Damage Analysis and a Novel Mathematical Relation Between the Interface Quality and the Impact Fracture Energy for Epoxy Composites Reinforced with Medium and High Ramie Woven Fabric Volume Fractions
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production of Biocomposite Plates
2.3. Impact Tests and Statistical Analyses
2.4. Intralaminar and Interlaminar Fracture Characterizations
2.5. Hypotheses for the Relation Between the Quality of Interface and Fracture Energy
3. Results and Discussion
3.1. Results of the Charpy Test in Intact Specimens
3.2. Results of the Charpy Test in Aged Specimens
3.3. The Relation Between Interface Quality and Impact Fracture Energy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Parvathaneni, P.P.; Madhav, V.V.V.; Chaitanya, C.S.; Spandana, V.V.; Saxena, K.K.; Garg, S.; Zeleke, M.A. Prediction of Impact Behaviour for Natural Fiber-Reinforced Composites Using the Finite Element Method. Compos. Adv. Mater. 2022, 31, 26349833221145016. [Google Scholar] [CrossRef]
- Xu, B.; Blok, R.; Teuffel, P.; Lucas, S.S.; Moonen, F. Effect of Moisture in Flax Fiber on Viscoelastic Properties of the Manufactured Flax Fiber Reinforced Polymer by Fractional-Order Viscoelastic Model. Mater. Today Commun. 2024, 40, 110138. [Google Scholar] [CrossRef]
- Syduzzaman, M.; Chowdhury, S.E.; Pritha, N.M.; Hassan, A.; Hossain, S. Natural Fiber Reinforced Polymer Composites for Ballistic Protection: Design, Performance, and Challenges. Results Mater. 2024, 24, 100639. [Google Scholar] [CrossRef]
- Soni, A.; Das, P.K.; Gupta, S.K.; Saha, A.; Rajendran, S.; Kamyab, H.; Yusuf, M. An Overview of Recent Trends and Future Prospects of Sustainable Natural Fiber-Reinforced Polymeric Composites for Tribological Applications. Ind. Crops Prod. 2024, 222, 119501. [Google Scholar] [CrossRef]
- Kareem, A.; Reddy, P.V.; Kumar, V.S.; Buddi, T. Influence of the Stacking on Mechanical and Physical Properties of Jute/Banana Natural Fiber Reinforced Polymer Matrix Composite. Mater. Today Proc. 2023; in press. ISSN 2214-7853. [Google Scholar] [CrossRef]
- Singh, M.K.; Tewari, R.; Zafar, S.; Rangappa, S.M.; Siengchin, S. A Comprehensive Review of Various Factors for Application Feasibility of Natural Fiber-Reinforced Polymer Composites. Results Mater. 2022, 17, 100355. [Google Scholar] [CrossRef]
- Koppula, S.B.; Karachi, S.; Kumar, V.; Borra, N.D.; Y, P.; Neigapula, V.S.N.; Rao, M.I.; S, H. Investigation into the Mechanical Characteristics of Natural Fiber-Reinforced Polymer Composites: Effects of Flax and e-Glass Reinforcement and Stacking Configuration. Mater. Today Proc. 2023, 115, 82–88. [Google Scholar] [CrossRef]
- Ajayi, N.E.; Rusnakova, S.; Ajayi, A.E.; Ogunleye, R.O.; Agu, S.O.; Amenaghawon, A.N. A comprehensive review of natural fiber reinforced Polymer composites as emerging materials for sustainable applications. Appl. Mater. Today 2025, 43, 102666. [Google Scholar] [CrossRef]
- Vishwash, B.; Shivakumar, N.D.; Sachidananda, K.B. Analytical Investigation of Green Composite Lamina Utilizing Natural Fiber to Strengthen PLA. Hybrid Adv. 2024, 7, 100305. [Google Scholar] [CrossRef]
- Khan, F.; Hossain, N.; Hasan, F.; Rahman, S.M.M.; Khan, S.; Saifullah, A.Z.A.; Chowdhury, M.A. Advances of Natural Fiber Composites in Diverse Engineering Applications—A Review. Appl. Eng. Sci. 2024, 18, 100184. [Google Scholar] [CrossRef]
- Kumar, K.D.; Yadav, S.P.S.; Ravindra, N.; D’Mello, G.; Manjunatha, G. Study the Effect of Fracture Toughness on Hybrid Composite for Automotive Application. Mater. Today Proc. 2023, 92, 131–136. [Google Scholar] [CrossRef]
- Mansor, M.R.; Nurfaizey, A.H.; Tamaldin, N.; Nordin, M.N.A. Natural fiber polymer composites: Utilization in aerospace engineering. In Woodhead Publishing Series in Composites Science and Engineering. Biomass, Biopolymer-Based Materials, and Bioenergy; Woodhead Publishing: Cambridge, UK, 2019. [Google Scholar]
- Tuli, N.T.; Khatun, S.; Rashid, A.B. Unlocking the Future of Precision Manufacturing: A Comprehensive Exploration of 3D Printing with Fiber-Reinforced Composites in Aerospace, Automotive, Medical, and Consumer Industries. Heliyon 2024, 10, e27328. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.M.; Santos, T.F.; Rao, H.J.; Silva, F.H.V.A.; Rangappa, S.M.; Boonyasopon, P.; Siengchin, S.; Souza, D.F.S.; Nascimento, J.H.O. A Bibliometric Review on Applications of Lignocellulosic Fibers in Polymeric and Hybrid Composites: Trends and Perspectives. Heliyon 2024, 10, e38264. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, A.; Bonde, A.; Sun, H.; Wittig, N.K.; Hammershøj, H.C.D.; Batista, G.M.F.; Sommerfeldt, A.; Frølich, S.; Birkedal, H.; Skrydstrup, T. Catalytic Disconnection of C–O Bonds in Epoxy Resins and Composites. Nature 2023, 617, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Rafiee, K.; Schritt, H.; Pleissner, D.; Kaur, G.; Brar, S.K. Biodegradable Green Composites: It’s Never Too Late to Mend. Curr. Opin. Green Sustain. Chem. 2021, 30, 100482. [Google Scholar] [CrossRef]
- Muniyasamy, S.; Dada, O.E. Recycling of Plastics and Composites Materials and Degradation Technologies for Bioplastics and Biocomposites. In Elsevier eBooks; Elsevier: Amsterdam, The Netherlands, 2021; pp. 311–333. [Google Scholar]
- Le Bourhis, E.; Touchard, F. Mechanical Properties of Natural Fiber Composites. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Tan, Y.; Mei, Q.; Luo, X. The Influence of Interface Morphology on the Mechanical Properties of Binary Laminated Metal Composites Fabricated by Hierarchical Roll-Bonding. Metals 2025, 15, 580. [Google Scholar] [CrossRef]
- Cao, M.; Wang, C.; Deng, K.; Nie, K.; Liang, W.; Wu, Y. Effect of interface on mechanical properties and formability of Ti/Al/Ti laminated composites. J. Mater. Res. Technol. 2021, 14, 1655–1669. [Google Scholar] [CrossRef]
- Woigk, W.; Fuentes, C.A.; Rion, J.; Hegemann, D.; Van Vuure, A.W.; Dransfeld, C.; Masania, K. Interface Properties and Their Effect on the Mechanical Performance of Flax Fibre Thermoplastic Composites. Compos. Part A Appl. Sci. Manuf. 2019, 122, 8–17. [Google Scholar] [CrossRef]
- Ao, W.; Zhuang, W.; Xing, B.; Zhou, Q.; Xia, Y. Finite Element Method of a Progressive Intralaminar and Interlaminar Damage Model for Woven Fibre Laminated Composites under Low Velocity Impact. Mater. Des. 2022, 223, 111256. [Google Scholar] [CrossRef]
- Saeedifar, M.; Toudeshky, H.H. The Effect of Interlaminar and Intralaminar Damage Mechanisms on the Quasi-Static Indentation Strength of Composite Laminates. Appl. Compos. Mater. 2023, 30, 871–886. [Google Scholar] [CrossRef]
- ISO 4787: 2021; Laboratory Glass and Plastic Ware—Volumetric Instruments—Methods for Testing of Capacity and Use. ISO: Geneva, Switzerland, 2021.
- Uppal, N.; Pappu, A.; Gowri, V.K.S.; Thakur, V.K. Cellulosic Fibres-Based Epoxy Composites: From Bioresources to a Circular Economy. Ind. Crops Prod. 2022, 182, 114895. [Google Scholar] [CrossRef]
- ISO 179-1: 2010; Plastic Determination of Charpy Impact Properties, Part 1: Non-Instrumented Impact Test. ISO: Geneva, Switzerland, 2020.
- Machado, M.V.F.; Lopes, F.P.D.; Simonassi, N.T.; Monteiro, S.N. Ensaios de Impacto em Compósitos Epóxi com Média e Alta Frações Volumétricas Teóricas de Tecido de Rami e uma Análise de Fraturas à Luz do Princípio de Hamilton. ABM Proc. 2024, 77, 321–332. [Google Scholar] [CrossRef]
- ASTM-G53/154: 2017; Standard Practice for Operating Fluorescent Light Apparatus for UV Exposure of Nonmetallic Materials. ASTM: Philadelphia, PA, USA, 2017.
- ASTM D 5208: 2022; Standard Practice for Fluorescent Ultraviolet (UV) Exposure of Photodegradable Plastics. ASTM: Philadelphia, PA, USA, 2022.
- Dinno, A. Nonparametric Pairwise Multiple Comparisons in Independent Groups using Dunn’s Test. Stata J. 2015, 15, 292–300. [Google Scholar] [CrossRef]
- Ramachandran, K.M.; Tsokos, C.P. Nonparametric tests. In Elsevier eBooks; Elsevier: Amsterdam, The Netherlands, 2014; pp. 589–637. [Google Scholar]
- Tomczak, M.; Tomczak, E. The Need to Report Effect Size Estimates Revisited. Trends Sport Sci. 2014, 1, 19–25. [Google Scholar]
- López-Martín, E.; Ardura-Martínez, D. The effect size in scientific publication. Educ. XX1 2023, 26, 9–17. [Google Scholar] [CrossRef]
- Wu, X.; Li, X.; Sun, S.; Yu, Y.; Wang, Z. Fracture Process Zone and Fracture Energy of Heterogeneous Soft Materials. J. Mech. Phys. Solids 2024, 196, 105997. [Google Scholar] [CrossRef]
- Izadi, S.M.H.; Fakoor, M.; Mirzavand, B. A Novel Mixed Mode Fracture Criterion for Functionally Graded Materials Considering Fracture Process Zone. Theor. Appl. Fract. Mech. 2024, 134, 104710. [Google Scholar] [CrossRef]
- Pop, I.O.; Marsavina, L.; Dopeux, J.; Metrope, M. A New Approach for Fracture Process Zone Evaluation. Theor. Appl. Fract. Mech. 2024, 132, 104495. [Google Scholar] [CrossRef]
- Oshima, S.; Seryo, Y.; Kimura, M.; Hojo, M. Mesoscale Mechanism of Damage in Fracture Process Zone of CFRP Laminates Simulated with Triaxial Stress State-Dependent Constitutive Equation of Matrix Resin. Compos. Sci. Technol. 2024, 257, 110837. [Google Scholar] [CrossRef]
- Maghami, A.; Wang, Q.; Tricarico, M.; Ciavarella, M.; Li, Q.; Papangelo, A. Bulk and Fracture Process Zone Contribution to the Rate-Dependent Adhesion Amplification in Viscoelastic Broad-Band Materials. J. Mech. Phys. Solids 2024, 193, 105844. [Google Scholar] [CrossRef]
- Chu, P.; Xie, H.; Hu, J.; Li, M.; Ren, L.; Li, C. Anisotropic Fracture Behavior and Corresponding Fracture Process Zone of Laminated Shale through Three-Point Bending Tests. J. Rock Mech. Geotech. Eng. 2024, 17, 757–774. [Google Scholar] [CrossRef]
- Nie, Y.; Li, D.; Luo, Q. A Multiscale Nonlinear Fracture Model for Staggered Composites to Reveal the Toughening Effect of Process Zone. Compos. Sci. Technol. 2023, 241, 110132. [Google Scholar] [CrossRef]
- Xu, X.; Takeda, S.-I.; Wisnom, M.R. Investigation of Fracture Process Zone Development in Quasi-Isotropic Carbon/Epoxy Laminates Using in Situ and Ex Situ X-Ray Computed Tomography. Compos. Part A Appl. Sci. Manuf. 2022, 166, 107395. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, H.; Luo, S. Size Effect Model of Nominal Tensile Strength with Competing Mechanisms between Maximum Defect and Fracture Process Zone (CDF Model) for Quasi-Brittle Materials. Constr. Build. Mater. 2023, 399, 132538. [Google Scholar] [CrossRef]
- Scott, D.A.; Lessel, A.M.; Williams, B.A.; Horner, W.M.; Ranade, R. Fracture Process Zone Characterizations of Multi-Scale Fiber Reinforced Cementitious Composites. Constr. Build. Mater. 2023, 408, 133713. [Google Scholar] [CrossRef]
- Su, H.; Wang, L.; Chen, B. A Phase-Field Framework for Modeling Multiple Cohesive Fracture Behaviors in Laminated Composite Materials. Compos. Struct. 2024, 347, 118458. [Google Scholar] [CrossRef]
- Qu, Z.; Zhao, C.; An, L. A Micromechanics Perspective on the Intralaminar and Interlaminar Damage Mechanisms of Composite Laminates Considering Ply Orientation and Loading Condition. Compos. Struct. 2024, 347, 118454. [Google Scholar] [CrossRef]
- Ferreira, L.M.; Coelho, C.A.C.P.; Reis, P.N.B. Numerical Predictions of Intralaminar and Interlaminar Damage in Thin Composite Shells Subjected to Impact Loads. Thin-Walled Struct. 2023, 192, 111148. [Google Scholar] [CrossRef]
- Francesconi, L.; Aymerich, F. Numerical simulation of the effect of stitching on the delamination resistance of laminated composites subjected to low-velocity impact. Compos. Struct. 2017, 159, 110–120. [Google Scholar] [CrossRef]
- He, R.; Gao, Y.; Cheng, L.; Liu, W.; Cui, H.; Suo, T. Dynamic Tensile Intralaminar Fracture and Continuum Damage Evolution of 2D Woven Composite Laminates at High Loading Rate. Theor. Appl. Fract. Mech. 2024, 134, 104731. [Google Scholar] [CrossRef]
- Hu, P.; Pulungan, D.; Tao, R.; Lubineau, G. An Experimental Study on the Influence of Intralaminar Damage on Interlaminar Delamination Properties of Laminated Composites. Compos. Part A Appl. Sci. Manuf. 2020, 131, 105783. [Google Scholar] [CrossRef]
- Russo, A.; Palumbo, C.; Riccio, A. The Role of Intralaminar Damages on the Delamination Evolution in Laminated Composite Structures. Heliyon 2023, 9, e15060. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Naya, F.; Yang, L.; Chang, T.; Falzon, B.G.; Zhan, L.; Molina-Aldareguía, J.M.; González, C.; Llorca, J. The Role of Interfacial Properties on the Intralaminar and Interlaminar Damage Behaviour of Unidirectional Composite Laminates: Experimental Characterization and Multiscale Modelling. Compos. Part B Eng. 2017, 138, 206–221. [Google Scholar] [CrossRef]
- Espadas-Escalante, J.J.; Van Dijk, N.P.; Isaksson, P. The Effect of Free-Edges and Layer Shifting on Intralaminar and Interlaminar Stresses in Woven Composites. Compos. Struct. 2017, 185, 212–220. [Google Scholar] [CrossRef]
- Naya, F.; Pappas, G.; Botsis, J. Micromechanical Study on the Origin of Fiber Bridging under Interlaminar and Intralaminar Mode I Failure. Compos. Struct. 2018, 210, 877–891. [Google Scholar] [CrossRef]
- De Moura, M.F.S.F.; Campilho, R.D.S.G.; Amaro, A.M.; Reis, P.N.B. Interlaminar and Intralaminar Fracture Characterization of Composites under Mode I Loading. Compos. Struct. 2009, 92, 144–149. [Google Scholar] [CrossRef]
- Fisher, J.; Czabaj, M.W. A New Test for Characterization of Interlaminar Tensile Strength of Tape-Laminate Composites. Compos. Part A Appl. Sci. Manuf. 2023, 176, 107868. [Google Scholar] [CrossRef]
- Lee, C.H.; Khalina, A.; Lee, S.H. Importance of Interfacial Adhesion Condition on Characterization of Plant-Fiber-Reinforced Polymer Composites: A Review. Polymers 2021, 13, 438. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Shaker, K.; Nawab, Y.; Jabbar, M.; Hussain, T.; Militky, J.; Baheti, V. Hydrophobic treatment of natural fibers and their composites—A review. J. Ind. Text. 2016, 47, 2153–2183. [Google Scholar] [CrossRef]
- Campana, C.; Leger, R.; Sonnier, R.; Ferry, L.; Ienny, P. Effect of post curing temperature on mechanical properties of a flax fiber reinforced epoxy composite. Compos. Part A Appl. Sci. Manuf. 2018, 107, 171–179. [Google Scholar] [CrossRef]
- Luo, H.; Yang, Z.; Yao, F.; Li, W.; Wan, Y. Improved properties of corn fiber-reinforced polylactide composites by incorporating silica nanoparticles at interfaces. Polym. Polym. Compos. 2019, 28, 170–179. [Google Scholar] [CrossRef]
- Seid, A.M.; Adimass, S.A. Review on the impact behavior of natural fiber epoxy based composites. Heliyon 2024, 10, e39116. [Google Scholar] [CrossRef] [PubMed]
- Ichim, M.; Muresan, E.I.; Codau, E. Natural-Fiber-Reinforced Polymer Composites for Furniture Applications. Polymers 2024, 16, 3113. [Google Scholar] [CrossRef] [PubMed]
- Mulenga, T.K.; Rangappa, S.M.; Siengchin, S. Impact behavior of natural fiber composites: A comprehensive review on theoretical and computational modeling. Next Mater. 2025, 8, 100849. [Google Scholar] [CrossRef]
- Murugadoss, P.; Verma, A.; Ballal, S.; Upadhye, V.J.; Shukla, K.K.; Das, P.; Priya, K.K. Kenaf/basalt fiber-reinforced epoxy matrix hybrid composites: Current trends, challenges, and future prospects in advanced material development. Results Eng. 2025, 26, 104816. [Google Scholar] [CrossRef]
- Ojo, O.O.; Olaleke, M.O.; Alaneme, K.K.; Dahunsi, A.O. Ballistic and impact resistance performance of natural fiber-reinforced composites from biomass resources. Next Mater. 2025, 8, 100565. [Google Scholar] [CrossRef]
Fiber Theoretical Volume Fraction | 40% | 50% | 60% |
---|---|---|---|
Number of layers | 70 | 87 | 105 |
Δ (Notch Toughness) (J/m) | Δ (Impact Strength) (kJ/m2) | |
---|---|---|
40% int. | ±9.36 | ±0.89 |
50% int. | ±10.14 | ±0.87 |
60% int. | ±23.13 | ±0.87 |
40% aged | ±13.52 | ±0.68 |
50% aged | ±19.90 | ±0.85 |
60% aged | ±25.23 | ±0.91 |
%Volfiber | Energy (J) | Notch Toughness (J/m) | Impact Strength (kJ/m2) |
---|---|---|---|
40% | 1.28 ± 0.35 | 139.91 ± 37.67 | 21.83 ± 6.08 |
50% | 1.48 ± 0.36 | 158.53 ± 36.10 | 24.45 ± 4.59 |
60% | 3.86 ± 1.87 | 414.09 ± 200.24 | 49.67 ± 25.44 |
%Volfiber | Energy (J) | Notch Toughness (J/m) | Impact Strength (kJ/m2) |
---|---|---|---|
40% | 2.31 0.77 | 231.11 76.60 | 27.62 7.25 |
50% | 3.54 0.61 | 354.40 61.12 | 46.11 6.59 |
60% | 4.55 1.18 | 455.00 118.22 | 56.47 11.55 |
40% Int. | 50% Int. | 60% Int. | 40% Aged | 50% Aged | 60% Aged | |
---|---|---|---|---|---|---|
40% int. | 0.4621 | 0.0003 | 0.1971 | 9.6 × 10−5 | 1.4 × 10−6 | |
50% int. | 0.4621 | 0.0047 | 0.5603 | 0.0017 | 5.1 × 10−5 | |
60% int. | 0.0003 | 0.0047 | 0.0340 | 0.6992 | 0.2031 | |
40% aged | 0.1971 | 0.5603 | 0.0340 | 0.0146 | 0.0009 | |
50% aged | 9.6 × 10−5 | 0.0017 | 0.6992 | 0.0146 | 0.3876 | |
60% aged | 1.4 × 10−6 | 5.1 × 10−5 | 0.2031 | 0.0009 | 0.3876 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, M.V.F.; Lopes, F.P.D.; Simonassi, N.T.; de Carvalho, E.A.; Vieira, C.M.F.; Monteiro, S.N. Damage Analysis and a Novel Mathematical Relation Between the Interface Quality and the Impact Fracture Energy for Epoxy Composites Reinforced with Medium and High Ramie Woven Fabric Volume Fractions. Polymers 2025, 17, 2105. https://doi.org/10.3390/polym17152105
Machado MVF, Lopes FPD, Simonassi NT, de Carvalho EA, Vieira CMF, Monteiro SN. Damage Analysis and a Novel Mathematical Relation Between the Interface Quality and the Impact Fracture Energy for Epoxy Composites Reinforced with Medium and High Ramie Woven Fabric Volume Fractions. Polymers. 2025; 17(15):2105. https://doi.org/10.3390/polym17152105
Chicago/Turabian StyleMachado, Marcelo Vitor Ferreira, Felipe Perissé Duarte Lopes, Noan Tonini Simonassi, Eduardo Atem de Carvalho, Carlos Maurício Fontes Vieira, and Sergio Neves Monteiro. 2025. "Damage Analysis and a Novel Mathematical Relation Between the Interface Quality and the Impact Fracture Energy for Epoxy Composites Reinforced with Medium and High Ramie Woven Fabric Volume Fractions" Polymers 17, no. 15: 2105. https://doi.org/10.3390/polym17152105
APA StyleMachado, M. V. F., Lopes, F. P. D., Simonassi, N. T., de Carvalho, E. A., Vieira, C. M. F., & Monteiro, S. N. (2025). Damage Analysis and a Novel Mathematical Relation Between the Interface Quality and the Impact Fracture Energy for Epoxy Composites Reinforced with Medium and High Ramie Woven Fabric Volume Fractions. Polymers, 17(15), 2105. https://doi.org/10.3390/polym17152105