Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (364)

Search Parameters:
Keywords = natural fibre composite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3077 KiB  
Article
Influence of Carboxylic Acids (CAs) on the Structure–Properties Relationship in PLA/Pecan Nutshell (PN) Composites
by Giordano Pierozan Bernardes, Matheus de Prá Andrade and Matheus Poletto
J. Compos. Sci. 2025, 9(8), 422; https://doi.org/10.3390/jcs9080422 - 6 Aug 2025
Abstract
Reinforcing PLA composites with natural fibres is a prominent strategy for improving PLA’s properties while benefiting from its intrinsic biodegradation. However, these composites may be susceptible to an inefficient stress-transferring process due to the weak intermolecular interactions between PLA and natural fibres. A [...] Read more.
Reinforcing PLA composites with natural fibres is a prominent strategy for improving PLA’s properties while benefiting from its intrinsic biodegradation. However, these composites may be susceptible to an inefficient stress-transferring process due to the weak intermolecular interactions between PLA and natural fibres. A well-known practice is to incorporate coupling agents to improve polymer–fibre adhesion, such as carboxylic acids (CAs) and grafted copolymers. CAs are a more affordable and biodegradable option for improving PLA/natural fibre interface strength, resulting in a material with superior mechanical and thermal properties. In this context, this research discusses the potential use of mono (C6 and C8) and di (CC6 and CC8) carboxylic acids as coupling agents in PLA/pecan nutshells (PN) composites. PLA/PN composites with four different CAs were processed in a twin-screw extruder and subsequently injection moulded. The results indicated an increase in the flexural strength of the PLA due to the presence of PN in the neat composite. The use of CAs increased the storage modulus of PLA/PN composites, while C6 and CC8 reduced the PLA composite tan δ peak height. The PLA’s Tg in PLA/PN composite shifted to lower temperatures after the incorporation of CAs while increasing the PLA crystallinity degree. These results strongly suggested that besides acting as efficient coupling agents, these acids also exerted roles as nucleating agents and plasticisers. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Figure 1

19 pages, 3100 KiB  
Review
Casein-Based Biomaterials: Fabrication and Wound Healing Applications
by Nikolay Estiven Gomez Mesa, Krasimir Vasilev and Youhong Tang
Molecules 2025, 30(15), 3278; https://doi.org/10.3390/molecules30153278 - 5 Aug 2025
Abstract
Casein, the main phosphoprotein in milk, has a multifaceted molecular structure and unique physicochemical properties that make it a viable candidate for biomedical use, particularly in wound healing. This review presents a concise analysis of casein’s structural composition that comprises its hydrophobic and [...] Read more.
Casein, the main phosphoprotein in milk, has a multifaceted molecular structure and unique physicochemical properties that make it a viable candidate for biomedical use, particularly in wound healing. This review presents a concise analysis of casein’s structural composition that comprises its hydrophobic and hydrophilic nature, calcium phosphate nanocluster structure, and its response to different pH, temperature, and ionic conditions. These characteristics have direct implications for its colloidal stability, including features such as gelation, swelling capacity, and usability as a biomaterial in tissue engineering. This review also discusses industrial derivatives and recent advances in casein biomaterials based on different fabrication types such as hydrogels, electrospun fibres, films, and advanced systems. Furthermore, casein dressings’ functional and biological attributes have shown remarkable exudate absorption, retention of moisture, biocompatibility, and antimicrobial and anti-inflammatory activity in both in vivo and in vitro studies. The gathered evidence highlights casein’s versatile bioactivity and dynamic molecular properties, positioning it as a promising platform to address advanced wound dressing challenges. Full article
Show Figures

Graphical abstract

18 pages, 3972 KiB  
Article
The Influence of Halloysite Clay on the Properties of the Polybutylene Succinate (PBS)/Sawdust, PBS/Sugarcane Bagasse, and PBS/Sawdust/Sugarcane Bagasse Hybrid Composites
by Tlholohelo Sylvia Sikhosana, Ntsoaki Joyce Malebo, Mpho Phillip Motloung, Tladi Gideon Mofokeng and Mokgaotsa Jonas Mochane
Polymers 2025, 17(15), 2120; https://doi.org/10.3390/polym17152120 - 31 Jul 2025
Viewed by 274
Abstract
In this study, the influences of natural fibres (sugarcane bagasse (SB) and sawdust (SD)) on the material properties of polybutylene succinate (PBS) prepared through melt compounding were investigated. The study further evaluated the effects of incorporating halloysite nanotubes (HS) and expandable graphite (EG) [...] Read more.
In this study, the influences of natural fibres (sugarcane bagasse (SB) and sawdust (SD)) on the material properties of polybutylene succinate (PBS) prepared through melt compounding were investigated. The study further evaluated the effects of incorporating halloysite nanotubes (HS) and expandable graphite (EG) on the properties of PBS/SD and PBS/SB binary and PBS/SB/SD hybrid composites. The morphological analysis indicated poor interfacial adhesion between PBS and the fibres. The obtained findings indicated enhancements in the complex viscosity of PBS in the presence of natural fibres, and further improvements in the presence of HS and EG. The stiffness of PBS hybrid composites also increased upon the addition of HS and EG. Moreover, the crystallization temperatures of PBS increased in the presence of fillers, with EG showing better nucleation efficiency. However, the mechanical properties (toughness and impact resilience) decreased due to the increased stiffness of the composites and the poor interfacial adhesion between the matrix and the fillers, indicating the need to pre-treat the fibres to enhance compatibility. Overall, the material properties of PBS/SD/SB hybrid composites were enhanced by incorporating HS and EG at low concentrations. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

25 pages, 8622 KiB  
Article
Low-Carbon Insulating Geopolymer Binders: Thermal Properties
by Agnieszka Przybek, Jakub Piątkowski, Paulina Romańska, Michał Łach and Adam Masłoń
Sustainability 2025, 17(15), 6898; https://doi.org/10.3390/su17156898 - 29 Jul 2025
Viewed by 221
Abstract
In the context of the growing need to reduce greenhouse gas emissions and to develop sustainable solutions for the construction industry, foamed geopolymers represent a promising alternative to traditional binders and insulation materials. This study investigates the thermal properties of novel low-emission, insulating [...] Read more.
In the context of the growing need to reduce greenhouse gas emissions and to develop sustainable solutions for the construction industry, foamed geopolymers represent a promising alternative to traditional binders and insulation materials. This study investigates the thermal properties of novel low-emission, insulating geopolymer binders made from fly ash with diatomite, chalcedonite, and wood wool aiming to assess their potential for use in thermal insulation systems in energy-efficient buildings. The stability of the foamed geopolymer structure is also assessed. Measurements of thermal conductivity, specific heat, microstructure, density, and compressive strength are presented. The findings indicate that the selected geopolymer formulations exhibit low thermal conductivity, high heat capacity and low density, making them competitive with conventional insulation materials—mainly load-bearing ones such as aerated concrete and wood wool insulation boards. Additionally, incorporating waste-derived materials reduces the production carbon footprint. The best results are represented by the composite incorporating all three additives (diatomite, chalcedonite, and wood wool), which achieved the lowest thermal conductivity (0.10154 W/m·K), relatively low density (415 kg/m3), and high specific heat (1.529 kJ/kg·K). Full article
Show Figures

Figure 1

19 pages, 40657 KiB  
Article
Development and Analysis of a Sustainable Interlayer Hybrid Unidirectional Laminate Reinforced with Glass and Flax Fibres
by York Schwieger, Usama Qayyum and Giovanni Pietro Terrasi
Polymers 2025, 17(14), 1953; https://doi.org/10.3390/polym17141953 - 16 Jul 2025
Viewed by 259
Abstract
In this study, a new fibre combination for an interlayer hybrid fibre-reinforced polymer laminate was investigated to achieve pseudo-ductile behaviour in tensile tests. The chosen high-strain fibre for this purpose was S-Glass, and the low-strain fibre was flax. These materials were chosen because [...] Read more.
In this study, a new fibre combination for an interlayer hybrid fibre-reinforced polymer laminate was investigated to achieve pseudo-ductile behaviour in tensile tests. The chosen high-strain fibre for this purpose was S-Glass, and the low-strain fibre was flax. These materials were chosen because of their relatively low environmental impact compared to carbon/carbon and carbon/glass hybrids. An analytical model was used to find an ideal combination of the two materials. With that model, the expected stress–strain relation could also be predicted analytically. The modelling was based on preliminary tensile tests of the two basic components investigated in this research: unidirectional laminates reinforced with either flax fibres or S-Glass fibres. Hybrid specimens were then designed, produced in a heat-assisted pressing process, and subjected to tensile tests. The strain measurement was performed using distributed fibre optic sensing. Ultimately, it was possible to obtain repeatable pseudo-ductile stress–strain behaviour with the chosen hybrid when the specimens were subjected to quasi-static uniaxial tension in the direction of the fibres. The intended damage-mode, consisting of a controlled delamination at the flax-fibre/glass-fibre interface after the flax fibres failed, followed by a load transfer to the glass fibre layers, was successfully achieved. The pseudo-ductile strain averaged 0.52% with a standard deviation of 0.09%, and the average load reserve after delamination was 145.5 MPa with a standard deviation of 48.5 MPa. The integrated fibre optic sensors allowed us to monitor and verify the damage process with increasing strain and load. Finally, the analytical model was compared to the measurements and was partially modified by neglecting the Weibull strength distribution of the high-strain material. Full article
Show Figures

Figure 1

22 pages, 826 KiB  
Review
Inactivation of Emerging Opportunistic Foodborne Pathogens Cronobacter spp. and Arcobacter spp. on Fresh Fruit and Vegetable Products: Effects of Emerging Chemical and Physical Methods in Model and Real Food Systems—A Review
by Junior Bernardo Molina-Hernandez, Beatrice Cellini, Fatemeh Shanbeh Zadeh, Lucia Vannini, Pietro Rocculi and Silvia Tappi
Foods 2025, 14(14), 2463; https://doi.org/10.3390/foods14142463 - 14 Jul 2025
Viewed by 711
Abstract
The consumption of fresh fruit and vegetables is essential for a healthy diet as they contain a diverse composition of vitamins, minerals, fibre, and bioactive compounds. However, cross-contamination during harvest and post-harvest poses a high risk of microbial contamination. Therefore, handling fruit and [...] Read more.
The consumption of fresh fruit and vegetables is essential for a healthy diet as they contain a diverse composition of vitamins, minerals, fibre, and bioactive compounds. However, cross-contamination during harvest and post-harvest poses a high risk of microbial contamination. Therefore, handling fruit and vegetables during processing and contact with wet equipment and utensil surfaces is an ideal environment for microbial contamination and foodborne illness. Nevertheless, less attention has been paid to some emerging pathogens that are now increasingly recognised as transmissible to humans through contaminated fruit and vegetables, such as Arcobacter and Cronobacter species in various products, which are the main risk in fruit and vegetables. Cronobacter and Arcobacter spp. are recognised food-safety hazards because they pose a risk of foodborne disease, especially in vulnerable groups such as newborns and immunocompromised individuals. Cronobacter spp. have been linked to severe infant conditions—notably meningitis and sepsis—most often traced to contaminated powdered infant formula. Although Arcobacter spp. have been less extensively studied, they have also been associated with foodborne disease, chiefly from dairy products and meat. With this in mind, this review provides an overview of the main chemical and physical sanitisation methods in terms of their ability to reduce the contamination of fresh fruit and vegetable products caused by two emerging pathogens: Arcobacter and Cronobacter. Emerging chemical (organic acid compounds, extracts, and essential oils) and physical methods (combination of UV-C with electrolysed water, ultrasound, and cold atmospheric plasma) offer innovative and environmentally friendly alternatives to traditional approaches. These methods often utilise natural materials, less toxic solvents, and novel techniques, resulting in more sustainable processes compared with traditional methods that may use harsh chemicals and environmentally harmful processes. This review provides the fruit and vegetable industry with a general overview of possible decontamination alternatives to develop optimal and efficient processes that ensure food safety. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

22 pages, 2470 KiB  
Article
Multi-Objective Optimisation of Hybrid Banana/Sisal/Red Mud Composites Using Taguchi–Grey Relational Analysis
by Karthick Rasu, Vigneshwaran Shanmugam and Joao Paulo Davim
J. Compos. Sci. 2025, 9(7), 357; https://doi.org/10.3390/jcs9070357 - 8 Jul 2025
Viewed by 622
Abstract
In response to the rising demand for sustainable engineering materials and waste valorisation strategies, this study investigates the multi-objective optimisation of eco-friendly hybrid composites reinforced with natural fibres and industrial waste. Sixteen composite specimens were fabricated using compression moulding by varying sisal fibre [...] Read more.
In response to the rising demand for sustainable engineering materials and waste valorisation strategies, this study investigates the multi-objective optimisation of eco-friendly hybrid composites reinforced with natural fibres and industrial waste. Sixteen composite specimens were fabricated using compression moulding by varying sisal fibre from 0 to 45 wt.%, banana fibre from 0 to 45 wt.%, NaOH alkali treatment from 0 to 6%, and red mud filler from 1 to 4 wt.%. Mechanical properties were evaluated following ASTM standards D256 for impact strength, D790 for flexural strength, D638 for tensile strength, D5379 for shear strength, and E18 for hardness. The Taguchi method combined with grey relational analysis was employed to identify optimal processing conditions. The best mechanical performance, with an impact strength of 6.57 J, flexural strength of 72.58 MPa, and tensile strength of 65.52 MPa, was achieved with 30 to 45 wt.% sisal fibre, 15 wt.% banana fibre, 6% NaOH, and 3 to 4 wt.% red mud. ANOVA revealed that NaOH treatment had the most significant influence on mechanical properties, with high F values and p values close to 0.05. Grey relational analysis proved more effective for multi-objective optimisation, with the highest grey grade of 0.894 observed in the specimen containing 45 wt.% sisal fibre, 6% NaOH, and 2 wt.% red mud. These findings highlight the critical role of fibre treatment and hybrid reinforcement in enhancing performance. The optimised composites demonstrate strong potential for use in automotive interior panel applications, offering a sustainable alternative with balanced strength and reduced environmental impact. Full article
(This article belongs to the Special Issue Recent Progress in Hybrid Composites)
Show Figures

Figure 1

19 pages, 2841 KiB  
Article
Next-Generation Sustainable Composites with Flax Fibre and Biobased Vitrimer Epoxy Polymer Matrix
by Hoang Thanh Tuyen Tran, Johannes Baur, Racim Radjef, Mostafa Nikzad, Robert Bjekovic, Stefan Carosella, Peter Middendorf and Bronwyn Fox
Polymers 2025, 17(14), 1891; https://doi.org/10.3390/polym17141891 - 8 Jul 2025
Viewed by 515
Abstract
This work presents the development of two vanillin-based vitrimer epoxy flax fibre-reinforced composites, with both the VER1-1-FFRC (a vitrimer-to-epoxy ratio of 1:1) and VER1-2-FFRC (a vitrimer-to-epoxy ratio of 1:2), via a vacuum-assisted resin infusion. The thermal and mechanical properties of the resulting vitrimer [...] Read more.
This work presents the development of two vanillin-based vitrimer epoxy flax fibre-reinforced composites, with both the VER1-1-FFRC (a vitrimer-to-epoxy ratio of 1:1) and VER1-2-FFRC (a vitrimer-to-epoxy ratio of 1:2), via a vacuum-assisted resin infusion. The thermal and mechanical properties of the resulting vitrimer epoxy flax composites were characterised using thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and mechanical four-point bending tests, alongside studies of solvent resistance and chemical recyclability. Both the VER1-1-FFRC (degradation temperature Tdeg of 377.0 °C) and VER1-2-FFRC (Tdeg of 395.9 °C) exhibited relatively high thermal stability, which is comparable to the reference ER-FFRC (Tdeg of 396.7 °C). The VER1-1-FFRC, VER1-2-FFRC, and ER-FFRC demonstrated glass transition temperatures Tg of 54.1 °C, 68.8 °C, and 83.4 °C, respectively. The low Tg of the vitrimer composite is due to the low crosslink density in the vitrimer epoxy resin. Particularly, the crosslinked density of the VER1-1-FFRC was measured to be 319.5 mol·m−3, which is lower than that obtained from the VER1-2-FFRC (434.7 mol·m−3) and ER-FFRC (442.9 mol·m−3). Furthermore, the mechanical properties of these composites are also affected by the low crosslink density. Indeed, the flexural strength of the VER1-1-FFRC was found to be 76.7 MPa, which was significantly lower than the VER1-2-FFRC (116.2 MPa) and the ER-FFRC (138.3 MPa). Despite their lower thermal and mechanical performance, these vitrimer composites offer promising recyclability and contribute to advancing sustainable composite materials. Full article
Show Figures

Graphical abstract

25 pages, 6421 KiB  
Article
Potential of Carob Pulp Powder: Influence of Cultivar on Nutritional Composition, Antioxidant Activity, and Functional Properties
by Carme Garau, Mónica Umaña, Miquel Llompart, Ismael Velázquez, Isabel Gálvez and Susana Simal
Molecules 2025, 30(13), 2715; https://doi.org/10.3390/molecules30132715 - 24 Jun 2025
Viewed by 377
Abstract
Carob pulp powder (CPP), a by-product of Ceratonia siliqua L., is rich in bioactive compounds with potential for functional foods. This study evaluated how genetic variability among cultivars affects the nutritional composition and functional quality of CPP. Nineteen cultivars from Majorca (13), Ibiza [...] Read more.
Carob pulp powder (CPP), a by-product of Ceratonia siliqua L., is rich in bioactive compounds with potential for functional foods. This study evaluated how genetic variability among cultivars affects the nutritional composition and functional quality of CPP. Nineteen cultivars from Majorca (13), Ibiza (4), and two open-flowering selections were grown under identical conditions in Majorca, Spain. CPP samples showed high dietary fibre (22.6–47.4 g/100 g dry matter), total sugars (22.5–62.5 g/100 g dm), and antioxidant activity (11.1–78.4 µmol TE/g dm, CUPRAC method). Significant differences among cultivars were observed in protein and fructose content, fatty acid profiles, antioxidant activity, colour, acidity, and functional properties like water- and oil-holding capacities. Principal component analysis distinguished the Ibiza cultivars by higher soluble solids, fructose, and stearic acid content but lower antioxidant activity. Open-flowering selections exhibited the highest antioxidant and water retention capacities. These results confirm that genetic origin strongly influences CPP’s nutritional and functional traits, endorsing its use as a natural, health-promoting ingredient for functional food development. Full article
Show Figures

Figure 1

21 pages, 5306 KiB  
Proceeding Paper
Experimental and Numerical Investigation of Jute Fibre-Reinforced Composite, a Sustainable Material for Green Energy
by Kirubakaran Covallane, Daryl Johan, Rakesh Kumar Singh, Rahul Sinha, Digvijay Boodala, Krishna Kumar Jaiswal and Karthik Selva Kumar
Eng. Proc. 2025, 95(1), 17; https://doi.org/10.3390/engproc2025095017 - 19 Jun 2025
Viewed by 431
Abstract
Natural fibre-reinforced composites are becoming increasingly popular due to their affordability, sustainability, and biodegradability. These composites, made from recyclable materials, are suitable for various sustainable energy applications due to their remarkable mechanical properties and life cycle advantages. The biodegradable composite materials are a [...] Read more.
Natural fibre-reinforced composites are becoming increasingly popular due to their affordability, sustainability, and biodegradability. These composites, made from recyclable materials, are suitable for various sustainable energy applications due to their remarkable mechanical properties and life cycle advantages. The biodegradable composite materials are a sustainable alternative for energy applications. This composite construction uses Soric XF (Lantor Composites, Veenendaal, The Netherlands) as the fibre reinforcement core material and jute fibre, an eco-friendly and sustainable substitute for glass fibre reinforcement composite materials, as the outer face sheet obtained from jute bags. The dry fibres are piled as dry loads at various fibre orientation angles, including 0°, 45°, and 90°, and this orientation will be reflected in the composite strength. Vacuum-assisted resin transfer moulding (VARTM) is a technique used to fabricate this material at room temperature. Further, this research focuses on a comparative analysis of experimental and computational results involving composite materials with jute fibre as the outer face sheet and Soric XF as the fibre reinforcement core material. The experimental investigation included tensile ASTM D638-03 and flexural ASTM D790 to evaluate the composite’s mechanical properties and structural integrity under various load conditions. Simultaneously the computational simulations were performed using the ANSYS-Mechanical 2023 R2 to replicate these conditions and predict the composite’s performance. The experimental and simulated data were analysed and compared. This study demonstrates the efficacy of using computational tools to predict the behaviour of natural fibre composites. It underscores the importance of experimental validation for enhancing the reliability of simulation models. The results from the computational study are compared with the experimental results to study the predictive nature of the NFRC material. Full article
Show Figures

Figure 1

21 pages, 3883 KiB  
Article
Multi-Variant Damage Assessment in Composite Materials Using Acoustic Emission
by Matthew Gee, Sanaz Roshanmanesh, Farzad Hayati and Mayorkinos Papaelias
Sensors 2025, 25(12), 3795; https://doi.org/10.3390/s25123795 - 18 Jun 2025
Viewed by 474
Abstract
This study presents a novel methodology for the real-time characterisation and quantitative assessment of damage in fibre-reinforced polymers (FRPs) using acoustic emission (AE) techniques. While FRPs offer superior mechanical properties for structural applications, their anisotropic nature introduces complex damage mechanisms that are challenging [...] Read more.
This study presents a novel methodology for the real-time characterisation and quantitative assessment of damage in fibre-reinforced polymers (FRPs) using acoustic emission (AE) techniques. While FRPs offer superior mechanical properties for structural applications, their anisotropic nature introduces complex damage mechanisms that are challenging to detect with conventional inspection methods. Our approach advances beyond traditional peak frequency analysis by implementing a multi-variant frequency assessment that can detect and evaluate simultaneously occurring damage modes. By applying the fast Fourier transform and examining multiple frequency peaks within AE signals, we successfully identified five distinct damage mechanisms in carbon fibre composites: matrix cracking (100–200 kHz), delamination (205–265 kHz), debonding (270–320 kHz), fibre fracture (330–385 kHz), and fibre pullout (395–490 kHz). A comparative analysis with wavelet transform methods demonstrated that our approach provides earlier detection of critical damage events, with delamination identified approximately 28 s sooner than with conventional techniques. The proposed methodology enables a more accurate quantitative assessment of structural health, facilitating timely maintenance interventions for large-scale FRP structures, such as wind turbine blades, thereby enhancing reliability while reducing operational downtime and maintenance costs. Full article
(This article belongs to the Special Issue Intelligent Sensing Technologies in Structural Health Monitoring)
Show Figures

Figure 1

27 pages, 9005 KiB  
Article
Development and Performance of Coconut Fibre Gypsum Composites for Sustainable Building Materials
by María Fernanda Rodríguez-Robalino, Daniel Ferrández, Amparo Verdú-Vázquez and Alicia Zaragoza-Benzal
Buildings 2025, 15(11), 1899; https://doi.org/10.3390/buildings15111899 - 30 May 2025
Viewed by 672
Abstract
In 2022, the building sector accounted for 30% of global energy demand and 27% of CO2 emissions, of which approximately 9% came from building material production. To mitigate this impact, it is critical to develop sustainable alternatives that reduce the environmental footprint [...] Read more.
In 2022, the building sector accounted for 30% of global energy demand and 27% of CO2 emissions, of which approximately 9% came from building material production. To mitigate this impact, it is critical to develop sustainable alternatives that reduce the environmental footprint of construction materials. This paper presents an original study where the effect of coconut fibre as a reinforcing material in gypsum composites is analysed. These plant-based fibres reduce the composite’s density, improve thermal behaviour, and integrate circular economy criteria in construction. In this way, a physico-mechanical characterisation of these novel gypsum-based composites is addressed, and their potential application for developing prefabricated slabs is innovatively explored. Composites were prepared with coconut fibre incorporation in volume up to 17.5%, and mechanical and thermal properties and their behaviour under water action were evaluated. The results indicate that the fibre addition reduced density by about 10.0%, improved flexural strength by 20.5% and compressive strength by 28.4%, and decreased thermal conductivity by 56.3%, which increased the energy efficiency of the building facade by 7.8%. In addition, hydrophobic properties improved, reducing capillary absorption by 15.9% and open porosity by 3.3%. These findings confirm the technical feasibility of coconut fibre-reinforced plaster for application in prefabricated wall and ceiling elements, promoting the efficient use of natural resources and driving the development of sustainable building materials. Full article
(This article belongs to the Collection Sustainable and Green Construction Materials)
Show Figures

Figure 1

33 pages, 2600 KiB  
Review
Sawdust as a Byproduct of Wood Processing: Properties, Applications and a Reinforcing Filler in Hybrid Polymer Composites
by Tlholohelo Sylvia Sikhosana, Ntsoaki Joyce Malebo, Tladi Gideon Mofokeng, Mpho Phillip Motloung and Mokgaotsa Jonas Mochane
Polymers 2025, 17(11), 1523; https://doi.org/10.3390/polym17111523 - 29 May 2025
Viewed by 724
Abstract
There is a sizeable amount of sawdust produced from wood industries such as timber and furniture. In the past, sawdust has been utilized as a fuel source and in the manufacturing of furniture. Based on the limited use of sawdust, there is plenty [...] Read more.
There is a sizeable amount of sawdust produced from wood industries such as timber and furniture. In the past, sawdust has been utilized as a fuel source and in the manufacturing of furniture. Based on the limited use of sawdust, there is plenty of sawdust accessible from the industries. Sawdust is the material of choice due to its cost effectiveness, environmental friendliness, and biodegradability. However, if sawdust is not appropriately disposed or utilized better, it may have negative impact on the aquatic life and organic products. Hence, this review paper discusses the best possible methods or proper routes for the utilization of sawdust to benefit the environment, society, and the economy at large. Sawdust possesses superior capabilities as a reinforcing filler in various polymer matrices for advanced applications. This paper provides an in-depth discussion on sawdust hybrid composites in comparison to other natural fibres hybrid composites. The applications of various sawdust hybrid polymer composites for specific systems are also mentioned. Furthermore, the morphology and preparation of the sawdust/polymer composites and/or sawdust hybrid polymers composites are also discussed since it is well known that the properties of the natural fibre composites are affected by the preparation method and the resultant morphology. Based on the above, the current paper also plays a critical role in providing more information about waste to value added products. Full article
Show Figures

Figure 1

15 pages, 6019 KiB  
Article
Effect of Service Temperature on the Mechanical and Fatigue Behaviour of Metal–Polymer Friction Stir Composite Joints
by Arménio N. Correia, Rodrigo J. Coelho, Daniel F. O. Braga, Mafalda Guedes, Ricardo Baptista and Virgínia Infante
Polymers 2025, 17(10), 1366; https://doi.org/10.3390/polym17101366 - 16 May 2025
Cited by 1 | Viewed by 466
Abstract
This study investigates the mechanical and fatigue behaviour of friction stir composite joints fabricated from an aluminum alloy (AA6082-T6) and a glass fibre-reinforced polymer (Noryl® GFN2) under different service temperature conditions. The joints were tested under both quasi-static and cyclic loading at [...] Read more.
This study investigates the mechanical and fatigue behaviour of friction stir composite joints fabricated from an aluminum alloy (AA6082-T6) and a glass fibre-reinforced polymer (Noryl® GFN2) under different service temperature conditions. The joints were tested under both quasi-static and cyclic loading at three different temperatures (23, 75, and 130 °C). Fracture surfaces were analyzed, and the probabilistic S–N curves were derived using Weibull distribution. Results indicated that increasing the service temperature caused a non-linear decrease in both the quasi-static and fatigue strength of the joints. Compared to room temperature, joints tested at 75 °C and 130 °C showed a 10% and 50% reduction in average tensile strength, respectively. The highest fatigue strength occurred at 23 °C, while the lowest was at 130 °C, in line with the quasi-static results. Fatigue stress-life plots displayed a semi-logarithmic nature, with lives ranging from 102 to 105 cycles for stress amplitudes between 7.7 and 22.2 MPa at 23 °C, 7.2 to 19.8 MPa at 75 °C, and 6.2 to 13.5 MPa at 130 °C. The joints’ failure occurred in the polymeric base material close to joints’ interface, highlighting the critical role of the polymer in limiting joints’ performance, as confirmed by thermal and scanning electron microscopy analyses. Full article
Show Figures

Figure 1

32 pages, 1924 KiB  
Review
A Comprehensive Comparison of Insulation Materials for Timber Building Systems
by Bernardino M. Rocha, Marina Tenório, Jorge M. Branco and Sandra M. Silva
Energies 2025, 18(10), 2420; https://doi.org/10.3390/en18102420 - 8 May 2025
Viewed by 1362
Abstract
The key objectives of both European Union and Portuguese policies are energy efficiency and carbon neutrality in the building sector. Timber construction offers unique advantages in achieving these goals, such as increased productivity through faster and more efficient building processes, using renewable resources [...] Read more.
The key objectives of both European Union and Portuguese policies are energy efficiency and carbon neutrality in the building sector. Timber construction offers unique advantages in achieving these goals, such as increased productivity through faster and more efficient building processes, using renewable resources with lower carbon emissions during production and throughout the lifecycle, and contributions to forest conservation. However, in many countries, timber construction remains underutilised due to concerns about its thermal and acoustic performance, fire safety, and limited availability of raw materials. This study addresses these challenges by evaluating the potential of various insulation materials, including polystyrenes, mineral wools, natural fibres, composites, and acoustic mats, for incorporation into prefabricated timber components. Key performance criteria included thermal insulation, sound absorption, fire reaction, environmental impact, and local availability. Among the materials analysed, glass wool, rock wool, and cork emerged as the most favourable options, offering excellent thermal and acoustic performance and presenting strong results in other key parameters. These findings underscore the potential of incorporating these materials into timber construction systems, contributing to developing sustainable and high-performance building solutions. Full article
Show Figures

Figure 1

Back to TopTop