrossRef]
- Kubo, S.; Kadla, J.F. Kraft lignin/poly (ethylene oxide) blends: Effect of lignin structure on miscibility and hydrogen bonding. J. Appl. Polym. Sci. 2005, 98, 1437–1444. [Google Scholar] [CrossRef]
- Perez–Camargo, R.A.; Saenz, G.; Laurichesse, S.; Casas, M.T.; Puiggali, J.; Avérous, L.; Müller, A.J. Nucleation, crystallization, and thermal fractionation of poly (ε-caprolactone)-grafted-lignin: Effects of grafted chains length and lignin content. J. Polym. Sci. Part B Polym. Phys. 2015, 53, 1736–1750. [Google Scholar] [CrossRef]
- Feldman, D.; Lacasse, M.A. Polymer–filler interaction in polyurethane kraft lignin polyblends. J. Appl. Polym. Sci. 1994, 51, 701–709. [Google Scholar] [CrossRef]
- Bodirlau, R.; Teaca, C.A.; Spiridon, I. Influence of natural fillers on the properties of starch-based biocomposite films. Compos. Part B 2013, 44, 575–583. [Google Scholar] [CrossRef]
- Premkumar, N.; Madhavi, M.R.; Kitmo, K.; Shanmugan, S. Utilizing the lignocellulosic fibers from pineapple crown leaves extract for enhancing TiO2 interfacial bonding in dye-sensitized solar cell photoanodes. Mater. Renew. Sustain. Energy 2024, 13, 13–25. [Google Scholar] [CrossRef]
- Prakash, S.O.; Sahu, P.; Madhan, M.; Johnson Santhosh, A. A Review on Natural Fibre-Reinforced Biopolymer Composites: Properties and Applications. Int. J. Polym. Sci. 2022, 1, 7820731. [Google Scholar] [CrossRef]
- Jadhav, H.S.; Fulke, A.B.; Giripunje, M.D. Recent global insight into mitigation of plastic pollutants, sustainable biodegradable alternatives, and recycling strategies. Int. J. Environ. Sci. Technol. 2023, 20, 8175–8198. [Google Scholar] [CrossRef]
- Punia Bangar, S.; Ilyas, R.A.; Chaudhary, N.; Dhull, S.B.; Chowdhury, A.; Lorenzo, J.M. Plant-based natural fibers for food packaging: A green approach to the reinforcement of biopolymers. J. Polym. Environ. 2023, 31, 5029–5049. [Google Scholar] [CrossRef]
- La Fuente, C.I.; Maniglia, B.C.; Tadini, C.C. Biodegradable polymers: A review about biodegradation and its implications and applications. Packag. Technol. Sci. 2023, 36, 81–95. [Google Scholar] [CrossRef]
- Prete, S.; Dattilo, M.; Patitucci, F.; Pezzi, G.; Parisi, O.I.; Puoci, F. Natural and Synthetic Polymeric Biomaterials for Application in Wound Management. J. Funct. Biomater. 2023, 14, 455. [Google Scholar] [CrossRef]
- Muniyasamy, S.; Ofosu, O.; Thulasinathan, B.; Rajan, A.S.; Ramu, S.M.; Soorangkattan, S.; Muthuramalingam, J.B.; Alagarsamy, A. Thermal-chemical and biodegradation behaviour of alginic acid treated flax fibres/poly (hydroxybutyrate-co-valerate) PHBV green composites in compost medium. Biocatal. Agric. Biotechnol. 2019, 22, 101394. [Google Scholar] [CrossRef]
- Brunsek, R.; Kopitar, D.; Schwarz, I.; Marasovic, P. Biodegradation properties of cellulose fibers and PLA biopolymer. Polymers 2023, 15, 3532. [Google Scholar] [CrossRef]
- Borelbach, P.; Kopitzky, R.; Dahringer, J.; Gutmann, P. Degradation behavior of biodegradable man-made fibers in natural soil and in compost. Polymers 2023, 15, 2959. [Google Scholar] [CrossRef]
- Nomadolo, N.; Dada, O.E.; Swanepoel, A.; Mokhena, T.; Muniyasamy, S.A. Comparative Study on the Aerobic Biodegradation of the Biopolymer Blends of Poly (butylene succinate), Poly (butylene adipate terephthalate) and Poly (lactic acid). Polymers 2022, 14, 1894. [Google Scholar] [CrossRef]
- Muniyasamy, S.; Ofosu, O.; John, M.J.; Anandjiwala, R.D. Mineralization of poly (lactic acid) (PLA), poly (3-hydroxybutyrate-co-valerate)(PHBV) and PLA/PHBV blend in compost and soil environments. J. Renew. Mater. 2016, 4, 133–145. [Google Scholar] [CrossRef]
- Muniyasamy, S.; John, M.J. Biodegradability of biobased polymeric materials in natural environments. In Handbook of Composites from Renewable Materials; Scrivener Publishing LLC: Beverly, CA, USA, 2017; pp. 625–654. [Google Scholar]
- Siakeng, R.; Jawaid, M.; Asim, M.; Siengchin, S. Accelerated weathering and soil burial effect on biodegradability, colour and textureof coir/pineapple leaf fibres/PLA biocomposites. Polymers 2020, 12, 458. [Google Scholar] [CrossRef]
Properties | PALF |
---|---|
Ash content (%) | 1.1% |
Lignin content (%) | 5–12% |
Cellulose content (%) | 70–82% |
Density (g/cm3) | 1.53 |
Tensile modulus (GPa) | 5.83 |
Tensile strength (MPa) | 290.61 |
Properties | Natural Fiber | Glass Fiber |
---|---|---|
Separation | Easy | Difficult |
Availability | Very high | Low |
Density | Low | Double |
Cost | Low | High |
CO2 emissions | Low | High |
CO emissions | Low | High |
SOx emissions | Low | High |
NOx emissions | Low | High |
Phosphates to water | High | Low |
Nitrates to water | High | Low |
BOD to water | Low | High |
COD to water | Low | High |
Energy consumption | Low | High |
Renewability | Yes | No |
Recyclability | Yes | No |
Energy consumption | Low | High |
Distribution | Wide | Wide |
Health risk when inhaled | No | Yes |
Degradable | Biodegradable | Non-biodegradable |
Distribution | Wide | Wide |
End of life | Recovered energy | Waste |
Pollution | Reduce | Less to natural Fibers |
Types of Nanocelluloses | Typical Sources | Method of Production | Average Dimensions | Young’s Modulus (GPa) | |
---|---|---|---|---|---|
Cellulose nanocrystals (CNC) | Wood, cotton, tunicate, Ramie, bacterial cellulose, bamboo | Acid Hydrolysis | Diameter 3–50 nm Length: 30 nm to 300 nm (wood and cotton based) 100 nm to several microns (tunicate and bacterial cellulose based) | 143 ± 0.9 GPa | [30] |
Bacterial Cellulose (BC) | Acetobacter/Glucobacter xylinum | Biosynthesis of glucose and alcohol | Diameter 10–100 nm Length: Mostly several tens of micrometers up to a mm. | 78 ± 17 GPa | [31] |
Nanofibrillated Cellulose (NFC) | Wood, cotton, potato hemp, flax | High-pressure homogenization, microfluidization, grinding, cryocrushing | Diameter 5–60 nm Length: several microns regardless of the cellulose source | 17.2 ± 1.2 GPa | [32] |
Bond/Stretching | –OH | C–H | C=O | C=C | C–H | C–H |
---|---|---|---|---|---|---|
PALF (cm−1) | 3349.9 | 2903.8 | 1737.4 | 1608.3 | 1374.2 | - |
Abaca (cm−1) | 3446 | 2915 | 1740 | - | 1310 | - |
Hemp (cm−1) | 3448 | 2920.5 | - | 1654 | 1384.1 | - |
Sisal (cm−1) | 3447.2 | 2924.2 | 1736.5 | 1653.9 | 1384.1 | 1259.9 |
Jute (cm−1) | 3447.9 | 2918.8 | 1737.2 | 1653.8 | 1384.1 | 1255.6 |
Kapok (cm−1) | 3419.7 | 2918.1 | 1741.1 | 1596.1 | 1383.6 | 1245.5 |
Kenaf (cm−1) | 3338 | 2899 | 1736 | - | - | - |
Oil palm fiber (cm−1) | 3450 | 2850 | 1735 | 1606 | - | - |
Flax (cm−1) | 3325 | 2900 | 1720 | 1615 | 1335 | 1228 |
Cotton (cm−1) | 3330 | 2896 | - | 1622 | 1365 | - |
Banana (cm−1) | 3379 | 2919 | - | 1602 | 1374 | 1238 |
Coir (cm−1) | 3338 | 2845 | - | 1600 | - | 1252 |
Henequen (cm−1) | 3431 | 2925 | 1741 | - | - | 1254 |
Bamboo palp (cm−1) | 3400 | 2900 | 1750 | 1600 | - | - |
Elephant grass (cm−1) | 3332 | 2888 | 1720 | - | 1319 | 1287 |
Rice straw (cm−1) | 3446 | 2922 | - | 1642 | 1375 | - |
Sugar palp (cm−1) | 3400 | 2931 | 1720 | 1600 | - | - |
Wheat straw (cm−1) | 3422 | 2927 | - | - | 1388 | 1251 |
Ramie (cm−1) | 3400 | 2900 | 1740 | 1630 | - | 1270 |
Source of Nanocrystalline Cellulose | Source of Biopolymer | The Effect of the Reinforcement | Ref. |
---|---|---|---|
PALF | PLA | The PLA film with 4PNC exhibited increased thermal degradation stability, indicating better heat resistance suitable for mulch film usage. | [57] |
PALF | PLA | The mechanical properties revealed that adding 3 wt% Cin-CNCs to PLA increased its tensile strength and Young’s modulus by 70% and 37%, respectively | [58] |
PALF | PLA | The ultimate tensile strain values | [59] |
PALF | PVA | Improved bionanocomposite film compositions have greater characteristics and properties that can be utilized as packaging in the food industry | [60] |
PALF | TPS | Barrier properties were enhanced. | [61] |
Microcrystalline cellulose | PLA | Acetylation can improve the performance of the composite by enabling linkages between carbonyl groups, helping to establish a good stress transfer between the fiber and the matrix. | [62] |
Microcrystalline cellulose | PLA | The impact and the elongation at break increased from 0.864 to 2.64 kJ, and 22 from 11% to 106.0%, respectively. | [63] |
Microcrystalline cellulose | PLA | The modified PLA nanocomposite is considered a practical candidate for hard tissue engineering applications according to cytotoxicity results. | [64] |
Microcrystalline cellulose | PBS/PLA | Thermal stability, storage modulus, glass translation temperature of nanocomposites increased. | [65] |
Maize starch | PLA | Provided better filler dispersion and interaction with the matrix. | [66] |
Banana waste | PLA | Dynamic mechanical thermal analysis (DMTA) exhibited a 30 to 50% reduction in storage modulus (stiffness) when compared to neat PLA. | [67] |
Bamboo pulp | PHAs | The elastic and crystallinity properties of the nanocomposites improved with the increase in NCC loadings. | [68] |
Kenaf | PHAs | The conductivity of the polymer nanocomposites improved. | [69] |
Cotton | starch | Water absorption of the coated paper composite decreased by 50% at 5 wt% NCC concentration. | [70] |
Kenaf fibers | starch | The water absorption by the biocomposite and the water sensitivity decreased. | [71] |
Sugar palm | starch | Good compatibility between the nanofibrillated cellulose and the sugar palm fiber; the composition created intermolecular hydrogen bonds between them. | [72] |
Cellulose nanocrystals | PHAs | Kraft paper was used to reinforce polyhydroxyalkanoate (PHAs). There was an increase in the crystallinity and stiffness of the nanocomposites | [73] |
Cellulose nanocrystals | PHBV | Limited reinforcement was observed despite enhanced dispersion relative to the neat PHBV matrix due to the hydrophobization surface of NCC (plants). | [74] |
Nanocrystalline cellulose | PBS | Nanocomposites from biodegradable poly (butylene succinate) (PBS), blended with nanofillers chitin whiskers. The tensile strength increased from 23.2 MPa to 32.9 MPa | [75] |
Microcrystalline cellulose | PLA | NCC-reinforced PLA exhibited improvements in its thermal, mechanical, and UV barrier properties. | [76] |
Fiber | Cellulose (wt%) | Hemicellulose (wt%) | Lignin (wt%) | Pectin (wt%) | Wax (wt%) | Water Soluble (wt%) | Microfibrillar Angle (°) |
---|---|---|---|---|---|---|---|
Hemp | 70.2–74.4 | 17.9–22.4 | 3.7–5.7 | 0.9 | 0.8 | 2.10 | 2–6.2 |
Jute | 61–71.5 | 13.6–20.4 | 12–13 | 0.2 | 0.5 | 1.2 | 8 |
Flax | 71–78 | 18.6–20.6 | 2.2 | 2.3 | 1.7 | 2.3 | 5–10 |
Kenaf | 45–57 | 21.5 | 8–13 | 3–5 | - | - | - |
Leaf fiber Sisal | 67–78 | 10–14 | 8–11 | 10 | 2 | 1.3 | 10–22 |
Curaua | 73.6 | 9.9 | 7.5 | - | - | - | - |
Abaca | 56–63 | 21.7 | 12–13 | 1.0 | 0.2 | 1.6 | - |
Henequen | 77.6 | 4–8 | 13.1 | - | - | - | - |
Fruit/Seed fiber Cotton | 85–90 | 5.70 | 0.7–1.6 | 0–1 | 0.6 | 1.0 | 20–30 |
Coir | 36–43 | 0.15–0.25 | 41–45 | 3–4 | - | 5.2–16.0 | 30–49 |
Wood Hardwood | 43–47 | 25–35 | 16–24 | - | - | - | - |
Banana | 63–64 | 10 | 5 | - | - | - | 11 |
Pineapple | 80–83 | 15–20 | 8–12 | 2–4 | 4–7 | 1–3 | 8–15 |
Source | Polymer Matrix | Type of Lignin | Ref. |
---|---|---|---|
Lignin | Thermoplastic polyolefins (TPO) | Industrial lignins (hardwood and softwood Kraft lignins, wheat straw soda lignin, hydrolysis lignin from wheat) | [123] |
Vinyl polymers | Softwood Kraft lignin; softwood lignosulfonate; hardwood lignosulfonate | [124] | |
Polyamides | soda lignin from annual plants (sisal and abaca), hardwood | [125] | |
Polyether | Softwood Kraft lignin | [126] | |
Polyesters | soda lignin from wheat straw | [127] | |
Thermoplastic elastomer (TPE) | Eucalyptus wood Kraft lignin, softwood, and hardwood Kraft lignins | [128] | |
Polysaccharides | LignoBoost softwood Kraft lignin soda lignin from wheat straw and bagasse | [129] | |
Polyethylene teripthalate (PET) | Lignin from pineapple | [130] |
Material | Biodegradation (%) in Days | Ref. |
---|---|---|
PHBV/flax | 48.9–30 days | [136] |
PHBV/flax/alginic acid | 65.6–30 days | [136] |
Hemp Fiber | 6.73–13 days | [137] |
Jute Fiber | 10.82–13 days | [137] |
Sisal Fiber | 28.83–13 days | [137] |
Viscose Fiber | 3.12–13 days | [137] |
PLA | 1.5–13 days | [137] |
PBS/PLA/BICO | 65–30 days | [138] |
PHA/PLA/BICO | 55–30 days | [138] |
PBAT/PLA | 25–30 days | [139] |
PBAT/PBS | 20–30 days | [139] |
PHBV | 15–30 days | [140] |
PLA/PHBV | 25–30 days | [140] |
PBAT | 80–33 days | [141] |
PCL | 100–67 days | [141] |
TPS | 45–67 days | [141] |
PALF | 15.2–30 days | [142] |
CF/PALF/PLA | 18.6–30 days | [143] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sethupathi, M.; Khumalo, M.V.; Skosana, S.J.; Muniyasamy, S. Recent Developments of Pineapple Leaf Fiber (PALF) Utilization in the Polymer Composites—A Review. Separations 2024, 11, 245. https://doi.org/10.3390/separations11080245
Sethupathi M, Khumalo MV, Skosana SJ, Muniyasamy S. Recent Developments of Pineapple Leaf Fiber (PALF) Utilization in the Polymer Composites—A Review. Separations. 2024; 11(8):245. https://doi.org/10.3390/separations11080245
Chicago/Turabian StyleSethupathi, Murugan, Mandla Vincent Khumalo, Sifiso John Skosana, and Sudhakar Muniyasamy. 2024. "Recent Developments of Pineapple Leaf Fiber (PALF) Utilization in the Polymer Composites—A Review" Separations 11, no. 8: 245. https://doi.org/10.3390/separations11080245
APA StyleSethupathi, M., Khumalo, M. V., Skosana, S. J., & Muniyasamy, S. (2024). Recent Developments of Pineapple Leaf Fiber (PALF) Utilization in the Polymer Composites—A Review. Separations, 11(8), 245. https://doi.org/10.3390/separations11080245