Influence of Carboxylic Acids (CAs) on the Structure–Properties Relationship in PLA/Pecan Nutshell (PN) Composites
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Composite Preparation
2.2.2. Composite Characterisation
- Surface fracture morphology
- DSC analysis
- Flexural Strength Test
- Dynamic Mechanical Analysis (DMA)
- Thermogravimetric Analysis (TGA)
3. Results and Discussion
3.1. Surface Fracture Morphology of PLA Composites
3.2. Influence of PN and CA on PLA Thermal Transitions
3.3. Flexural Behaviour of PLA/PN Composites
3.4. Influences of PN and CAs on the PLA/PN Composites’ Viscoelastic Behaviour
3.5. Influences of PN and CAs on the PLA/PN Composites’ Thermal Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaiser, M.R.; Anuar, H.B.; Samat, N.B.; Razak, S.B.A. Effect of Processing Routes on the Mechanical, Thermal and Morphological Properties of PLA-Based Hybrid Biocomposite. Iran. Polym. J. 2013, 22, 123–131. [Google Scholar] [CrossRef]
- Fahim, I.S.; Chbib, H.; Mahmoud, H.M. The Synthesis, Production & Economic Feasibility of Manufacturing PLA from Agricultural Waste. Sustain. Chem. Pharm. 2019, 12, 100142. [Google Scholar] [CrossRef]
- Fowlks, A.C.; Narayan, R. The Effect of Maleated Polylactic Acid (PLA) as an Interfacial Modifier in PLA-Talc Composites. J. Appl. Polym. Sci. 2010, 118, 2810–2820. [Google Scholar] [CrossRef]
- Tsou, C.H.; Suen, M.C.; Yao, W.H.; Yeh, J.T.; Wu, C.S.; Tsou, C.Y.; Chiu, S.H.; Chen, J.C.; Wang, R.Y.; Lin, S.M.; et al. Preparation and Characterization of Bioplastic-Based Green Renewable Composites from Tapioca with Acetyl Tributyl Citrate as a Plasticizer. Materials 2014, 7, 5617–5632. [Google Scholar] [CrossRef] [PubMed]
- Freeland, B.; McCarthy, E.; Balakrishnan, R.; Fahy, S.; Boland, A.; Rochfort, K.D.; Dabros, M.; Marti, R.; Kelleher, S.M.; Gaughran, J. A Review of Polylactic Acid as a Replacement Material for Single-Use Laboratory Components. Materials 2022, 15, 2989. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, A.K.; Gupta, M.K.; Singh, H. PLA Based Biocomposites for Sustainable Products: A Review. Adv. Ind. Eng. Polym. Res. 2023, 6, 382–395. [Google Scholar] [CrossRef]
- Suder, J.; Bobovsky, Z.; Safar, M.; Mlotek, J.; Vocetka, M.; Zeman, Z. Experimental Analysis of Temperature Resistance of 3d Printed PLA Components. MM Sci. J. 2021, 2021, 4322–4327. [Google Scholar] [CrossRef]
- Wu, Y.; Gao, X.; Wu, J.; Zhou, T.; Nguyen, T.T.; Wang, Y. Biodegradable Polylactic Acid and Its Composites: Characteristics, Processing, and Sustainable Applications in Sports. Polymers 2023, 15, 3096. [Google Scholar] [CrossRef] [PubMed]
- Crupano, W.; Adrover-Monserrat, B.; Llumà, J.; Jerez-Mesa, R.; Travieso-Rodriguez, J.A. Investigating Mechanical Properties of 3D Printed Polylactic Acid/Poly-3-Hydroxybutyrate Composites. Compressive and Fatigue Performance. Heliyon 2024, 10, e38066. [Google Scholar] [CrossRef]
- Pinto, V.C.; Ramos, T.; Alves, S.; Xavier, J.; Tavares, P.; Moreira, P.M.G.P.; Guedes, R.M. Comparative Failure Analysis of PLA, PLA/GNP and PLA/CNT-COOH Biodegradable Nanocomposites Thin Films. Procedia. Eng. 2015, 114, 635–642. [Google Scholar] [CrossRef]
- Pepelnjak, T.; Karimi, A.; Maček, A.; Mole, N. Altering the Elastic Properties of 3D Printed Poly-Lactic Acid (PLA) Parts by Compressive Cyclic Loading. Materials 2020, 13, 4456. [Google Scholar] [CrossRef]
- Pszczółkowski, B.; Nowak, K.W.; Rejmer, W.; Bramowicz, M.; Dzadz, Ł.; Gałęcki, R. A Comparative Analysis of Selected Methods for Determining Young’s Modulus in Polylactic Acid Samples Manufactured with the FDM Method. Materials 2021, 15, 149. [Google Scholar] [CrossRef]
- Mazur, K.E.; Borucka, A.; Kaczor, P.; Gądek, S.; Bogucki, R.; Mirzewiński, D.; Kuciel, S. Mechanical, Thermal and Microstructural Characteristic of 3D Printed Polylactide Composites with Natural Fibers: Wood, Bamboo and Cork. J. Polym. Environ. 2022, 30, 2341–2354. [Google Scholar] [CrossRef]
- Oksman, K.; Skrifvars, M.; Selin, J.F. Natural Fibres as Reinforcement in Polylactic Acid (PLA) Composites. Compos. Sci. Technol. 2003, 63, 1317–1324. [Google Scholar] [CrossRef]
- Agustin-Salazar, S.; Cerruti, P.; Medina-Juárez, L.Á.; Scarinzi, G.; Malinconico, M.; Soto-Valdez, H.; Gamez-Meza, N. Lignin and Holocellulose from Pecan Nutshell as Reinforcing Fillers in Poly(Lactic Acid) Biocomposites. Int. J. Biol. Macromol. 2018, 115, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Frone, A.N.; Berlioz, S.; Chailan, J.F.; Panaitescu, D.M.; Donescu, D. Cellulose Fiber-Reinforced Polylactic Acid. Polym. Compos. 2011, 32, 976–985. [Google Scholar] [CrossRef]
- Balart, J.F.; Fombuena, V.; Fenollar, O.; Boronat, T.; Sánchez-Nacher, L. Processing and Characterization of High Environmental Efficiency Composites Based on PLA and Hazelnut Shell Flour (HSF) with Biobased Plasticizers Derived from Epoxidized Linseed Oil (ELO). Compos. Part B Eng. 2016, 86, 168–177. [Google Scholar] [CrossRef]
- Orue, A.; Eceiza, A.; Arbelaiz, A. Preparation and Characterization of Poly(Lactic Acid) Plasticized with Vegetable Oils and Reinforced with Sisal Fibers. Ind. Crops. Prod. 2018, 112, 170–180. [Google Scholar] [CrossRef]
- Brambilla, V.C.; Beltrami, L.V.R.; Pelegrini, K.; Zimmermann, M.V.G.; Brandalise, R.N.; Zattera, A.J. Development and Characterization of PLA/Buriti Fibre Composites—Influence of Fibre and Coupling Agent Contents. Polym. Polym. Compos. 2017, 25, 143–152. [Google Scholar] [CrossRef]
- Avolio, R.; Castaldo, R.; Avella, M.; Cocca, M.; Gentile, G.; Fiori, S.; Errico, M.E. PLA-Based Plasticized Nanocomposites: Effect of Polymer/Plasticizer/Filler Interactions on the Time Evolution of Properties. Compos. Part B Eng. 2018, 152, 267–274. [Google Scholar] [CrossRef]
- Mahendra, I.P.; Wirjosentono, B.; Tamrin; Ismail, H.; Mendez, J.A.; Causin, V. The Influence of Maleic Anhydride-Grafted Polymers as Compatibilizer on the Properties of Polypropylene and Cyclic Natural Rubber Blends. J. Polym. Res. 2019, 26, 215. [Google Scholar] [CrossRef]
- Vudjung, C.; Nuinu, P.; Yupas, P.; Seelakun, R.; Saengsuwan, S. Styrene-Assisted Acrylic Acid Grafting onto Polypropylene Surfaces: Preparation, Characterization, and an Automatically Latex-Coagulating Application. Polym. Bull. 2023, 80, 5123–5147. [Google Scholar] [CrossRef]
- Oliver-Ortega, H.; Reixach, R.; Espinach, F.X.; Méndez, J.A. Maleic Anhydride Polylactic Acid Coupling Agent Prepared from Solvent Reaction: Synthesis, Characterization and Composite Performance. Materials 2022, 15, 1161. [Google Scholar] [CrossRef]
- Yang, Z.; Sun, K. Enhanced Characterization of Wheat Straw-PLA Composites with Silane Coupling Agent and Alkali Pretreatment. Ecotoxicol. Environ. Saf. 2025, 290, 117612. [Google Scholar] [CrossRef]
- Liminana, P.; Garcia-Sanoguera, D.; Quiles-Carrillo, L.; Balart, R.; Montanes, N. Development and Characterization of Environmentally Friendly Composites from Poly(Butylene Succinate) (PBS) and Almond Shell Flour with Different Compatibilizers. Compos. Part B Eng. 2018, 144, 153–162. [Google Scholar] [CrossRef]
- Poletto, M. Natural Oils as Coupling Agents in Recycled Polypropylene Wood Flour Composites: Mechanical, Thermal and Morphological Properties. Polym. Polym. Compos. 2020, 28, 443–450. [Google Scholar] [CrossRef]
- Martins, A.B.; Santana, R.M.C. Effect of Carboxylic Acids as Compatibilizer Agent on Mechanical Properties of Thermoplastic Starch and Polypropylene Blends. Carbohydr. Polym. 2016, 135, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Castro, D.O.; Passador, F.; Ruvolo-Filho, A.; Frollini, E. Use of Castor and Canola Oils in “Biopolyethylene” Curauá Fiber Composites. Compos. Part A Appl. Sci. Manuf. 2017, 95, 22–30. [Google Scholar] [CrossRef]
- Belyamani, I.; Najemi, L.; Wilson, K.; Abdullah Alhadhrami, M.; Al-Badi, N. Influence of Glycerol and Clove Essential Oil on the Properties and Biodegradability of Poly(Lactic Acid)/Poly(Hydroxybutyrate-Co-Hydroxyvalerate) Blends. Int. J. Biol. Macromol. 2025, 308, 142698. [Google Scholar] [CrossRef]
- Khan, B.; Niazi, M.B.K.; Hussain, A.; Jahan, Z. Influence of Carboxylic Acids on Mechanical Properties of Thermoplastic Starch by Spray Drying. Fibers Polym. 2017, 18, 64–73. [Google Scholar] [CrossRef]
- Benkhelladi, A.; Laouici, H.; Bouchoucha, A. Tensile and Flexural Properties of Polymer Composites Reinforced by Flax, Jute and Sisal Fibres. Int. J. Adv. Manuf. Technol. 2020, 108, 895–916. [Google Scholar] [CrossRef]
- Kamarudin, S.H.; Mohd Basri, M.S.; Rayung, M.; Abu, F.; Ahmad, S.; Norizan, M.N.; Osman, S.; Sarifuddin, N.; Desa, M.S.Z.M.; Abdullah, U.H.; et al. A Review on Natural Fiber Reinforced Polymer Composites (NFRPC) for Sustainable Industrial Applications. Polymers 2022, 14, 3698. [Google Scholar] [CrossRef]
- Gholampour, A.; Ozbakkaloglu, T. A Review of Natural Fiber Composites: Properties, Modification and Processing Techniques, Characterization, Applications. J. Mater. Sci. 2020, 55, 829–892. [Google Scholar] [CrossRef]
- Hiranobe, C.T.; Gomes, A.S.; Paiva, F.F.G.; Tolosa, G.R.; Paim, L.L.; Dognani, G.; Cardim, G.P.; Cardim, H.P.; dos Santos, R.J.; Cabrera, F.C. Sugarcane Bagasse: Challenges and Opportunities for Waste Recycling. Clean Technol. 2024, 6, 662–699. [Google Scholar] [CrossRef]
- Bernardes, G.P.; de Prá Andrade, M.; Poletto, M. Effect of Alkaline Treatment on the Thermal Stability, Degradation Kinetics, and Thermodynamic Parameters of Pineapple Crown Fibres. J. Mater. Res. Technol. 2023, 23, 64–76. [Google Scholar] [CrossRef]
- Abraham, E.; Deepa, B.; Pothen, L.A.; Cintil, J.; Thomas, S.; John, M.J.; Anandjiwala, R.; Narine, S.S. Environmental Friendly Method for the Extraction of Coir Fibre and Isolation of Nanofibre. Carbohydr. Polym. 2013, 92, 1477–1483. [Google Scholar] [CrossRef] [PubMed]
- de Prá Andrade, M.; Piazza, D.; Poletto, M. Pecan Nutshell: Morphological, Chemical and Thermal Characterization. J. Mater. Res. Technol. 2021, 13, 2229–2238. [Google Scholar] [CrossRef]
- Lijó, L.; González-García, S.; Bacenetti, J.; Moreira, M.T. The Environmental Effect of Substituting Energy Crops for Food Waste as Feedstock for Biogas Production. Energy 2017, 137, 1130–1143. [Google Scholar] [CrossRef]
- Surendra, K.C.; Olivier, R.; Tomberlin, J.K.; Jha, R.; Khanal, S.K. Bioconversion of Organic Wastes into Biodiesel and Animal Feed via Insect Farming. Renew. Energy 2016, 98, 197–202. [Google Scholar] [CrossRef]
- Nassary, E.K.; Nasolwa, E.R. Unravelling Disposal Benefits Derived from Underutilized Brewing Spent Products in Tanzania. J. Environ. Manag. 2019, 242, 430–439. [Google Scholar] [CrossRef]
- do Prado, A.C.P.; da Silva, H.S.; da Silveira, S.M.; Barreto, P.L.M.; Vieira, C.R.W.; Maraschin, M.; Ferreira, S.R.S.; Block, J.M. Effect of the Extraction Process on the Phenolic Compounds Profile and the Antioxidant and Antimicrobial Activity of Extracts of Pecan Nut [Carya Illinoinensis (Wangenh) C. Koch] Shell. Ind. Crops. Prod. 2014, 52, 552–561. [Google Scholar] [CrossRef]
- Álvarez-Chávez, C.R.; Sánchez-Acosta, D.L.; Encinas-Encinas, J.C.; Esquer, J.; Quintana-Owen, P.; Madera-Santana, T.J. Characterization of Extruded Poly(Lactic Acid)/Pecan Nutshell Biocomposites. Int. J. Polym. Sci. 2017, 2017, 3264098. [Google Scholar] [CrossRef]
- Miao, M.; Wei, C.; Wang, Y.; Qian, Y. Effect of Compatibilizer on the Interface Bonding of Graphene Oxide/Polypropylene Composite Fibers. Polymers 2018, 10, 1283. [Google Scholar] [CrossRef]
- Chen, Q.; Li, F.; Zhai, Z.; Li, S.; Cai, Y.; Li, Q. Effect of Interfacial Compatibility on Mechanical Property of Polyamide 6 Modified by Polyborosiloxane. Polymers 2025, 17, 392. [Google Scholar] [CrossRef]
- Rao, J.; Zhou, Y.; Fan, M. Revealing the Interface Structure and Bonding Mechanism of Coupling Agent Treated WPC. Polymers 2018, 10, 266. [Google Scholar] [CrossRef]
- Martins, A.B.; Cattelan, A.K.; Santana, R.M.C. How the Compatibility between Polyethylene and Thermoplastic Starch Can Be Improved by Adding Organic Acids? Polym. Bull. 2018, 75, 2197–2212. [Google Scholar] [CrossRef]
- ASTM D790-17; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- Zhang, X.; Chen, L.; Mulholland, T.; Osswald, T.A. Characterization of Mechanical Properties and Fracture Mode of PLA and Copper/PLA Composite Part Manufactured by Fused Deposition Modeling. SN Appl. Sci. 2019, 1, 616. [Google Scholar] [CrossRef]
- Gao, H.; Qiang, T. Fracture Surface Morphology and Impact Strength of Cellulose/PLA Composites. Materials 2017, 10, 624. [Google Scholar] [CrossRef]
- Bernardes, G.P.; da Rosa Luiz, N.; Santana, R.M.C.; de Camargo Forte, M.M. Rheological Behavior and Morphological and Interfacial Properties of PLA/TPE Blends. J. Appl. Polym. Sci. 2019, 136, 47962. [Google Scholar] [CrossRef]
- Chun, K.S.; Yeng, C.M.; May, C.P.; Yeow, T.K.; Kiat, O.T.; How, C.K. Effect of Coupling Agent Content on Properties of Composites Made from Polylactic Acid and Chrysanthemum Waste. J. Vinyl. Addit. Technol. 2020, 26, 10–16. [Google Scholar] [CrossRef]
- Chun, K.S.; Husseinsyah, S. Polylactic Acid/Corn Cob Eco-Composites. J. Thermoplast. Compos. Mater. 2014, 27, 1667–1678. [Google Scholar] [CrossRef]
- Ramirez, C.; Agaliotis, E.; Pettarin, V. Fracture Toughness and Overall Characterization of PLA Based Biocomposites with Natural Fibers: A Comparative Study. Polymer 2024, 307, 127309. [Google Scholar] [CrossRef]
- Saeed, U.; Rathur, S.U.; Alturaif, H.; Bamufleh, H. Effect of Coupling Agent on Softwood Kraft Nanocellulose Fibril-Reinforced Polylactic Acid Biocomposite. J. Nanomater. 2021, 2021, 9076170. [Google Scholar] [CrossRef]
- Day, M.; Nawaby, A.V.; Liao, X. A DSC Study of the Crystallization Behaviour of Polylactic Acid and Its Nanocomposites. J. Therm. Anal. Calorim. 2006, 86, 623–629. [Google Scholar] [CrossRef]
- Hesami, M.; Jalali-Arani, A. Cold Crystallization Behavior of Poly(Lactic Acid) in Its Blend with Acrylic Rubber; the Effect of Acrylic Rubber Content. Polym. Int. 2017, 66, 1564–1571. [Google Scholar] [CrossRef]
- Tarani, E.; Pušnik Črešnar, K.; Zemljič, L.F.; Chrissafis, K.; Papageorgiou, G.Z.; Lambropoulou, D.; Zamboulis, A.; Bikiaris, D.N.; Terzopoulou, Z. Cold Crystallization Kinetics and Thermal Degradation of PLA Composites with Metal Oxide Nanofillers. Appl. Sci. 2021, 11, 3004. [Google Scholar] [CrossRef]
- Sago, T.; Itagaki, H.; Asano, T. Onset of Forming Ordering in Uniaxially Stretched Poly(Ethylene Terephthalate) Films Due to π-π Interaction Clarified by the Fluorescence Technique. Macromolecules 2014, 47, 217–226. [Google Scholar] [CrossRef]
- Pyda, M.; Nowak-Pyda, E.; Heeg, J.; Huth, H.; Minakov, A.A.; Di Lorenzo, M.L.; Schick, C.; Wunderlich, B. Melting and Crystallization of Poly(Butylene Terephthalate) by Temperature-Modulated and Superfast Calorimetry. J. Polym. Sci. Part B Polym. Phys. 2006, 44, 1364–1377. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Zhai, G.; Chen, Y.; Christiansen, J.d.C.; Yu, D.; Jiang, S. Cold Crystallization of Polytrimethylene Terephthalate and Copolymers. Polymer 2024, 300, 126967. [Google Scholar] [CrossRef]
- Hatakeyma, T.; Kasuga, H.; Tanaka, M.; Hatakeyama, H. Cold Crystallization of Poly(Ethylene Glycol)–Water Systems. Thermochim. Acta 2007, 465, 59–66. [Google Scholar] [CrossRef]
- Liu, T.; Mo, Z.; Wang, S.; Zhang, H. Nonisothermal Melt and Cold Crystallization Kinetics of Poly(Aryl Ether Ether Ketone Ketone). Polym. Eng. Sci. 1997, 37, 568–575. [Google Scholar] [CrossRef]
- Yu, L.; Liu, H.; Dean, K.; Chen, L. Cold Crystallization and Postmelting Crystallization of PLA Plasticized by Compressed Carbon Dioxide. J. Polym. Sci. Part B Polym. Phys. 2008, 46, 2630–2636. [Google Scholar] [CrossRef]
- Alonso-González, M.; Felix, M.; Romero, A.; Aliotta, L.; Gigante, V.; Sergi, C.; Bavasso, I.; Sarasini, F. Innovative Approaches to Bioplastic Development: Rice Bran/PLA Blends via Extrusion Combined with Injection Molding and 3D Printing. J. Environ. Manag. 2025, 389, 126081. [Google Scholar] [CrossRef]
- Mysiukiewicz, O.; Barczewski, M. Crystallization of Polylactide-Based Green Composites Filled with Oil-Rich Waste Fillers. J. Polym. Res. 2020, 27, 374. [Google Scholar] [CrossRef]
- Tábi, T.; Hajba, S.; Kovács, J.G. Effect of Crystalline Forms (A′ and α) of Poly(Lactic Acid) on Its Mechanical, Thermo-Mechanical, Heat Deflection Temperature and Creep Properties. Eur. Polym. J. 2016, 82, 232–243. [Google Scholar] [CrossRef]
- Vitiello, L.; Carroccio, S.C.; Ambrogi, V.; Podda, E.; Filippone, G.; de Luna, M.S. Degradation Kinetics of PLA/Hemp Biocomposites: Tradeoff between Nucleating Action and pro-Hydrolytic Effect of Natural Fibers. Compos. Sci. Technol. 2024, 257, 110806. [Google Scholar] [CrossRef]
- Stoia, D.I.; Linul, E. Tensile, Flexural and Fracture Properties of MEX-Printed PLA-Based Composites. Theor. Appl. Fract. Mech. 2024, 132, 104478. [Google Scholar] [CrossRef]
- Reverte, J.M.; Caminero, M.Á.; Chacón, J.M.; García-Plaza, E.; Núñez, P.J.; Becar, J.P. Mechanical and Geometric Performance of PLA-Based Polymer Composites Processed by the Fused Filament Fabrication Additive Manufacturing Technique. Materials 2020, 13, 1924. [Google Scholar] [CrossRef]
- Poletto, M.; Zattera, A.J.; Santana, R.M.C. Effect of Natural Oils on the Thermal Stability and Degradation Kinetics of Recycled Polypropylene Wood Flour Composites. Polym. Compos. 2014, 35, 1935–1942. [Google Scholar] [CrossRef]
- Spiridon, I.; Darie, R.N.; Kangas, H. Influence of Fiber Modifications on PLA/Fiber Composites. Behavior to Accelerated Weathering. Compos. Part B Eng. 2016, 92, 19–27. [Google Scholar] [CrossRef]
- Ermeydan, M.A.; Aykanat, O.; Altın, Y. Preparation and Characterization of Hybrid PLA Biocomposites Reinforced by Wood and Silane Treated Basalt Fibers or Compatibilized by Maleic Anhydride-Grafted Polypropylene (MAPP). Polym. Compos. 2024, 45, 9831–9844. [Google Scholar] [CrossRef]
- Gorgun, E.; Ali, A.; Islam, M.S. Biocomposites of Poly(Lactic Acid) and Microcrystalline Cellulose: Influence of the Coupling Agent on Thermomechanical and Absorption Characteristics. ACS Omega 2024, 9, 11523–11533. [Google Scholar] [CrossRef]
- Badia, J.D.; Strömberg, E.; Karlsson, S.; Ribes-Greus, A. Material Valorisation of Amorphous Polylactide. Influence of Thermo-Mechanical Degradation on the Morphology, Segmental Dynamics, Thermal and Mechanical Performance. Polym. Degrad. Stab. 2012, 97, 670–678. [Google Scholar] [CrossRef]
- Coppola, B.; Cappetti, N.; Maio, L.D.; Scarfato, P.; Incarnato, L. 3D Printing of PLA/Clay Nanocomposites: Influence of Printing Temperature on Printed Samples Properties. Materials 2018, 11, 1947. [Google Scholar] [CrossRef]
- Lee, J.-M. The Current Concepts of Total Hip Arthroplasty. Hip Pelvis 2016, 28, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Chee, S.S.; Jawaid, M.; Sultan, M.T.H.; Alothman, O.Y.; Abdullah, L.C. Thermomechanical and Dynamic Mechanical Properties of Bamboo/Woven Kenaf Mat Reinforced Epoxy Hybrid Composites. Compos. Part B Eng. 2019, 163, 165–174. [Google Scholar] [CrossRef]
- Gupta, M.K.; Singh, R. Flexural and Dynamic Mechanical Analysis (DMA) of Polylactic Acid (PLA) Coated Sisal Fibre Reinforced Polyester Composite. Mater. Today Proc. 2018, 5, 6109–6114. [Google Scholar] [CrossRef]
- Poletto, M.; Zattera, A.J.; Santana, R.M.C. Thermal Decomposition of Wood: Kinetics and Degradation Mechanisms. Bioresour. Technol. 2012, 126, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Yoganandam, K.; Shanmugam, V.; Vasudevan, A.; Vinodh, D.; Nagaprasad, N.; Stalin, B.; Karthick, A.; Malla, C.; Bharani, M. Investigation of Dynamic, Mechanical, and Thermal Properties of Calotropis Procera Particle-Reinforced PLA Biocomposites. Adv. Mater. Sci. Eng. 2021, 2021, 2491489. [Google Scholar] [CrossRef]
- Sánchez-Acosta, D.; Rodriguez-Uribe, A.; Álvarez-Chávez, C.R.; Mohanty, A.K.; Misra, M.; López-Cervantes, J.; Madera-Santana, T.J. Physicochemical Characterization and Evaluation of Pecan Nutshell as Biofiller in a Matrix of Poly(Lactic Acid). J. Polym. Environ. 2019, 27, 521–532. [Google Scholar] [CrossRef]
- Yang, S.; Li, S.R.; Zhou, S.Y.; Yang, H.R.; Xu, L.; Zhong, G.J.; Xu, J.Z.; Li, Z.M.; Tao, X.M.; Mai, Y.W. Cold Crystallization Behavior of Poly(Lactic Acid) Induced by Poly(Ethylene Glycol)-Grafted Graphene Oxide: Crystallization Kinetics and Polymorphism. Compos. Sci. Technol. 2024, 258, 110871. [Google Scholar] [CrossRef]
- Cristea, M.; Ionita, D.; Iftime, M.M. Dynamic Mechanical Analysis Investigations of PLA-Based Renewable Materials: How Are They Useful? Materials 2020, 13, 5302. [Google Scholar] [CrossRef] [PubMed]
- Bernardes, G.P.; da Rosa Luiz, N.; Santana, R.M.C.; de Camargo Forte, M.M. Influence of the Morphology and Viscoelasticity on the Thermomechanical Properties of Poly(Lactic Acid)/Thermoplastic Polyurethane Blends Compatibilized with Ethylene-Ester Copolymer. J. Appl. Polym. Sci. 2020, 137, 48926. [Google Scholar] [CrossRef]
- Mofokeng, J.P.; Luyt, A.S.; Tábi, T.; Kovács, J. Comparison of Injection Moulded, Natural Fibre-Reinforced Composites with PP and PLA as Matrices. J. Thermoplast. Compos. Mater. 2012, 25, 927–948. [Google Scholar] [CrossRef]
- Manral, A.; Ahmad, F.; Chaudhary, V. Static and Dynamic Mechanical Properties of PLA Bio-Composite with Hybrid Reinforcement of Flax and Jute. Mater. Today Proc. 2020, 25, 577–580. [Google Scholar] [CrossRef]
- Abatti, L.; Vieira, E.R.; da Silva Crespo, J. Thermal Evaluation of Rubber Compounds Containing Pecan Nutshell Powder for Tire Treads. J. Therm. Anal. Calorim. 2019, 138, 3673–3678. [Google Scholar] [CrossRef]
- Dembri, I.; Belaadi, A.; Lekrine, A.; Boumaaza, M.; Jawaid, M.; Ismail, A.S.; Ghernaout, D. Structural and Thermal Properties of Alkali-Treated Biomass Fibers and W. Robusta Waste Reinforced PLA Hybrid Biocomposites. Case Stud. Therm. Eng. 2025, 70, 106170. [Google Scholar] [CrossRef]
- Lekrine, A.; Belaadi, A.; Dembri, I.; Jawaid, M.; Ismail, A.S.; Ghernaout, D. Fiber Treatment Impact on the Thermal Behavior of Biomass/Palm-Fibers Polylactic-Acid Hybrid Biocomposites. Mater. Chem. Phys. 2025, 338, 130651. [Google Scholar] [CrossRef]
- Ortega-Toro, R.; López-Córdoba, A.; Avalos-Belmontes, F. Epoxidised Sesame Oil as a Biobased Coupling Agent and Plasticiser in Polylactic Acid/Thermoplastic Yam Starch Blends. Heliyon 2021, 7, e06176. [Google Scholar] [CrossRef]
- Kopinke, F.D.; Remmler, M.; Mackenzie, K.; Möder, M.; Wachsen, O. Thermal Decomposition of Biodegradable Polyesters—II. Poly (Lactic Acid). Polym. Degrad. Stab. 1996, 53, 329–342. [Google Scholar] [CrossRef]
- Chaitanya, S.; Singh, I.; Song, J.I. Recyclability Analysis of PLA/Sisal Fiber Biocomposites. Compos. Part B Eng. 2019, 173, 106895. [Google Scholar] [CrossRef]
- Shekhar, N.; Mondal, A. Synthesis, Properties, Environmental Degradation, Processing, and Applications of Polylactic Acid (PLA): An Overview. Polym. Bull. 2024, 81, 11421–11457. [Google Scholar] [CrossRef]
- Lim, L.T.; Auras, R.; Rubino, M. Processing Technologies for Poly(Lactic Acid). Prog. Polym. Sci. 2008, 33, 820–852. [Google Scholar] [CrossRef]
- Swetha, T.A.; Bora, A.; Mohanrasu, K.; Balaji, P.; Raja, R.; Ponnuchamy, K.; Muthusamy, G.; Arun, A. A Comprehensive Review on Polylactic Acid (PLA)—Synthesis, Processing and Application in Food Packaging. Int. J. Biol. Macromol. 2023, 234, 123715. [Google Scholar] [CrossRef] [PubMed]
Sample | PLA (wt. %) | PN (wt. %) | CA (wt. %) |
---|---|---|---|
PLA/PN | 80 | 20 | 0 |
PLA/PN/C6 | 78 | 20 | 2 |
PLA/PN/CC6 | 78 | 20 | 2 |
PLA/PN/C8 | 78 | 20 | 2 |
PLA/PN/CC8 | 78 | 20 | 2 |
Sample | Cold Crystallisation Process | Melting Process | Crystallinity Degree (Xc) (%) | ||
---|---|---|---|---|---|
Tcc (°C) | ΔHcc (J·g−1) | Tm (°C) | ΔHm (J·g−1) | ||
PLA | 99 | 31.8 | 168 | 50.4 | 20.0 |
PLA/PN | 96 | 13.3 | 167 | 35.9 | 30.4 |
PLA/PN/C6 | * | * | 164 | 40.7 | 56.1 |
PLA/PN/CC6 | * | * | 162 | 42.0 | 57.9 |
PLA/PN/C8 | * | * | 163 | 43.2 | 59.6 |
PLA/PN/CC8 | * | * | 161 | 42.8 | 59.0 |
Sample | E (MPa) | σFS (MPa) | σR (MPa) | εR (%) |
---|---|---|---|---|
PLA | 3097 ± 122 | 42.77 ± 2.24 | 30.08 ± 1.31 | 1.46 ± 0.07 |
PLA/PN | 3913 ± 337 | 20.81 ± 5.62 | 15.79 ± 3.28 | 0.57 ± 0.14 |
PLA/PN/C6 | 3609 ± 174 | 23.57 ± 5.46 | 15.55 ± 2.84 | 0.77 ± 0.23 |
PLA/PN/CC6 | 3721 ± 146 | 29.49 ± 2.99 | 17.10 ± 1.18 | 0.85 ± 0.09 |
PLA/PN/C8 | 3863 ± 167 | 36.08 ± 5.67 | 35.50 ± 2.78 | 1.01 ± 0.13 |
PLA/PN/CC8 | 4477 ± 236 | 25.03 ± 3.31 | 19.25 ± 2.09 | 0.64 ± 0.09 |
Sample | Storage Modulus (MPa) at | Tan δ Peak (at Tg) | Tg (°C) | |
---|---|---|---|---|
35 °C | 50 °C | |||
PLA | 2094 | 1989 | 2.1 | 65 |
PLA/PN | 2239 | 2067 | 1.5 | 64 |
PLA/PN/C6 | 1984 | 1013 | 1.0 | 61 |
PLA/PN/CC6 | 2223 | 1851 | 1.1 | 63 |
PLA/PN/C8 | 2303 | 1695 | 1.4 | 59 |
PLA/PN/CC8 | 2264 | 1561 | 1.5 | 61 |
Sample | T5% (°C) | Tp (°C) | Residue at 600 °C (%) |
---|---|---|---|
PLA | 296 | 331 | 2.2 |
PLA/PN | 277 | 308 | 11.4 |
PLA/PN/C6 | 235 | 307 | 10.1 |
PLA/PN/CC6 | 277 | 315 | 9.3 |
PLA/PN/C8 | 286 | 350 | 9.1 |
PLA/PN/CC8 | 268 | 334 | 7.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pierozan Bernardes, G.; de Prá Andrade, M.; Poletto, M. Influence of Carboxylic Acids (CAs) on the Structure–Properties Relationship in PLA/Pecan Nutshell (PN) Composites. J. Compos. Sci. 2025, 9, 422. https://doi.org/10.3390/jcs9080422
Pierozan Bernardes G, de Prá Andrade M, Poletto M. Influence of Carboxylic Acids (CAs) on the Structure–Properties Relationship in PLA/Pecan Nutshell (PN) Composites. Journal of Composites Science. 2025; 9(8):422. https://doi.org/10.3390/jcs9080422
Chicago/Turabian StylePierozan Bernardes, Giordano, Matheus de Prá Andrade, and Matheus Poletto. 2025. "Influence of Carboxylic Acids (CAs) on the Structure–Properties Relationship in PLA/Pecan Nutshell (PN) Composites" Journal of Composites Science 9, no. 8: 422. https://doi.org/10.3390/jcs9080422
APA StylePierozan Bernardes, G., de Prá Andrade, M., & Poletto, M. (2025). Influence of Carboxylic Acids (CAs) on the Structure–Properties Relationship in PLA/Pecan Nutshell (PN) Composites. Journal of Composites Science, 9(8), 422. https://doi.org/10.3390/jcs9080422