Sawdust as a Byproduct of Wood Processing: Properties, Applications and a Reinforcing Filler in Hybrid Polymer Composites
Abstract
:1. Introduction
2. An Overview on Bio-Fibres
3. Sawdust History
4. General Applications of Sawdust
5. A Brief Discussion on Hybrid Systems vs. Sawdust Hybrid Systems
6. Preparation and Morphology of Sawdust Composites and/or Hybrids
7. Degradation of Sawdust-Reinforced Biocomposites
8. Conclusions and Future Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zafeer, M.-K.; Prabhu, R.; Rao, S.; Mahesha, G.T.; Bhat, K.S. Mechanical characteristics of sugarcane bagasse fibre reinforced polymer composites: A review. Cogent Eng. 2023, 10, 220090310. [Google Scholar] [CrossRef]
- Prasad, L.; Kumar, S.; Patel, R.V.; Yadav, A.; Kumar, V.; Winczek, J. Physical and mechanical behaviour of sugarcane bagasse fibre-reinforced epoxy bio-composites. Materials 2020, 13, 5387. [Google Scholar] [CrossRef] [PubMed]
- Suhot, M.A.; Hassan, M.Z.; Aziz, S.A.; Daud, M.Y.M. Recent progress of rice husk reinforced polymer composites: A review. Polymers 2021, 13, 2391. [Google Scholar] [CrossRef]
- Deepan, S.; Jeyakumar, R.; Mohankumar, V.; Manojkumar, A. Influence of rice husk fillers on mechanical properties of banana/epoxy natural fiber hybrid composites. Mater. Today Proc. 2022, 74, 575–580. [Google Scholar] [CrossRef]
- Arjmandi, R.; Hassan, A.; Majeed, K.; Zakaria, Z. Rice husk filled polymer composites. Int. J. Polym. Sci. 2015, 2015, 501471. [Google Scholar] [CrossRef]
- Sombatsompop, N.; Kantala, C.; Wimolmalaand, E. Wood sawdust fibres as a secondary filler in carbon black filled NR vulcanizates. Polym. Polym. Compos. 2006, 14, 331–348. [Google Scholar] [CrossRef]
- Ganesan, V.; Shanmugam, V.; Kaliyamoorthy, B.; Sanjeevi, S.; Shanmugam, S.K.; Alagumalai, V.; Krishnamoorthy, Y.; Försth, M.; Sas, G.; Razavi, S.M.J.; et al. Optimisation of mechanical properties in saw-dust/woven-jute fibre/polyester structural composites under liquid nitrogen environment using response surface methodology. Polymers 2021, 13, 2471. [Google Scholar] [CrossRef]
- Ismail, S.O.; Akpan, E.; Dhakal, H.N. Review on natural plant fibres and their hybrid composites for structural applications: Recent trends and future perspectives. Compos. Part C Open Access 2022, 9, 100322. [Google Scholar] [CrossRef]
- Ahmed, W.; Khushnood, R.A.; Memon, S.A.; Ahmad, S.; Baloch, W.L.; Usman, M. Effective use of sawdust for the production of eco-friendly and thermal-energy efficient normal weight and lightweight concretes with tailored fracture properties. J. Clean. Prod. 2018, 184, 1016–1027. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S.M. Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egypt. J. Petrol. 2018, 27, 1275–1290. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Wood: Material-Specific Data. Available online: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/wood-material-specific-data? (accessed on 27 May 2023).
- Fabien, A. Timber & Wood Waste Statistics Australia. All Gone Rubbish Removals. Available online: https://allgonerubbishremovals.com.au/timber-wood-waste-statistics-australia (accessed on 30 May 2023).
- Sattar, A. Harnessing Parkistan’s Waste. Heinrich Boll Stiffing: The Green Foundation. 2023. Available online: https://afpak.boell.org/en/2023/02/22/harnessing-pakistans-waste (accessed on 30 May 2023).
- Ramage, M.H.; Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Shah, D.U.; Wu, G.; Yu, L.; Flemming, P.; Densley-Tingley, D.; et al. The wood from the trees: The use of timber in construction. Renew. Sustain. Energy Rev. 2017, 68, 333–359. [Google Scholar] [CrossRef]
- Pandey, S. Wood waste utilization and associated product development from under-utilized low-quality wood and its prospects in Nepal. SN Appl. Sci. 2022, 4, 168. [Google Scholar] [CrossRef]
- Jaya, H.; Noriman, N.Z.; AbdulKadir, H.K.; Dahham, O.S.; Muhammad, N.; Latip, N.A.; Aini, A.K. The effects of wood sawdust loading on tensile and physical properties of Up/Pf/Wsd composites. IOP Conf. Ser. Mater. Sci. Eng. 2018, 454, 012193. [Google Scholar] [CrossRef]
- De Araújo, M. Natural and man-made fibres: Physical and mechanical properties. In Fibrous and Composite Materials for Civil Engineering Applications; Fangueiro, R., Ed.; Woodmead Publishing: Cambridge, UK, 2011; pp. 3–28. [Google Scholar]
- Mohd Bakhori, S.N.; Hassan, M.Z.; Mohd Bakhori, N.; Jamaludin, K.R.; Ramlie, F.; Daud, M.Y.M.; Abdul Aziz, S. Physical, mechanical and perforation resistance of natural-synthetic fiber interply laminate hybrid composites. Polymers 2022, 14, 1322. [Google Scholar] [CrossRef]
- Rajak, D.K.; Pagar, D.D.; Menezes, P.L.; Linul, E. Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers 2019, 11, 1667. [Google Scholar] [CrossRef]
- Karim, M.A.; Abdullah, M.Z.; Deifalla, A.F.; Azab, M.; Waqar, A. An assessment of the processing parameters and application of fibre-reinforced polymers (FRPs) in the petroleum and natural gas industries: A review. Results Eng. 2023, 18, 101091. [Google Scholar] [CrossRef]
- Rajak, D.K.; Wagh, P.H.; Linul, E. A review on synthetic fibers for polymer matrix composites: Performance, failure modes and applications. Materials 2022, 15, 4790. [Google Scholar] [CrossRef]
- Unterweger, C.; Brüggemann, O.; Fürst, C. Synthetic fibers and thermoplastic short-fiber-reinforced polymers: Properties and characterization. Polym. Compos. 2013, 35, 227–236. [Google Scholar] [CrossRef]
- John, M.; Thomas, S. Biofibres and biocomposites. Carbohydr. Polym. 2008, 71, 343–364. [Google Scholar] [CrossRef]
- Jiang, X.; Bai, Y.; Chen, X.; Liu, W. A review on raw materials, commercial production and properties of lyocell fiber. J. Bioresour. Bioprod. 2020, 5, 16–25. [Google Scholar] [CrossRef]
- Mahir, F.I.; Keya, K.N.; Sarker, B.; Nahium, K.M.; Khan, R.A. A brief review on natural fiber used as a replacement of synthetic fiber in polymer composites. Mater. Eng. Res. 2019, 1, 86–97. [Google Scholar] [CrossRef]
- Kumar, K.A.; Sudhanan, S.M.; Kumar, K.M.; Kumar, G.R. A study on properties of natural fibres—A review. Int. Res. J. Eng. Technol. 2017, 4, 1343–1350. [Google Scholar]
- Mann, G.S.; Azum, N.; Khan, A.; Rub, M.A.; Hassan, M.I.; Fatima, K.; Asiri, A.M. Green composites based on animal fiber and their applications for a sustainable future. Polymers 2023, 15, 601. [Google Scholar] [CrossRef]
- Jiang, B.; Chen, C.; Liang, Z.; He, S.; Kuang, Y.; Song, J.; Mi, R.; Chen, G.; Jiao, M.; Hu, L. Lignin as a wood-inspired binder enabled strong, water stable, and biodegradable paper for plastic replacement. Adv. Funct. Mater. 2019, 30, 201906307. [Google Scholar] [CrossRef]
- Thomason, J.L. Glass fibre sizing: A review. Compos. Part A Appl. Sci. Manuf. 2019, 127, 105619. [Google Scholar] [CrossRef]
- Shah, D.U. Developing plant fibre composites for structural applications by optimising composite parameters: A critical review. J. Mater. Sci. 2013, 48, 6083–6107. [Google Scholar] [CrossRef]
- Maiti, S.; Islam, M.R.; Uddin, M.A.; Afroj, S.; Eichhorn, S.J.; Karim, N. Sustainable fiber-reinforced composites: A review. Adv. Sustain. Syst. 2022, 6, 2200258. [Google Scholar] [CrossRef]
- Elfaleh, I.; Abbassi, F.; Habibi, M.; Ahmad, F.; Guedri, M.; Nasri, M.; Garnier, C. A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials. Results Eng. 2023, 19, 101271. [Google Scholar] [CrossRef]
- Khalid, M.Y.; Al Rashid, A.; Arif, Z.U.; Ahmed, W.; Arshad, H.; Zaidi, A.A. Natural fiber reinforced composites: Sustainable materials for emerging applications. Results Eng. 2021, 11, 100263. [Google Scholar] [CrossRef]
- Suárez, L.; Castellano, J.; Díaz, S.; Tcharkhtchi, A.; Ortega, Z. Are natural-based composites sustainable? Polymers 2021, 13, 2326. [Google Scholar] [CrossRef]
- Bogoeva-Gaceva, G.; Avella, M.; Malinconico, M.; Buzarovska, A.; Grozdanov, A.; Gentile, G.; Errico, M.E. Natural fiber eco-composites. Polym. Compos. 2007, 28, 98–107. [Google Scholar] [CrossRef]
- Phonphuak, N.; Chindaprasirt, P. Types of waste, properties, and durability of pore-forming waste-based fired masonry bricks. In Eco-Efficient Masonry Bricks and Blocks; Pacheco-Torgal, F., Lourenço, P.B., Labrincha, J.A., Kumar, S., Chindaprasirt, P., Eds.; Woodhead Publishing: Cambridge, UK, 2015; pp. 103–127. [Google Scholar]
- Djafari Petroudy, S.R. Physical and mechanical properties of natural fibers. In Advanced High Strength Natural Fibre Composites in Construction; Fan, M., Fu, F., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 59–83. [Google Scholar]
- Mohanty, A.K.; Mishra, M.; Drzal, L.T.; Selke, S.E.; Harte, B.R.; Hinrichsen, G. Natural fibers, biopolymers, and biocomposites: An introduction. In Natural Fibres, Biopolymers, and Composites; Mohanty, A.K., Mishra, M., Drzal, L.T., Eds.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2005; p. 35. [Google Scholar]
- Shankar, S.; Rhim, J.-W. Bionanocomposite films for food packaging applications. In Innovative Food Processing Technologies; Knoerzer, K., Muthukumarappan, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 234–243. [Google Scholar]
- Kabir, E.; Kaur, R.; Lee, J.; Kim, K.-H.; Kwon, E.E. Prospects of biopolymer technology as an alternative option for non-degradable plastics and sustainable management of plastic wastes. J. Clean. Prod. 2020, 258, 120536. [Google Scholar] [CrossRef]
- Orgeta Barón, M.; Hellwich, K.-H.; Hess, M.; Horie, K.; Jenkins, A.D.; Jones, R.G.; Kahovec, J.; Kratochvíl, P.; Metanomski, W.V.; Mormann, W.; et al. Glossary of class names of polymers based on chemical structure and molecular architecture (IUPAC Recommendations 2009). Pure Appl. Chem. 2009, 81, 1131–1186. [Google Scholar] [CrossRef]
- Sindhu, K.A.; Prasanth, R.; Thakur, V.K. Medical applications of cellulose and its derivatives: Present and future. In Nanocellulose Polymer Nanocomposites; Thakur, V.K., Ed.; Scrivener Publishing LLC: Beverly, MA, USA, 2014; pp. 437–477. [Google Scholar]
- Prodanović, S.; Milutinović, M. Some applications of biomaterials in automotive industry. In Advances in Applications of Industrial Biomaterials; Pellicer, E., Nikolic, D., Sort, J., Baro, M., Grujovic, N., Pelemis, S., Eds.; Springer: Cham, Switzerland, 2017; pp. 1–20. [Google Scholar]
- Xie, J.-H.; Jin, M.-L.; Morris, G.A.; Zha, X.-Q.; Chen, H.-Q.; Yi, Y.; Li, J.-E.; Wang, Z.-J.; Gao, J.; Nie, S.-P.; et al. Advances on bioactive polysaccharides from medicinal plants. Crit. Rev. Food. Sci. Nutr. 2015, 56, S60–S84. [Google Scholar] [CrossRef]
- Mwaikambo, L.Y. Review of the history, properties and application of plant fibres. Afr. J. Sci. Technol. AJST Sci. Eng. 2006, 7, 120–133. [Google Scholar]
- Baley, C.; Bourmaud, A.; Davies, P. Eighty years of composites reinforced by flax fibres: A historical review. Compos. Part A Appl. Sci. Manuf. 2021, 144, 106333. [Google Scholar] [CrossRef]
- Junio, R.F.P.; de Mendonça Neuba, L.; Pereira, A.C.; Teixeira Souza, A.; Macêdo Isidoro, L.M.; Nascimento, L.F.C.; Monteiro, S.N. Carnauba leaf fibers: Correlation among diametrical variation, physical and mechanical properties. J. Mater. Res. Technol. 2023, 22, 1888–1899. [Google Scholar] [CrossRef]
- Peças, P.; Carvalho, H.; Salman, H.; Leite, M. Natural fibre composites and their applications: A review. J. Compos. Sci. 2018, 2, 66. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, J. Advanced lightweight materials for automobiles: A review. Mater. Des. 2022, 221, 110994. [Google Scholar] [CrossRef]
- Elseify, L.A.; Midani, M.; El-Badawy, A.; Jawaid, M. Manufacturing Automotive Components from Sustainable Natural Fiber Composites; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Sarwar, A.; Mahboob, Z.; Zdero, R.; Bougherara, H. Mechanical characterization of a new Kevlar/Flax/epoxy hybrid composite in a sandwich structure. Polym. Test. 2020, 90, 106680. [Google Scholar] [CrossRef]
- Lendvai, L.; Omastova, M.; Patnaik, A.; Dogossy, G.; Singh, T. Valorization of waste wood flour and rice husk in poly(lactic acid)-based hybrid biocomposites. J. Polym. Environ. 2022, 31, 541–551. [Google Scholar] [CrossRef]
- Ramesh, M. Kenaf (Hibiscus cannabinus L.) fibre based bio-materials: A review on processing and properties. Prog. Mater. Sci. 2016, 78–79, 1–92. [Google Scholar] [CrossRef]
- Schmiedel, I.; Barfuss, G.S.; Nickel, T.; Pfeufer, L.; ATZ. Use of Visible Natural Fibres in Vehicle Interiors. 2014. Available online: https://www.draexlmaier.com/fileadmin/Group/Press/Publications/ATZworldwide_2014_116_06_I_020-023_Kenaf_Draexlmaier_OnlinePDF.pdf (accessed on 10 July 2023).
- Olham, S.; Khatkar, V.; Behera, B.K. Review: Textile-based natural fibre-reinforced polymeric composites in automotive lightweighting. J Mater Sci. 2021, 56, 18867–18910. [Google Scholar] [CrossRef]
- Designboom|Architecture & Design Magazine. New Renault 4 Green Power. Available online: https://www.designboom.com/project/new-renault-4-green-power/ (accessed on 11 July 2023).
- Kim, T.H.; Zhou, Z.; Choi, Y.S.; Costanza, V.; Wang, L.; Joong, H.B.; Higdon, N.J.; Yun, Y.; Kang, H.; Kim, S.-H.; et al. Flexible biomimetic block copolymer composite for temperature and long-wave infrared sensing. Sci. Adv. 2023, 9, 0423. [Google Scholar] [CrossRef]
- Saba, N.; Paridah, M.T.; Jawaid, M.; Abdan, K.; Ibrahim, N.A. Potential utilization of kenaf biomass in different applications. In Agricultural Biomass Based Potential Materials; Hakeem, K.R., Jawaid, M., Alothman, O.Y., Eds.; Springer: Cham, Switzerland, 2015; pp. 1–34. [Google Scholar]
- Novaes, E.; Kirst, M.; Chiang, V.; Winter-Sederoff, H.; Sederoff, R. Lignin and biomass: A negative correlation for wood formation and lignin content in trees. Plant Physiol. 2010, 154, 555–561. [Google Scholar] [CrossRef]
- Singh, A.A.; Genovese, M.E.; Mancini, G.; Marini, L.; Athanassiou, A. Green processing route for polylactic acid–cellulose fiber biocomposites. ACS Sustain. Chem. Eng. 2020, 8, 4128–4136. [Google Scholar] [CrossRef]
- Ochoa-Villarreal, M.; Aispuro-Hernández, E.; Vargas-Arispuro, I.; Martínez-Téllez, M.Á. Plant cell wall polymers: Function, structure and biological activity of their derivatives. In Polymerization; De Souza Gomez, A., Ed.; IntechOpen: London, UK, 2012; pp. 63–86. [Google Scholar]
- Pawar, R.P.; Tekalea, S.U.; Shisodiaa, S.U.; Totrea, J.T.; Dombb, A.J. Biomedical applications of poly (lactic acid). Rec. Patents Regen. Med. 2014, 4, 40–51. [Google Scholar] [CrossRef]
- Sampath, U.G.T.M.; Ching, Y.C.; Chuah, C.H.; Sabariah, J.J.; Lin, P.-C. Fabrication of porous materials from natural/synthetic biopolymers and their composites. Materials 2016, 9, 991. [Google Scholar] [CrossRef]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv. Drug. Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef]
- Lisuzzo, L.; Cavallaro, G.; Milioto, S.; Lazzara, G. Halloysite nanotubes filled with MgO for paper reinforcement and deacidification. Appl. Clay. Sci. 2021, 213, 106231. [Google Scholar] [CrossRef]
- Joseph, B.K.S.V.; Sabu, C.; Kalarikkal, N.; Thomas, S. Cellulose nanocomposites: Fabrication and biomedical applications. J. Bioresour. Bioprod. 2020, 5, 223–237. [Google Scholar] [CrossRef]
- Ergun, R.; Guo, J.; Huebner-Keese, B. Cellulose. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldra, F., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 694–702. [Google Scholar]
- Hivechi, A.; Bahrami, S.H.; Siegel, R.A.; Milan, P.B.; Amoupour, M. In vitro and in vivo studies of biaxially electrospun poly(caprolactone)/gelatin nanofibers, reinforced with cellulose nanocrystals, for wound healing applications. Cellulose 2020, 27, 5179–5196. [Google Scholar] [CrossRef]
- Ramos, Ó.L.; Pereira, R.N.; Cerqueira, M.A.; Martins, J.R.; Teixeira, J.A.; Malcata, F.X.; Vicente, A.A. Bio-Based Nanocomposites for Food Packaging and Their Effect in Food Quality and Safety. In Food Packaging and Preservation; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 271–306. [Google Scholar]
- Liu, Y.; Liu, H.; Shen, Z. Nanocellulose based filtration membrane in industrial wastewater treatment: A review. Materials 2021, 14, 5398. [Google Scholar] [CrossRef]
- Rojas, J. Effect of polymorphism on the particle and compaction properties of microcrystalline cellulose. In Cellulose—Medical, Pharmaceutical and Electronic Application; Van De Ven, T.G.M., Ed.; IntechOpen: London, UK, 2013; pp. 28–46. [Google Scholar]
- Panthapulakkal, S.; Rangunanan, L.; Sain, M.K.C.B.; Tjong, J. Natural fiber and hybrid fiber thermoplastic composites: Advancements in lightweighting applications. In Green Composites, 2nd ed.; Baillie, C., Jayasinghe, R., Eds.; Woodhead Publishing: Cambridge, UK, 2013; pp. 39–72. [Google Scholar]
- Gregory, A.; Bolwell, G.P. Hemicelluloses. In Comprehensive Natural Products Chemistry; Barton, S.D., Nakanishi, K., Meth-Cohn, O., Eds.; Elsevier: Amsterdam, The Netherland, 1999; pp. 599–615. [Google Scholar]
- Hu, L.; Fang, X.; Du, M.; Luo, F.; Guo, S. Hemicellulose-based polymers processing and application. Am. J. Plant Sci. 2020, 11, 2066–2079. [Google Scholar] [CrossRef]
- Chen, G.-G.; Qi, X.-M.; Guan, Y.; Peng, F.; Yao, C.-L.; Sun, R.-C. High strength hemicellulose-based nanocomposite film for food packaging applications. ACS Sustain. Chem. Eng. 2016, 4, 1985–1993. [Google Scholar] [CrossRef]
- Hosseinaei, O.; Wang, S.; Enayati, A.A.; Rials, T.G. Effects of hemicellulose extraction on properties of wood flour and wood–plastic composites. Compos. Part A Appl. Sci. Manuf. 2012, 43, 686–694. [Google Scholar] [CrossRef]
- Ye, H.; Zhang, Y.; Yu, Z.; Mu, J. Effects of cellulose, hemicellulose, and lignin on the morphology and mechanical properties of metakaolin-based geopolymer. Constr. Build. Mater. 2018, 173, 10–16. [Google Scholar] [CrossRef]
- Norrrahim, M.N.F.; Ariffin, H.; Yasim-Anuar, T.A.T.; Hassan, M.A.; Ibrahim, N.A.; Yunus, W.M.Z.W.; Nishida, H.; Norrrahim, M.N.F.; Ariffin, H.; Yasim-Anuar, T.A.T. Performance evaluation of cellulose nanofiber with residual hemicellulose as a nanofiller in polypropylene-based nanocomposite. Polymers 2021, 13, 1064. [Google Scholar] [CrossRef]
- Vinardell, M.P.; Mitjans, M. Lignins and their derivatives with beneficial effects on human health. Int. J. Mol. Sci. 2017, 18, 1219. [Google Scholar] [CrossRef]
- Santander, P.; Butter, B.; Oyarce, E.; Yáñez, M.; Xiao, L.-P.; Sánchez, J. Lignin-based adsorbent materials for metal ion removal from wastewater: A review. Ind. Crops Prod. 2021, 167, 113510. [Google Scholar] [CrossRef]
- Li, Y.; Yang, D.; Li, P.; Li, Z. Lignin as a multi-functional agent for the synthesis of Ag nanoparticles and its application in antibacterial coatings. J. Mater. Res. Technol. 2022, 17, 3211–3220. [Google Scholar] [CrossRef]
- Mandlekar, N.; Cayla, A.; Rault, F.; Giraud, S.; Salaün, F.; Malucelli, G.; Guan, J.-P. An overview on the use of lignin and its derivatives in fire retardant polymer systems. In Lignin—Trends and Applications; Poletto, M., Ed.; IntechOpen: London, UK, 2018; pp. 207–231. [Google Scholar]
- Liu, Q.; Luo, L.; Zheng, L. Lignins: Biosynthesis and biological functions in plants. Int. J. Mol. Sci. 2018, 19, 335. [Google Scholar] [CrossRef] [PubMed]
- Antonino, L.D.; Gouveia, J.R.; Ramos de Sousa Júnior, R.R.; Garcia, G.E.S.; Gobbo, L.C.; Taraves, L.B.; dos Santos, D.J. Reactivity of aliphatic and phenolic hydroxyl groups in kraft lignin towards 4,4′ MDI. Molecules 2021, 26, 2131. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Ching, Y.C.; Chuah, C.H. Applications of lignocellulosic fibers and lignin in bioplastics: A review. Polymers 2019, 11, 751. [Google Scholar] [CrossRef]
- Vermaas, J.V.; Crowley, M.F.; Beckham, G.T. A quantitative molecular atlas for interactions between lignin and cellulose. ACS Sustain. Chem. Eng. 2019, 7, 9570–19583. [Google Scholar] [CrossRef]
- Van Beilen, J.B.; Poirier, Y. Production of renewable polymers from crop plants. Plant J. 2008, 54, 684–701. [Google Scholar] [CrossRef]
- Zarna, C.; Opedal, M.T.; Echtermeyer, A.T.; Chinga-Carrasco, G. Reinforcement ability of lignocellulosic components in biocomposites and their 3D printed applications—A review. Compos. Part C Open Access 2021, 6, 100171. [Google Scholar] [CrossRef]
- Kabir, M.M.; Wang, H.; Lau, K.T.; Cardona, F. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos. Part B Eng. 2012, 43, 2883–2892. [Google Scholar] [CrossRef]
- Girijappa Thyavihalli, Y.G.; Mavinkere Rangappa, S.; Parameswaranpillai, J.; Siengchin, S. Natural fibers as sustainable and renewable resource for development of eco-friendly composites: A comprehensive review. Front. Mater. 2019, 6, 266. [Google Scholar] [CrossRef]
- Poovaiah, C.R.; Nageswara-Rao, M.; Soneji, J.R.; Baxter, H.L.; Stewart, C.N. Altered lignin biosynthesis using biotechnology to improve lignocellulosic biofuel feedstocks. Plant Biotechnol. J. 2014, 12, 1163–1173. [Google Scholar] [CrossRef]
- Van Beilen, J.B.; Poirier, Y. Prospects for biopolymer production in plants. In Green Gene Technology; Scheper, T., Fiechter, A., Sautter, C., Eds.; Springer Nature: Berlin, Germany, 2007; pp. 133–151. [Google Scholar]
- Moshood, T.D.; Nawanir, G.; Mahmud, F.; Mohamad, F.; Ahmad, M.H.; Abdulghani, F. Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution? Curr. Res. Green Sustain. Chem. 2022, 5, 100273. [Google Scholar] [CrossRef]
- Rodrigues Pereira de Paula, C.; Trianoski, R.; Azevedo, E. Development and characterization of sawdust and sisal fiber reinforced vegetable based polyurethane foam hybrid composites. J. Nat. Fibers 2020, 19, 3265–3274. [Google Scholar] [CrossRef]
- Kozłowski, R.M.; Mackiewicz-Talarczyk, M.; Barriga-Bedoya, J. New emerging natural fibres and relevant sources of information. In Handbook of Natural Fibres; Kozłowski, R.M., Mackiewicz-Talarczyk, M., Eds.; Woodhead Publishing: Cambridge, UK, 2020; pp. 747–787. [Google Scholar]
- Mahesh, V. Development and physio-mechanical characterization of sustainable jute-wood dust reinforced hybrid composites. J. Nat. Fibers 2022, 19, 13995–14004. [Google Scholar] [CrossRef]
- Nair, M.M.; Shetty, N.; Alva, P.P.; Shetty, D. Effect of sawdust impregnation on long coir fibers reinforced with epoxy matrix. Int. J. Adv. Appl. Sci. 2018, 5, 67–74. [Google Scholar] [CrossRef]
- Olaiya, B.C.; Lawan, M.M.; Olonade, K.A. Utilization of sawdust composites in construction—A review. SN Appl. Sci. 2023, 5, 67–74. [Google Scholar] [CrossRef]
- Lennox, J.A.; Asitok, A.; John, G.E.; Etim, B.T. Characterization of products from sawdust biodegradation using selected microbial culture isolated from it. Afr. J. Biotechnol. 2019, 18, 857–864. [Google Scholar]
- Ortega, F.; Versino, F.; López, O.V.; García, M.A. Biobased composites from agro-industrial wastes and by-products. Emerg. Mater. 2021, 5, 873–921. [Google Scholar] [CrossRef]
- Setyono, D.; Valiyaveettil, S. Chemically modified sawdust as renewable adsorbent for arsenic removal from water. ACS Sustainable Chem. Eng. 2014, 2, 2722–2729. [Google Scholar] [CrossRef]
- Mwango, A.; Kambole, C. Engineering characteristics and potential increased utilisation of sawdust composites in construction—A review. J. Build. Constr. Plan. Res. 2019, 7, 59–88. [Google Scholar] [CrossRef]
- Isikgor, F.H.; Becer, C.R. Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 2015, 6, 4497–4559. [Google Scholar] [CrossRef]
- Padam, B.S.; Tin, H.S.; Chye, F.Y.; Abdullah, M.I. Banana by-products: An under-utilized renewable food biomass with great potential. J. Food Sci. Technol. 2012, 51, 3527–3545. [Google Scholar] [CrossRef]
- Varma, A.K.; Thakur, L.S.; Shankar, R.; Mondal, P. Pyrolysis of wood sawdust: Effects of process parameters on products yield and characterization of products. J. Waste Manag. 2019, 89, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, G.; Khare, M.K. Material and energy wastes minimization in a machining system: A review. J. Mater. Environ. Sci. 2013, 4, 251–256. [Google Scholar]
- El-Haggar, S.M. Sustainable Industrial Design and Waste Management; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Jahan, I.; Zhang, G.; Bhuiyan, M.; Navaratnam, S. Circular economy of construction and demolition wood waste—A theoretical framework approach. Sustainability 2022, 14, 10478. [Google Scholar] [CrossRef]
- O’Dwyer, J.; Walshe, D.; Byrne, K.A. Wood waste decomposition in landfills: An assessment of current knowledge and implications for emissions reporting. Waste Manag. 2018, 73, 181–188. [Google Scholar] [CrossRef]
- Hillig, É.; Freire, E.; Zattera, A.J.; Zanoto, G.; Grison, K.; Zeni, M. Use of sawdust in polyethylene composites. Prog. Rubber Plast. Recycl. Technol. 2007, 24, 113–119. [Google Scholar] [CrossRef]
- Ferede, E. Evaluation of mechanical and water absorption properties of alkaline-treated sawdust-reinforced polypropylene composite. J. Eng. 2020, 2020, 3706176. [Google Scholar] [CrossRef]
- Charis, G.; Danha, G.; Muzenda, E. A review of timber waste utilization: Challenges and opportunities in Zimbabwe. Procedia Manuf. 2019, 35, 419–429. [Google Scholar] [CrossRef]
- Sharma, R.; Sharma, M.; Sharma, R.; Sharma, V. The impact of incinerators on human health and environment. Rev. Environ. Health 2013, 28, 67–72. [Google Scholar] [CrossRef]
- Adegoke, K.A.; Adesina, O.O.; Okon-Akan, O.A.; Adegoke, O.R.; Olabintan, A.B.; Ajala, O.A.; Olagoke, H.; Maxakato, N.W.; Bello, O.S. Sawdust-biomass based materials for sequestration of organic and inorganic pollutants and potential for engineering applications. Curr. Res. Green Sustain. Chem. 2022, 5, 100274. [Google Scholar] [CrossRef]
- Deac, T.; Fechete-Tutunaru, L.; Gaspar, F.X. Environmental impact of sawdust briquettes use—Experimental approach. Energy Procedia 2016, 85, 178–183. [Google Scholar] [CrossRef]
- von Schneidemesser, E.; Monks, P.S.; Allan, J.D.; Bruhwiler, L.; Forster, P.; Fowler, D.; Lauer, A.; Morgan, W.T.; Paasonen, P.; Righi, M.; et al. Chemistry and the linkages between air quality and climate change. Chem. Rev. 2015, 115, 3856–3897. [Google Scholar] [CrossRef]
- Vaverková, M.D.; Elbl, J.; Koda, E.; Adamcová, D.; Bilgin, A.; Lukas, V.; Podlasek, A.; Kintl, A.; Wdowska, M.; Brtnický, M.; et al. Chemical composition and hazardous effects of leachate from the active municipal solid waste landfill surrounded by farmlands. Sustainability 2020, 12, 4531. [Google Scholar] [CrossRef]
- Sridhar, C.; Coker, A.O.; Shittu, O.O.; Laniyan, T.A.; Achi, C.G. Phytotechnologies in wastewater treatment: A low-cost option for developing countries. In Sustainable Water Engineering; Charlesworth, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 137–164. [Google Scholar]
- Hredoy, R.H.; Siddique, A.B.; Akbor, A.; Shaikh, A.A.; Rahman, M. Impacts of landfill leachate on the surrounding environment: A case study on Amin Bazar landfill, Dhaka (Bangladesh). Soil Sys. 2022, 6, 90. [Google Scholar] [CrossRef]
- Rominiyi, O.L.; Adaramola, B.A.; Ikumapayi, O.M.; Oginni, O.T.; Akinola, S.A. Potential utilization of sawdust in energy, manufacturing and agricultural industry; Waste to wealth. World J. Eng. Technol. 2017, 5, 526–539. [Google Scholar] [CrossRef]
- Maharani, R.; Yutaka, T.; Yajima, T.; Minoru, T. Scrutiny on physical properties of sawdust from tropical commercial wood species: Effects of different mills and sawdust’s particle size. Indones. J. For. Res. 2010, 7, 20–32. [Google Scholar] [CrossRef]
- Turgut, P.; Algin, H.M. Limestone dust and wood sawdust as brick material. Build. Environ. 2007, 42, 3399–3403. [Google Scholar] [CrossRef]
- Rubasinghe, R.T.; Gunatilake, S.; Perera, K.W. Suitability of fibre complexes of coir and banana as eco-friendly sorbent material for oil spills removals. In Proceedings of the 29th Technical Sessions of Geological Society of Sri Lanka, Kandy, Sri Lanka, 28 February 2013; pp. 131–134. [Google Scholar]
- Udokpoh, U.; Nnaji, C. Reuse of sawdust in developing countries in the light of sustainable development goals. Recent Prog. Mater. 2023, 5, 1–33. [Google Scholar] [CrossRef]
- Tan, X.-F.; Zhu, S.-S.; Wang, R.-P.; Chen, Y.-D.; Show, P.-L.; Zhang, F.-F.; Ho, S.-H. Role of biochar surface characteristics in the adsorption of aromatic compounds: Pore structure and functional groups. Chin. Chem. Lett. 2021, 32, 2939–2946. [Google Scholar] [CrossRef]
- Nwakaire, J.N.; Ezeoha, S.L.; Ugwuishiwu, B.O. Production of cellulosic ethanol from wood sawdust. Agric. Eng. Int. CIGR e-J. 2013, 15, 136–140. [Google Scholar]
- Amaefule, D.O.; Nwakaire, J.N.; Ogbuagu, N.; Anyadike, C.C.; Ogenyi, C.; Ohagwu, C.J.; Egbuhuzor, M. Effect of production factors on the bioethanol yield of tropical sawdust. Int. J. Energy Res. 2023, 2023, 1–10. [Google Scholar] [CrossRef]
- Batool, F.; Islam, K.; Cakiroglu, C.; Shahriar, A. Effectiveness of wood waste sawdust to produce medium- to low-strength concrete materials. J. Build. Eng. 2021, 44, 103237. [Google Scholar] [CrossRef]
- Cultrone, G.; Aurrekoetxea, I.; Casado, C.; Arizzi, A. Sawdust recycling in the production of lightweight bricks: How the amount of additive and the firing temperature influence the physical properties of the bricks. Constr. Build. Mater. 2020, 235, 117436. [Google Scholar] [CrossRef]
- Chávez-Rosales, J.S.; Pintor-Ibarra, L.F.; González-Ortega, N. Basic chemical composition of Pinus spp. sawdust from five regions of Mexico, for bioenergetic purposes. BioResources 2021, 16, 816–824. [Google Scholar] [CrossRef]
- Mračková, E.; Krišťák, Ľ.; Kučerka, M.; Gaff, M.; Gajtanska, M. Creation of wood dust during wood processing: Size analysis, dust separation, and occupational health. BioResources 2016, 11, 209–222. [Google Scholar] [CrossRef]
- Bello, R.S. Characterization of sawdust produced from circular, chain and band sawing machines. Bioprocess Eng. 2017, 1, 21–29. [Google Scholar]
- Ali, N.; Nafissa, A.; Zakil, F.A.; Nur, W.; Hassan, O. Yield performance and biological efficiency of empty fruit bunch (EFB) and palm pressed fibre (PPF) as substrates for the cultivation of pleurotus ostreatus. J. Technol. 2013, 64, 93–99. [Google Scholar] [CrossRef]
- Carrillo-Parra, A.; Contreras-Trejo, J.C.; Pompa-García, M.; Pulgarín-Gámiz, M.Á.; Rutiaga-Quiñones, J.G.; Pámanes-Carrasco, G.; Ngangyo-Heya, M. Agro-pellets from oil palm residues/pine sawdust mixtures: Relationships of their physical, mechanical and energetic properties, with the raw material chemical structure. Appl. Sci. 2020, 10, 6383. [Google Scholar] [CrossRef]
- Ahmad, Z.S.; Abd Munaim, M.S.; Said, F.M. Characterization of meranti wood sawdust and removal of lignin content using pre-treatment process. In Proceedings of the National Conference for Postgraduate Research: Universiti Malaysia Pahang, Pekan, Malaysia, 24–25 September 2016; pp. 98–606. [Google Scholar]
- James, R.A.M.; Yuan, W.; Boyette, M.D.; Wang, D.; Kumar, A. In-chamber thermocatalytic tar cracking and syngas reforming using char-supported NiO catalyst in an updraft biomass gasifier. Int. J. Agric. Biol. Eng. 2014, 7, 91–97. [Google Scholar]
- Rusanen, A.; Lappalainen, K.; Kärkkäinen, J.; Tuuttila, T.; Mikola, M.; Lassi, U. Selective hemicellulose hydrolysis of Scots pine sawdust. Biomass-Convers. Biorefinery 2018, 9, 283–291. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, K.; Xiao, L.-P.; Sun, R.-C.; Song, G. Total utilization of lignin and carbohydrates in Eucalyptus grandis: An integrated biorefinery strategy towards phenolics, levulinic acid, and furfural. Biotechnol. Biofuels Bioprod. 2020, 13, 2. [Google Scholar] [CrossRef] [PubMed]
- Raja, T.; Mohanavel, V.; Sathish, T.; Seikh, A.H.; Siddique, M.H.; Subbiah, R.; Atkilt, M.G. Mechanical properties of banyan fiber-reinforced sawdust nanofiller particulate hybrid polymer composite. J. Nanomater. 2022, 22, 1–8. [Google Scholar] [CrossRef]
- Raja, T.; Vinayagam, M.; Ravichandran, M.; Srinivasan, D.K.; ALOthman, Z.A.; Reham, G.A.; Murugesan, M. Dynamic mechanical analysis of banyan/ramie fibers reinforced with nanoparticle hybrid polymer composite. Adv. Polym. Technol. 2022, 2022, 1560330. [Google Scholar] [CrossRef]
- Rangappa, S.M.; Parameswaranpillai, J.; Siengchin, S.; Jawaid, M.; Ozbakkaloglu, T. Bioepoxy based hybrid composites from nano-fillers of chicken feather and lignocellulose Ceiba Pentandra. Sci. Rep. 2022, 12, 397. [Google Scholar] [CrossRef]
- Pannu, A.S.; Seijpal, S.; Dhawan, V.; Singh, J.I.P. Sustainable use of agri-waste in the production of green hybrid composites. In Lecture Notes in Civil Engineering; Singh, H., Singh Cheema, P.P.S., Garg, P., Eds.; Springer: Cham, Switzerland, 2021; pp. 125–132. [Google Scholar]
- Islam, M.; Sharif, A.; Hussain, M.; Hassan, I. Synergic effect of recycled cotton fabric and wood saw dust reinforced biodegradable polypropylene composites. Bangladesh J. Sci. Ind. Res. 2019, 54, 21–30. [Google Scholar] [CrossRef]
- Borah, A. Studies on design and fabrication of polymer based composite materials with fish scale reinforcement. IOSR J. Mech. Civ. Eng. 2016, 2, 6–11. [Google Scholar] [CrossRef]
- Wang, R.-M.; Zeng, S.-R.; Zheng, Y.-P. Introduction to polymer matrix composites and technology. In Polymer Composites and Technology; Wang, R.-M., Zeng, S.-R., Zheng, Y.-P., Eds.; Woodhead Publishing: Cambridge, UK, 2014; pp. 1–25. [Google Scholar]
- Safdari, M.; Al-Haik, S.M. A review on polymeric nanocomposites effect of hybridization and synergy on electrical properties. In Carbon-Based Polymer Nanocomposites for Environmental and Energy Applications; Ismail, A.F., Goh, P.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 113–146. [Google Scholar]
- Jaiswal, L.; Shankar, S.; Rhim, J.-W. Applications of nanotechnology in food microbiology. In Methods in Microbiology; Gurtler, V., Ball, A.S., Soni, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 43–60. [Google Scholar]
- Wijesinghe, W.P.S.L.; Mantilaka, M.M.M.G.P.G.; Ruparathna, K.A.A.; Rajapakshe, R.B.S.D.; Sameera, S.A.L.; Thilakarathna, M.G.G.S.N. Filler matrix interfaces of inorganic/biopolymer composites and their applications. In Interfaces in Particle and Fibre Reinforced Composites: Current Perspectives on Polymer, Ceramic, Metal and Extracellular Matrices; Goh, K.L., Aswathi, M.K., De Silva, R.T., Thomas, S., Eds.; Woodhead Publishing: Cambridge, UK, 2020; pp. 95–112. [Google Scholar]
- Allwood, J.M.; Ashby, M.F.; Gutowski, T.G.; Worrell, E. Material efficiency: Providing material services with less material production. Phil. Trans. R. Soc. A 2013, 371, 20120496. [Google Scholar] [CrossRef]
- Park, S.-J.; Seo, M.-K. Composite characterization. In Interface Science and Composites; Park, S.-J., Seo, M.-K., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; p. 853. [Google Scholar]
- Knight, M.; Curliss, D. Composite Materials. Encyclopedia of Physical Science and Technology; Academic Press: Cambridge, UK, 2003; pp. 455–468. [Google Scholar]
- Linganiso, L.Z.; Anandjiwala, R.D. Fibre-reinforced laminates in aerospace engineering. In Advanced Composite Materials for Aerospace Engineering; Rana, S., Fangueiro, R., Eds.; Woodhead Publishing: Cambridge, UK, 2016; pp. 101–127. [Google Scholar]
- Carey, J.P. Introduction to braided composites. In Handbook of Advances in Braided Composite Materials; Carey, J.P., Ed.; Woodhead Publishing: Cambridge, UK, 2017; pp. 1–21. [Google Scholar]
- Ravishankar, B.; Nayak, S.K.; Kader, M.A. Hybrid composites for automotive applications—A review. J. Reinf. Plast. Compos. 2019, 38, 835–845. [Google Scholar] [CrossRef]
- Zweben, C. Composite materials. In Mechanical Engineers’ Handbook; Kutz, M., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 380–417. [Google Scholar]
- Ahmad, J.; Zhou, Z. Mechanical properties of natural as well as synthetic fiber reinforced concrete: A review. Constr. Build. Mater. 2022, 333, 127353. [Google Scholar] [CrossRef]
- Cheung, H.Y.; Ho, M.P.; Lau, K.T.; Cardona, F.; Hui, D. Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos. Part B Eng. 2009, 40, 655–663. [Google Scholar] [CrossRef]
- Ostolaza, M.; Arrizubieta, J.I.; Lamikiz, A.; Plaza, S.; Ortega, N. Latest developments to manufacture metal matrix composites and functionally graded materials through AM: A state-of-the-art review. Materials 2023, 16, 1746. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Prasad, L.; Patel, V.K.; Kumar, V.; Kumar, A.; Yadav, A.; Winczek, J. Physical and mechanical properties of natural leaf fiber-reinforced epoxy polyester composites. Polymers 2021, 13, 1369. [Google Scholar] [CrossRef] [PubMed]
- Nurazzi, N.M.; Asyraf, M.R.M.; Khalina, A.; Abdullah, N.; Aisyah, H.A.; Rafiqah, S.A.; Sabaruddin, F.A.; Kamarudin, S.H.; Norrahim, M.N.F.; Ilyas, R.A.; et al. A review on natural fiber reinforced polymer composite for bullet proof and ballistic applications. Polymers 2021, 13, 646. [Google Scholar] [CrossRef]
- Feng, N.L.; Malingam, S.D.; Siva, I. Bolted joint behavior of hybrid composites. In Failure Analysis in Biocomposites, Fibre Reinforced Composites and Hybrid Composites; Jawaid, M., Saba, N., Sultan, M.T.H., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 79–95. [Google Scholar]
- Mochane, M.J.; Mokhena, T.C.; Mokhothu, T.H.; Mtibe, A.; Sadiku, E.R.; Ray, S.S.; Ibrahim, I.D.; Daramola, O.O. Recent progress on natural fiber hybrid composites for advanced applications: A review. Express Polym. Lett. 2019, 13, 159–198. [Google Scholar] [CrossRef]
- Seydibeyoğlu, M.Ö.; Dogru, A.; Wang, J.; Rencheck, M.; Han, Y.; Wang, L.; Seydibeyoğlu, E.A.; Zhao, X.; Ong, K.; Shatkin, J.A.; et al. Review on hybrid reinforced polymer matrix composites with nanocellulose, nanomaterials, and their fibers. Polymers 2023, 15, 984. [Google Scholar] [CrossRef]
- Bouhfid, N.; Raji, M.; Boujmal, R.; Essabir, H.; Bensalah, M.-O.; Bouhfid, R.; el kacem Qaiss, A. Numerical modeling of hybrid composite materials. In Modelling of Damage Processes in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Jawaid, M., Thariq, M., Saba, N., Jawaid, M., Thariq, M., Saba, N., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 57–101. [Google Scholar]
- Swolfs, Y.; Gorbatikh, L.; Verpoest, I. Fibre hybridisation in polymer composites: A review. Compos. Part A Appl. Sci. Manuf. 2014, 67, 181–200. [Google Scholar] [CrossRef]
- Shamsuyeva, M.; Hansen, O.; Endres, H.-J. Review on hybrid carbon/flax composites and their properties. Int. J. Polym. Sci. 2019, 2019, 1–17. [Google Scholar] [CrossRef]
- Thapliyal, D.; Verma, S.; Sen, P.; Kumar, R.; Thakur, A.; Tiwari, A.K.; Singh, D.; Verros, G.D.; Arya, R.K. Natural fibers composites: Origin, importance, consumption pattern, and challenges. J. Compos. Sci. 2023, 7, 506. [Google Scholar] [CrossRef]
- Ismail, N.F.; Mohd Radzuan, N.A.; Sulong, A.B.; Muhamad, N.; Haron, C.H.C. The effect of alkali treatment on physical, mechanical and thermal properties of kenaf fiber and polymer epoxy composites. Polymers 2021, 13, 2005. [Google Scholar] [CrossRef]
- Jayamani, E.; Rahman, M.; Benhur, D.A.; Bakri, M.K.; Kakar, A.; Khan, A. Comparative study of fly ash/sugarcane fiber reinforced polymer composites properties elammaran: Fly ash/cane composites. Bioresources 2020, 15, 5514–5531. [Google Scholar] [CrossRef]
- Uppalapati, G.; Gunji, S.; Malkapuram, R. Development and characterization of chicken feather rachis, sawdust and HDPE hybrid composite material. Rev. Compos. Matériaux Avancés 2018, 28, 509–528. [Google Scholar] [CrossRef]
- Uppalapati, G.; Gunji, S.; Malkapuram, R. Morphological characterization of chicken feather rachis, neem sawdust, and high density polyethylene (HDPE) reinforced composite material. Ann. Chim.—Sci. Matériaux 2020, 44, 399–406. [Google Scholar] [CrossRef]
- Ayrilmis, N.; Güleç, T.; Peşman, E.; Kaymakci, A. Potential use of cotton dust as filler in the production of thermoplastic composites. J. Compos. Mater. 2017, 51, 4147–4155. [Google Scholar] [CrossRef]
- Azieyanti, N.A.; Faris, R. Acoustic isolation of Jute and Kapok fiber reinforced Polypropylene composites. IOP Conf. Ser. Mater. Sci. Eng. 2020, 932, 012096. [Google Scholar] [CrossRef]
- Akash Sreenivasa Rao, K.V.; Venkatesha Gupta, N.S.; Arun Kumar, D.S. Mechanical properties of sisal/coir fiber reinforced hybrid composites fabricated by cold pressing method. IOP Conf. Ser. Mater. Sci. Eng. 2016, 149, 012092. [Google Scholar]
- Jawaid, M.; Abdul Khalil, H.P.S.; Abu Bakar, A. Mechanical performance of oil palm empty fruit bunches/jute fibres reinforced epoxy hybrid composites. Mater. Sci. Eng. A 2010, 527, 7944–7949. [Google Scholar] [CrossRef]
- Terciu, O.M.; Curtu, I. New hybrid lignocellulosic composite made of epoxy resin reinforced with flax fibres and wood sawdust. Mater. Plast. 2012, 49, 114–117. [Google Scholar]
- Andrew, J.J.; Dhakal, H.N. Sustainable biobased composites for advanced applications: Recent trends and future opportunities—A critical review. Compos. Part C Open Access 2022, 7, 100220. [Google Scholar] [CrossRef]
- Rashid, A.B.; Haque, M.; Islam, S.M.M.; Labib, K.M.R.U.L. Nanotechnology-enhanced fiber-reinforced polymer composites: Recent advancements on processing techniques and applications. Heliyon 2024, 10, e24692. [Google Scholar] [CrossRef]
- Elsheikh, A.H.; Panchal, H.; Shanmugan, S.; Muthuramalingam, T.; El-Kassas, A.M.; Ramesh, B. Recent progresses in wood-plastic composites: Pre-processing treatments, manufacturing techniques, recyclability and eco-friendly assessment. Clean Eng. Technol. 2022, 8, 100450. [Google Scholar] [CrossRef]
- Ghaffar, S.H.; Madyan, O.A.; Fan, M.; Corker, J. The influence of additives on the interfacial bonding mechanisms between natural fibre and biopolymer composites. Macromol. Res. 2018, 26, 851–863. [Google Scholar] [CrossRef]
- Boey, J.Y.; Lee, C.K.; Tay, G.S. Factors affecting mechanical properties of reinforced bioplastics: A review. Polymers 2022, 14, 3737. [Google Scholar] [CrossRef] [PubMed]
- Masuelli, M.A. Introduction of fibre-reinforced polymers − polymers and composites: Concepts, properties and processes. In Fiber Reinforced Polymers—The Technology Applied for Concrete Repair; Masuelli, M., Ed.; IntechOpen: Chascomúss, Argentina, 2013; pp. 54629–54666. [Google Scholar]
- Muc, A.; Romanowicz, P.; Chwał, M. Description of the resin curing process—Formulation and optimization. Polymers 2019, 11, 127. [Google Scholar] [CrossRef]
- Su, Y.-K. Nitride-based LEDs and superluminescent LEDs. In Comprehensive Semiconductor Science and Technology; Bhattacharya, P., Fornari, R., Kamimura, H., Eds.; Elservier: Amsterdam, The Netherlands, 2011; pp. 28–100. [Google Scholar]
- Dybka-Stępień, K.; Antolak, H.; Kmiotek, M.; Piechota, D.; Koziróg, A. Disposable food packaging and serving materials—Trends and biodegradability. Polymers 2021, 13, 3606. [Google Scholar] [CrossRef]
- Yashas Gowda, T.G.; Nagaraju, S.B.; Puttegowda, M.; Verma, A.; Rangappa, S.M.; Siengchin, S. Biopolymer-based composites: An eco-friendly alternative from agricultural waste biomass. J. Compos. Sci. 2013, 7, 242. [Google Scholar]
- Najafi, S.K.; Hamidinia, E.; Tajvidi, M. Mechanical properties of composites from sawdust and recycled plastics. J. Appl. Polym. Sci. 2006, 100, 3641–3645. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, R.; Wu, Y.; Xue, P. Additive manufacturing of wood flour/polyhydroxyalkanoates (PHA) fully bio-based composites based on micro-screw extrusion system. Mater. Des. 2021, 199, 109418. [Google Scholar] [CrossRef]
- Petchwattana, N.; Sanetuntikul, J.; Sriromreun, P.; Narupai, B. Wood plastic composites prepared from biodegradable poly(butylene succinate) and burma padauk sawdust (Pterocarpus macrocarpus): Water absorption kinetics and sunlight exposure investigations. J. Bionic Eng. 2017, 14, 781–790. [Google Scholar] [CrossRef]
- Schwarzkopf, M.J.; Michael, D.B. Wood-plastic composites—Performance and environmental impacts. In Environmental FOOTPRINTS and Eco-Design of Products and Process; Muthu, S.S., Ed.; Springer: Cham, Switzerland, 2016; pp. 19–43. [Google Scholar]
- Jaya, H.; Omar, M.F.; Md Akil, H.; Arifin Ahmad, Z.; Zulkepli, N.N. Effect of particle size on mechanical properties of sawdust-high density polyethylene composites under various strain rates. Bioresources 2016, 11, 6489–6504. [Google Scholar] [CrossRef]
- Khalil, H.P.S.A.; Shahnaz, S.B.S.; Ratnam, M.M.; Ahmad, F.; Fuaad, N.A.N. Recycle polypropylene (RPP)—Wood sawdust (WSD) composites—Part 1: The effect of different filler size and filler loading on mechanical and water absorption properties. J. Reinf. Plast. Compos. 2006, 25, 1291–1303. [Google Scholar] [CrossRef]
- Manaila, E.; Stelescu, M.; Craciun, G.; Ighigeanu, D. Wood sawdust/natural rubber eco composites cross-linked by electron beam irradiation. Materials 2016, 9, 503. [Google Scholar] [CrossRef] [PubMed]
- Rahman, K.-S.; Islam, M.; Rahman, M.M.; Hannan, M.O.; Dungani, R.; Khalil, H.A. Flat-pressed wood plastic composites from sawdust and recycled polyethylene terephthalate (PET): Physical and mechanical properties. SpringerPlus 2013, 2, 629. [Google Scholar] [CrossRef]
- Cheng, Y.; Xue, F.; Yu, S.; Du, S.; Yang, Y. Subcritical water extraction of natural products. Molecules 2021, 26, 4004. [Google Scholar] [CrossRef]
- Novo, L.P.; Bras, J.; García, A.; Belgacem, N.; Curvelo, A.S.S. Subcritical water: A method for green production of cellulose nanocrystals. ACS Sustain. Chem. Eng. 2015, 3, 2839–2846. [Google Scholar] [CrossRef]
- Louw, J.; Schwarz, C.E.; Burger, A.J. Supercritical water gasification of Eucalyptus grandis and related pyrolysis char: Effect of feedstock composition. Bioresour. Technol. 2016, 216, 1030–1039. [Google Scholar] [CrossRef] [PubMed]
- Patil, R.S.; Joshi, S.M.; Gogate, P.R. Intensification of delignification of sawdust and subsequent enzymatic hydrolysis using ultrasound. Ultrason. Sonochem. 2019, 58, 104656. [Google Scholar] [CrossRef]
- Sumesh, K.; Kanthavel, K. Optimizing various parameters influencing mechanical properties of banana/coir natural fiber composites using grey relational analysis and artificial neural network models. J. Ind. Text. 2020, 51 (Suppl. S4), 6705S–6727S. [Google Scholar] [CrossRef]
- Alarifi, I.M. A review on factors affecting machinability and properties of fiber-reinforced polymer composites. J. Nat. Fibers. 2023, 20, 2154304. [Google Scholar] [CrossRef]
- Shesan, O.J.; Agwuncha, S.C.; Anusionwu, G.C.; Neerish, A.G.R.; Sadiku, E.R. Improving the mechanical properties of natural fiber composites for structural and biomedical applications. In Renewable and Sustainable Composites; Pereira, A., Ed.; IntechOpen: Faro, Portugal, 2019. [Google Scholar]
- Le, T.M.; Pickering, K.L. The potential of harakeke fibre as reinforcement in polymer matrix composites including modelling of long harakeke fibre composite strength. Compos. Part A Appl. Sci. Manuf. 2015, 76, 44–53. [Google Scholar] [CrossRef]
- Routray, S.; Sundaray, A.; Pati, D.; Jagadeb, A.K. Preparation and assessment of natural fiber composites for marine application. J. Inst. Eng. India Ser. D 2020, 101, 215–221. [Google Scholar] [CrossRef]
- Madueke, C.I.; Umunakwe, R.; Mbah, O.M. A review on the factors affecting the properties of natural fibre polymer composites. Niger. J. Technol. 2022, 41, 55–64. [Google Scholar] [CrossRef]
- Mtibe, A.; Motloung, M.P.; Bandyopadhyay, J.; Ray, S.S. Synthetic biopolymers and their composites: Advantages and limitations-an overview. Macromol. Rapid Commun. 2021, 42, 2100130. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Vedrtnam, A.; Pawar, S.J. Effect of wood dust type on mechanical properties, wear behaviour, biodegradability, and resistance to natural weathering of wood-plastic composites. Front. Struct. Civ. Eng. 2019, 13, 1446–1462. [Google Scholar] [CrossRef]
- Fakhrul, T.; Islam, M.A. Degradation behaviour of natural fiber reinforced polymer matrix composites. Procedia Eng. 2013, 56, 795–800. [Google Scholar] [CrossRef]
- Haque, M.S.; Islam, M.A. Microbial degradation of the waste jute fiber and sawdust fiber-based epoxy composites in drainage system. Heliyon 2024, 10, e39397. [Google Scholar] [CrossRef]
- Abdel-Hakim, A.; El-Basheer, T.A.; Abd El-Aziz, A.M.; Afifi, M. Acoustic, ultrasonic, mechanical properties and biodegradability of sawdust/recycled expanded polystyrene eco-friendly composites. Polym. Test. 2021, 99, 107215. [Google Scholar] [CrossRef]
- Dhal, M.K.; Madhu, K.; Barerjee, A.; Prasannavenkadesan, V.; Kumar, A.; Katiyar, V. Polylactic acid/polycaprolactone/sawdust based biocomposites trays with enhanced compostability. Int. J. Biol. Macromol. 2023, 253, 126977. [Google Scholar] [CrossRef]
- Prachayawarakom, J.; Hanchana, A. Effect of neem wood sawdust content on properties of biodegradable thermoplastic acetylated cassava starch/neem wood sawdust composites. Starch/Stärke 2017, 69, 1600113. [Google Scholar] [CrossRef]
- Islam, M.N.; Islam, M.S. Characterization of chemically modified sawdust-reinforced recycled polyethylene composites. J. Thermoplast. Compos. Mater. 2015, 28, 1135–1153. [Google Scholar] [CrossRef]
Sawmilling | Bark, Split Wood, Sawdust, Trimmings |
---|---|
Particleboard production | Sawdust, bark, sander dust, panel trim |
Forest function | Needless, leaves, sawdust, branches |
Plywood manufacturing | Sawdust, core, bark, panel trim |
Door Panels | Seat Parks | Boot Liners | Spare Wheel Lining/Cover | Instrument panels | Insulation | Others | |
---|---|---|---|---|---|---|---|
Renualt (Twingo, Clio) | Dashboard area including other rigid parts (not specified) | ||||||
Ford (Mondeo, Focus, Ford fusion, Lincoln) | √ | √ | √ | ||||
Volkswagen (Golf, Passat, Bora) | √ | √ | √ | Trunk lid | |||
Audi (A2, A3, A4, A6, A8) | √ | √ | √ | √ | Hat holder/rack | ||
Citron (C5) | √ | ||||||
Mercedes-Benz (C, S, E, A class truck and Vision EQXX) | √ | Bumper, wheel, box, roof cover, glove box, internal engine cover | |||||
General Motors (Chevrolet—Impala, Cadillac De Ville) | √ | √ | √ | Back-shelf trim panels | |||
BMW (3, 5, 7 and i3 series) | √ | √ | √ | √ | √ | Foot well covers, dashboard | |
Fiat (Alfa Romeo 146, Brava, Punto, Marea) | √ | ||||||
Opel-Astra | √ | Hat racks and spare tyre covers | |||||
Daimler-Chrysler (A, C, E, S) | √ | Dashboard, windshield, window pillar panel cover, business table | |||||
LOTUS (Eco Elise) | √ | √ | Spoiler, mats | ||||
Peugeot (406) | √ | √ | |||||
Rover 2000 and other models | Back shelf/panel storage system | ||||||
Mitsubishi | √ | √ | √ | ||||
Toyota (Brevis, Harrier, Celsior, Raum) | |||||||
SAAB (9S) | √ | √ | |||||
Volvo (C70, V70) | √ | Natural foams, | |||||
Vauxhall (Corsa, Astra) | √ | √ | |||||
Porsche (18 Cayman GT4 Club sport) | √ | Body panels, rear wing |
Plant Source | Classification | Cellulose (%) | Hemicellulose (%) | Lignin (%) | Extractives (%) | Reference |
---|---|---|---|---|---|---|
Hevia sawdust | Hardwood | 39 | 29 | 28 | 4 | [133] |
Palm Pressed fibre (PPF) | Grass like (neither soft or hardwood) | 50.38 | 16.48 | 19.46 | 13.68 | [134] |
Meranti wood | Hardwood | 53.00 | 18.50 | 32.4 | 2.5 | [135] |
Maple wood | Hardwood | 60.15 | 17.71 | 11.61 | 10.53 | [136] |
Pine wood | Softwood | 44 | 26 | 26 | 4 | [137] |
Eucolyptus Grandis | Hardwood | 41.6 | 19.6 | 27.0 | 7.3 | [138] |
Sawdust (SD) Fibre Hybrids | Other Fibre Hybrids | Fabrication and Optimum Effective Fibre Concentration: Sawdust (A) and Other Fibres (B) | Effects of the Fibres Combinations on the Properties of Composites | Recommended Application | References |
---|---|---|---|---|---|
SD/Banyan/Epoxy | Ramie/Banyan/Epoxy |
|
| Helmets and car interiors | [139,140] |
SD/Chicken Feathers/Epoxy | Ceiba Pentandra bark fibre/Chicken feather fiber/Epoxy |
|
| [141,170,171] | |
SD/Cotton/Polypropylene | Jute/Cotton/Polypropylene |
|
| Acoustic noise reduction field | [143,172,173] |
SD/Coir/Epoxy | Sisal/Coir/Epoxy |
|
| Aerospace and automobile industries for their interior parts. | [97,169,174] |
SD/Rice husk/Polylactic acid | Banana/Rice husk/Polylactic acid |
|
| [52,137,138,139,140,141,142] | |
SD/Jute/Epoxy | Oil palm empty fruit bunches (EFB)/Jute/Epoxy |
|
| Partition walls | [96,175] |
SD/Flax/Epoxy | Kevlar/Flax/Epoxy |
|
| Automotive interior, furniture with complex shapes | [51,176] |
Type | Treatment | Short Description | Outcomes of Possible Modifications | References |
---|---|---|---|---|
Chemical | Alkaline | The alkaline reagent is used to clean the surface of plant fibres and modify the cellulose structure. This is known as alkalization, and it reduces the lignin content. |
| [32,90,111] |
Silane | Involves immersing the natural fibres in a saline solution for a specific duration, allowing the salt to interact with the fibre surface. |
| [32,90] | |
Acetylation | Involves treating fibres with acetic anhydride or acetyl chloride in the presence of a catalyst. The acetylating agent reacts with the hydroxyl groups (-OH) present in the fibre molecules substituting the hydrogen atoms with acetyl groups. |
| [90] | |
Peroxide | The peroxides decomposed to form free radicals that react with the hydrogen group of the cellulose fibres and polymer matrix. |
| [90] | |
Benzoylation | Benzoylation is used to decrease the hydrophilic nature of the fibres. |
| [90] | |
Potassium Permanganate (KMnO4) | The chemical reagent potassium permanganate is utilized to change the interfacial contact between the fibre and matrix. |
| [90] | |
Subcritical water | Subjecting fibres to a liquid water treatment at temperatures and pressures below its critical point can help soften and swell the fibres, making them more flexible and easier to process. |
| [195,196] | |
Supercritical water | Supercritical water exhibits unique solvent characteristics at high temperatures and pressures (374 °C and 22.1 MPa), allowing for effective lignin degradation and solubilization. This delignification procedure improves the cleanliness and cellulose content of the fibres, making it more appropriate for a variety of uses. |
| [197] | |
Grafting | Grafting is a process of attaching certain chemical moieties or functional groups to the surface of sawdust fibres. This treatment serves multiple functions and can improve the characteristics and performance of the composites. |
| [193] | |
Enzymatic | Enzymes can selectively degrade certain components of lignocellulosic, such as lignin and hemicellulose, while preserving the cellulose structure. |
| [198] |
Factors | Influence or Effect |
---|---|
Fibre content (volume fraction of the fibre) |
|
Fibre orientation |
|
Particle size |
|
Choice of the matrix |
|
Additives |
|
Fibre/matrix interface(Interfacial bonding) |
|
Processing techniques and parameters |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikhosana, T.S.; Malebo, N.J.; Mofokeng, T.G.; Motloung, M.P.; Mochane, M.J. Sawdust as a Byproduct of Wood Processing: Properties, Applications and a Reinforcing Filler in Hybrid Polymer Composites. Polymers 2025, 17, 1523. https://doi.org/10.3390/polym17111523
Sikhosana TS, Malebo NJ, Mofokeng TG, Motloung MP, Mochane MJ. Sawdust as a Byproduct of Wood Processing: Properties, Applications and a Reinforcing Filler in Hybrid Polymer Composites. Polymers. 2025; 17(11):1523. https://doi.org/10.3390/polym17111523
Chicago/Turabian StyleSikhosana, Tlholohelo Sylvia, Ntsoaki Joyce Malebo, Tladi Gideon Mofokeng, Mpho Phillip Motloung, and Mokgaotsa Jonas Mochane. 2025. "Sawdust as a Byproduct of Wood Processing: Properties, Applications and a Reinforcing Filler in Hybrid Polymer Composites" Polymers 17, no. 11: 1523. https://doi.org/10.3390/polym17111523
APA StyleSikhosana, T. S., Malebo, N. J., Mofokeng, T. G., Motloung, M. P., & Mochane, M. J. (2025). Sawdust as a Byproduct of Wood Processing: Properties, Applications and a Reinforcing Filler in Hybrid Polymer Composites. Polymers, 17(11), 1523. https://doi.org/10.3390/polym17111523