Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,841)

Search Parameters:
Keywords = natural attenuation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 753 KB  
Article
Older Age Is Associated with Fewer Depression and Anxiety Symptoms Following Extreme Weather Adversity
by JoNell Strough, Ryan Best, Andrew M. Parker, Esha Azhar and Samer Atshan
Int. J. Environ. Res. Public Health 2025, 22(10), 1548; https://doi.org/10.3390/ijerph22101548 (registering DOI) - 11 Oct 2025
Abstract
Climate change is associated with an increase in the frequency of extreme weather that threatens emotional well-being, with some research pointing to increased vulnerability among older adults. We investigated how age relates to depression and anxiety following adversities due to extreme weather or [...] Read more.
Climate change is associated with an increase in the frequency of extreme weather that threatens emotional well-being, with some research pointing to increased vulnerability among older adults. We investigated how age relates to depression and anxiety following adversities due to extreme weather or natural disaster. Socioemotional selectivity theory (SST) posits that older age buffers against emotional distress. The strength and vulnerability integration model (SAVI) posits that this age-related advantage is attenuated during periods of acute stress. Members (n = 9761, M age = 52.22, SD = 16.36 yrs) of a nationally representative, probability-based US internet panel, the Understanding America Study (UAS), reported their experience with extreme weather or natural disaster (e.g., severe storms, tornado, flood), associated adversities (e.g., property loss), and depression and anxiety over the past month. Of the 1075 respondents experiencing extreme weather or natural disaster, 216 reported related adversity. Those experiencing adversity reported more anxiety and depression than those with no events, while extreme weather or disaster alone made no significant difference. Consistent with SST, older age was associated with less depression and anxiety. This age-related benefit was most apparent among those experiencing weather- or disaster-related adversity, even when controlling for socio-demographic correlates. Findings highlight age-related emotional resilience with implications for climate change policy and practice. Full article
Show Figures

Figure 1

37 pages, 1186 KB  
Review
Adipokines at the Metabolic–Brain Interface: Therapeutic Modulation by Antidiabetic Agents and Natural Compounds in Alzheimer’s Disease
by Paulina Ormazabal, Marianela Bastías-Pérez, Nibaldo C. Inestrosa and Pedro Cisternas
Pharmaceuticals 2025, 18(10), 1527; https://doi.org/10.3390/ph18101527 (registering DOI) - 11 Oct 2025
Abstract
The parallel global increase in obesity and Alzheimer’s disease (AD) underscores an urgent public health challenge, with converging evidence indicating that metabolic dysfunction strongly contributes to neurodegeneration. Obesity is now recognized not only as a systemic metabolic condition but also as a modifiable [...] Read more.
The parallel global increase in obesity and Alzheimer’s disease (AD) underscores an urgent public health challenge, with converging evidence indicating that metabolic dysfunction strongly contributes to neurodegeneration. Obesity is now recognized not only as a systemic metabolic condition but also as a modifiable risk factor for AD, acting through mechanisms such as chronic low-grade inflammation, insulin resistance, and adipose tissue dysfunction. Among the molecular mediators at this interface, adipokines have emerged as pivotal regulators linking metabolic imbalance to cognitive decline. Adipokines are hormone-like proteins secreted by adipose tissue, including adiponectin, leptin, and resistin, that regulate metabolism, inflammation and can influence brain function. Resistin, frequently elevated in obesity, promotes neuroinflammation, disrupts insulin signaling, and accelerates β-amyloid (Aβ) deposition and tau pathology. Conversely, adiponectin enhances insulin sensitivity, suppresses oxidative stress, and supports mitochondrial and endothelial function, thereby exerting neuroprotective actions. The imbalance between resistin and adiponectin may shift the central nervous system toward a pro-inflammatory and metabolically compromised state that predisposes to neurodegeneration. Beyond their mechanistic relevance, adipokines hold translational promise as biomarkers for early risk stratification and therapeutic monitoring. Importantly, natural compounds, including polyphenols, alkaloids, and terpenoids, have shown the capacity to modulate adipokine signaling, restore metabolic homeostasis, and attenuate AD-related pathology in preclinical models. This positions adipokines not only as pathogenic mediators but also as therapeutic targets at the intersection of diabetes, obesity, and dementia. By integrating mechanistic, clinical, and pharmacological evidence, this review emphasizes adipokine signaling as a novel axis for intervention and highlights natural compound-based strategies as emerging therapeutic approaches in obesity-associated AD. Beyond nutraceuticals, antidiabetic agents also modulate adipokines and AD-relevant pathways. GLP-1 receptor agonists, metformin, and thiazolidinediones tend to increase adiponectin and reduce inflammatory tone, while SGLT2 and DPP-4 inhibitors exert systemic anti-inflammatory and hemodynamic benefits with emerging but still limited cognitive evidence. Together, these drug classes offer mechanistically grounded strategies to target the adipokine–inflammation–metabolism axis in obesity-associated AD. Full article
(This article belongs to the Special Issue Emerging Therapies for Diabetes and Obesity)
Show Figures

Figure 1

16 pages, 1078 KB  
Article
Collagen Hydrolysate–Cranberry Mixture as a Functional Additive in Sausages
by Yasin Uzakov, Aziza Aitbayeva, Madina Kaldarbekova, Madina Kozhakhiyeva, Arsen Tortay and Kadyrzhan Makangali
Processes 2025, 13(10), 3233; https://doi.org/10.3390/pr13103233 - 10 Oct 2025
Abstract
Consumers increasingly seek clean-label meat products with improved nutrition and stability. We evaluated a collagen hydrolysate–cranberry mixture (CH-CR) as a functional additive in cooked sausages. Two formulations—control and CH-CR—were assessed for fatty acid profile; lipid and protein oxidation during storage; antioxidant capacity ferric-reducing [...] Read more.
Consumers increasingly seek clean-label meat products with improved nutrition and stability. We evaluated a collagen hydrolysate–cranberry mixture (CH-CR) as a functional additive in cooked sausages. Two formulations—control and CH-CR—were assessed for fatty acid profile; lipid and protein oxidation during storage; antioxidant capacity ferric-reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, and half-maximal inhibitory concentration (IC50); amino acid composition; and instrumental color. Relative to the control, CH-CR produced a more favorable lipid profile: lower saturated fatty acids (SFAs) 23.9% vs. 28.0%, higher monounsaturated fatty acids (MUFAs) 53.2% vs. 49.3%, slightly higher polyunsaturated fatty acids (PUFAs) 23.3% vs. 22.7%, a higher PUFA/SFA ratio of 0.97 vs. 0.81, and a lower omega-6/omega-3 (n-6/n-3) ratio of 13.5 vs. 27.1, driven by higher alpha-linolenic acid (ALA) 1.6% vs. 0.8%, with trans fats <0.1%. Storage studies showed attenuated oxidation in CH-CR: lower peroxide value (PV) at day 10 8.1 ± 0.4 vs. 9.8 ± 0.5 meq/kg and lower thiobarbituric acid-reactive substances (TBARS) at day 6 0.042 ± 0.004 vs. 0.055 ± 0.006 mg MDA/kg and day 10 0.156 ± 0.016 vs. 0.590 ± 0.041 mg MDA/kg); the acid value at day 10 was similar. Antioxidant capacity increased with CH-CR FRAP 30.5 mg gallic acid equivalents (GAE)/g vs. not detected; DPPH inhibition was 29.88% vs. 10.23%; IC50 56.22 vs. 149.51 µg/mL. The amino acid profile reflected collagen incorporation—higher glycine+proline+hydroxyproline 2.37 vs. 1.38 g/100 g and a modest rise in indispensable amino acids (IAAs) 5.72 vs. 5.42 g/100 g, increasing the IAA/total amino acid (TAA) ratio to 0.411 vs. 0.380. CH-CR samples were lighter and retained redness better under light, with comparable overall color stability. Overall, CH-CR is a natural strategy to improve fatty acid quality and oxidative/color stability in sausages. Full article
(This article belongs to the Special Issue Food Processing and Ingredient Analysis)
Show Figures

Figure 1

17 pages, 1971 KB  
Article
Protective Effects of Lindera obtusiloba Leaf Extract on Osteoarthritis in Mouse Primary Chondrocytes and a Medial Meniscus Destabilization Model
by Kang-Il Oh, Mun Hyoung Bae, Junhwan Jeong, Seokjin Hwang, Jonggyu Park, Hyun-Woo Kwon, Eunkuk Park and Seon-Yong Jeong
Int. J. Mol. Sci. 2025, 26(20), 9877; https://doi.org/10.3390/ijms26209877 (registering DOI) - 10 Oct 2025
Abstract
Osteoarthritis (OA) is a degenerative joint disorder characterized by progressive articular cartilage degradation, leading to pain, stiffness, and impaired mobility. This study investigated the anti-osteoarthritic effects of Lindera obtusiloba (LO) leaf extract in primary cultured chondrocytes and a mouse model of destabilization of [...] Read more.
Osteoarthritis (OA) is a degenerative joint disorder characterized by progressive articular cartilage degradation, leading to pain, stiffness, and impaired mobility. This study investigated the anti-osteoarthritic effects of Lindera obtusiloba (LO) leaf extract in primary cultured chondrocytes and a mouse model of destabilization of the medial meniscus (DMM)-induced OA. Mouse primary chondrocytes were treated with IL-1β and various concentrations of LO leaf extract (50–150 μg/mL), and analyzed by RT-PCR, Western blotting, and ELISA. For the in vivo experiments, male C57BL/6 mice underwent DMM surgery and were administered LO leaf extract (50–200 mg/kg/day) for eight weeks, followed by micro-CT, histological, and immunohistochemical analyses. LO leaf extract exhibited no cytotoxicity in chondrocytes. In interleukin-1β-induced inflammatory chondrocytes, LO leaf extract significantly suppressed the expression of OA-associated catabolic factors, including cyclooxygenase-2 (Cox-2), matrix metalloproteinases (MMP3 and MMP13), and phosphorylated nuclear factor-kappa B (NF-κB). It also reduced the production of destructive mediators, such as prostaglandin E2 (PGE2) and collagenase, in a dose-dependent manner. In vivo, LO leaf extract-treated mice demonstrated significant reductions in articular cartilage degradation, subchondral bone sclerosis, and the expression of catabolic and inflammatory mediators. Additionally, LO leaf extract administration significantly decreased systemic pro-inflammatory cytokine levels in DMM-induced mice. Collectively, these findings indicate that LO leaf extract attenuates OA progression by suppressing both local and systemic inflammatory responses, supporting its potential as a natural therapeutic agent for the prevention and treatment of OA. Full article
Show Figures

Graphical abstract

19 pages, 6762 KB  
Article
Sponge Landscapes: Flood Adaptation Landscape Type Framework for Resilient Agriculture
by Elisa Palazzo
Land 2025, 14(10), 2023; https://doi.org/10.3390/land14102023 - 10 Oct 2025
Viewed by 146
Abstract
In the context of increasing climate variability and flood risk, this study explores how long-standing agricultural practices in the Hunter Valley, New South Wales, Australia, have fostered flood resilience through the integration of local agro-environmental knowledge and geomorphologic conditions. Employing a morpho-typological framework, [...] Read more.
In the context of increasing climate variability and flood risk, this study explores how long-standing agricultural practices in the Hunter Valley, New South Wales, Australia, have fostered flood resilience through the integration of local agro-environmental knowledge and geomorphologic conditions. Employing a morpho-typological framework, the research identifies three flood adaptation landscape types (FALTs)—rolling hills, foot slopes, and flood plains—each reflecting distinct interactions between landform, soil, biodiversity, hydrology, and viticultural management. Through geospatial analysis, field surveys, and interviews with local farmers, the study reveals how adaptive strategies—ranging from flood avoidance to attenuation and acceptance—have evolved in response to site-specific hydrological and ecologic dynamics. These strategies demonstrate a form of ‘sponge landscape’ design, where agricultural systems are co-shaped with natural processes to enhance systemic resilience and long-term productivity. The findings underscore the value of preserving biocultural legacies and suggest that spatially explicit, context-based approaches to flood adaptation can inform sustainable landscape planning and climate resilience strategies in other rural regions. The FALT framework offers a replicable methodology for identifying flood adaptation patterns across diverse agricultural systems in Australia, supporting proactive land use planning and nature-based solutions. This research contributes to the discourse on climate adaptation by bridging traditional environmental knowledge with contemporary planning frameworks, offering practical insights for policy, landscape management, and rural development. Full article
(This article belongs to the Section Land Planning and Landscape Architecture)
Show Figures

Figure 1

18 pages, 828 KB  
Article
Descriptive Trajectories of How Service Innovation Shapes Customer Exit Intentions in Online Travel Agencies
by Yingxue Xia and Hong-Youl Ha
J. Theor. Appl. Electron. Commer. Res. 2025, 20(4), 280; https://doi.org/10.3390/jtaer20040280 - 9 Oct 2025
Viewed by 123
Abstract
This study examines the descriptive trajectories through which service innovation is associated with customer exit dynamics after service failures, drawing on a three-wave panel of 532 online travel agency users and employing partial least squares structural equation modeling with predictive assessment. We analyze [...] Read more.
This study examines the descriptive trajectories through which service innovation is associated with customer exit dynamics after service failures, drawing on a three-wave panel of 532 online travel agency users and employing partial least squares structural equation modeling with predictive assessment. We analyze how innovation is associated with switching intentions via brand hate and brand distrust over time. Results reveal distinct temporal patterns: service innovation is linked to consistent reductions in both hate and distrust, yet only hate emerges as a salient mediator whose marginal association with switching intensifies over time. In contrast, distrust, although mitigated by innovation, remains relatively stable and behaviorally inert. Rather than asserting a causal explanation, we document temporal associations—labelled here as a “dilution effect”—to indicate that innovation coincides with weakening negative emotions but only partial attenuation of their behavioral correlates. By distinguishing between the fading but influential role of hate and the persistent yet inert nature of distrust, this study clarifies differentiated pathways through which negative states coincide with customer exit. For managers, the results highlight the need for staged innovation strategies to dissipate hate, complemented by long-term trust-repair initiatives to address enduring distrust and reduce customer churn. Full article
(This article belongs to the Section Digital Marketing and the Connected Consumer)
Show Figures

Figure 1

29 pages, 3368 KB  
Article
1-Nitro-2-Phenylethane as a Multitarget Candidate for Cognitive and Psychiatric Disorders: Insights from In Silico and Behavioral Approaches
by Emily Christie Maia Fonseca, Lucas Villar Pedrosa da Silva Pantoja, Daniele Luz de Campos, Fábio José Coelho Souza-Junior, Bruno Gonçalves Pinheiro, Brenda Costa da Conceição, José Guilherme Soares Maia, Caroline Araujo Costa de Lima, Enéas Andrade Fontes-Júnior, Agnaldo Silva Carneiro, Nelson Alberto Nascimento de Alencar, João Augusto Pereira da Rocha, Jofre Jacob Silva Freitas, Joyce Kelly do Rosário da Silva, Mozaniel Santana de Oliveira and Cristiane Socorro Ferraz Maia
Pharmaceuticals 2025, 18(10), 1511; https://doi.org/10.3390/ph18101511 - 9 Oct 2025
Viewed by 241
Abstract
Background/Objectives: Neurological and psychiatric disorders share overlapping mechanisms, such as oxidative stress, neuroinflammation, and neurotransmitter imbalance. In this context, multitarget natural molecules have gained attention. 1-nitro-2-phenylethane (1N2PE), a major constituent of Aniba canelilla essential oil, is known for its antioxidant, anti-inflammatory, and [...] Read more.
Background/Objectives: Neurological and psychiatric disorders share overlapping mechanisms, such as oxidative stress, neuroinflammation, and neurotransmitter imbalance. In this context, multitarget natural molecules have gained attention. 1-nitro-2-phenylethane (1N2PE), a major constituent of Aniba canelilla essential oil, is known for its antioxidant, anti-inflammatory, and anticholinesterase effects, yet its neuropharmacological profile remains poorly understood. Methods: This study integrated in silico predictions and in vivo behavioral assays to characterize 1N2PE. Results: Pharmacokinetic analyses indicated favorable drug-like properties, with high gastrointestinal absorption, blood–brain barrier penetration, and no P-gp substrate profile. Molecular docking and dynamics revealed stable interactions with dopamine transporter (DAT, ΔG = −26.26 kcal/mol), prostaglandin-H synthase-1 (PGHS-1, ΔG = −20.27 kcal/mol), serotonin transporter (SERT, ΔG = −18.20 kcal/mol), and acetylcholinesterase (AChE, ΔG = −16.58 kcal/mol). In vivo, using a scopolamine-induced impairment model, 1N2PE significantly improved spatial memory and cognition in the Morris water maze. Treated animals reduced the distance to the target zone by ~40% compared with scopolamine-only rats (p < 0.01), normalized latency during training, and exhibited 30% less immobility (p < 0.05), indicating antidepressant-like effects. Moreover, 1N2PE attenuated anxiety-like thigmotaxis, restoring exploratory patterns (p < 0.0001). Conclusions: Together, these findings highlight 1N2PE as a multitarget candidate for cognitive and psychiatric disorders, combining favorable pharmacokinetic properties with preclinical efficacy, warranting further biochemical and translational investigations. Full article
Show Figures

Figure 1

22 pages, 10530 KB  
Article
Preventive Effects of an Opuntia stricta var. dillenii Extract on Lipid Metabolism in a High-Fat High-Fructose Diet-Induced Obesity Animal Model
by Iker Gómez-García, Alfredo Fernández-Quintela, Paula Oliver, Catalina Picó, M. Pilar Cano, María P. Portillo and Jenifer Trepiana
Nutrients 2025, 17(19), 3178; https://doi.org/10.3390/nu17193178 - 8 Oct 2025
Viewed by 159
Abstract
Background: Due to the continuous global rise in obesity prevalence, foods rich in bioactive compounds are increasingly recognised for the management of several diseases. Objective: The present study aims to investigate whether an Opuntia stricta var. dillenii fruit peel extract, rich in betalains [...] Read more.
Background: Due to the continuous global rise in obesity prevalence, foods rich in bioactive compounds are increasingly recognised for the management of several diseases. Objective: The present study aims to investigate whether an Opuntia stricta var. dillenii fruit peel extract, rich in betalains and phenolic compounds, is able to prevent obesity induced by a high-fat high-fructose diet in rats, along with the potential mechanisms of action underlying this effect. Results: The supplementation with Opuntia stricta var. dillenii extract obtained from the peel fruit partially prevents obesity development by attenuating HFHF-induced fat accumulation. This effect was observed predominantly in visceral adipose tissue, rather than in the subcutaneous depot. The obesity prevention was accompanied by the improvement of serum lipid profile. The mechanisms underlying the extract anti-obesity effect which were analysed in epididymal adipose tissue, involve preventing the rise in the availability of triglyceride synthesis substrates induced by high-fat high-fructose feeding, the inhibition of triglyceride assembly, and in the case of the high dose, increased lipolysis. Conclusions: According to these results, the peel wastes of Opuntia stricta var. dillenii fruit represent a promising natural source of bioactive compounds for obesity prevention. Nevertheless, these preclinical effects should be replicated in further studies in human beings. Full article
Show Figures

Figure 1

22 pages, 4332 KB  
Article
Vasorelaxant and Hypotensive Mechanisms of Nelumbo nucifera Seed Extract: Roles of Nitric Oxide, Calcium Channel Blockade and eNOS Interaction with Active Compounds
by Usana Chatturong, Nitra Nuengchamnong, Anjaree Inchan, Kittiwoot To-On, Tippaporn Bualeong, Wiriyaporn Sumsakul, Anyapat Atipimonpat, Kittiphum Meekarn, Yasuteru Shigeta, Kowit Hengphasatporn, Sarawut Kumphune and Krongkarn Chootip
Pharmaceuticals 2025, 18(10), 1500; https://doi.org/10.3390/ph18101500 - 6 Oct 2025
Viewed by 367
Abstract
Background/Objectives: Enhancing endothelial nitric oxide (NO) bioavailability through natural products may provide a promising strategy for the prevention and management of hypertension. This study investigated the phytochemical composition of ethanolic lotus (Nelumbo nucifera) seed extract (LSE), its vasorelaxant mechanisms, effects on [...] Read more.
Background/Objectives: Enhancing endothelial nitric oxide (NO) bioavailability through natural products may provide a promising strategy for the prevention and management of hypertension. This study investigated the phytochemical composition of ethanolic lotus (Nelumbo nucifera) seed extract (LSE), its vasorelaxant mechanisms, effects on endothelial NO production, and antihypertensive activity. Methods: LSE was characterized via LC-ESI-QTOF-MS using accurate mass data and fragmentation patterns. Vasorelaxant effects were evaluated in isolated rat aortas, and the underlying mechanisms were explored using pharmacological inhibitors. NO production was assessed in human endothelial EA.hy926 cells. Hypotensive activity was examined in normotensive rats following intravenous administration of LSE (10, 30, and 100 mg/kg). Molecular docking was performed to analyze interactions between LSE bioactive compounds and endothelial nitric oxide synthase (eNOS). Results: LC-ESI-QTOF-MS analysis identified 114 compounds, including primary and secondary metabolites. LSE induced vasorelaxation in endothelium-intact aortas, which was reduced by endothelium removal (p < 0.001) and by L-NAME (p < 0.001). LSE also inhibited receptor-operated, Ca2+ channel-mediated vasoconstriction (p < 0.05). In vivo, LSE decreased blood pressure in a dose-dependent manner. In EA.hy926 cells, LSE (750 and 1000 µg/mL) increased NO production, an effect attenuated by L-NAME. Molecular docking showed that LSE alkaloids, including nelumborine, nelumboferine, neferine, and isoliensinine had strong affinities for binding with eNOS at the tetrahydrobiopterin (BH4) binding site. Nelumborine exhibited the highest affinity, suggesting its potential as an eNOS modulator. Conclusions: LSE promotes vasorelaxation through the stimulation of endothelium-derived NO release and Ca2+ influx inhibition, contributing to blood pressure reduction. These findings support LSE as a potential natural antihypertensive supplement. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

33 pages, 10279 KB  
Article
The Flavonoid Extract of Polygonum viviparum L. Alleviates Dextran Sulfate Sodium-Induced Ulcerative Colitis by Regulating Intestinal Flora Homeostasis and Uric Acid Levels Through Inhibition of PI3K/AKT/NF-κB/IL-17 Signaling Pathway
by Haoyu Liu, Zhen Yang, Qian Chen, Hongjuan Zhang, Yu Liu, Di Wu, Dan Shao, Shengyi Wang and Baocheng Hao
Antioxidants 2025, 14(10), 1206; https://doi.org/10.3390/antiox14101206 - 5 Oct 2025
Viewed by 323
Abstract
Chronic inflammatory bowel disease, ulcerative colitis (UC), currently lacks specific drugs for clinical treatment, and screening effective therapeutic agents from natural plants represents a critical research strategy. This study aimed to investigate the therapeutic potential of the flavonoid extract of Polygonum viviparum L. [...] Read more.
Chronic inflammatory bowel disease, ulcerative colitis (UC), currently lacks specific drugs for clinical treatment, and screening effective therapeutic agents from natural plants represents a critical research strategy. This study aimed to investigate the therapeutic potential of the flavonoid extract of Polygonum viviparum L. (TFPV) against UC. Liquid chromatography-mass spectrometry (LC-MS) was used to identify the chemical components of TFPV, while cell and animal models were employed to evaluate its anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation. The mechanism of anti-inflammatory action was further investigated using a mouse model of UC induced by dextran sulfate sodium (DSS). The results revealed the identification of 32 bioactive components in TFPV, with major compounds such as kaempferol, luteolin, galangin, and quercetin. TFPV effectively mitigated inflammatory damage induced by LPS in IPEC-J2 cells and C57BL/6 mice. In the UC modeled by DSS, TFPV attenuated intestinal inflammation by reducing pro-inflammatory cytokines IL-1β, IL-6, and TNF-α; increasing the anti-inflammatory cytokine IL-10; up-regulating tight junction protein expression such as Claudin-1, Occludin, and ZO-1; and inhibiting the expression of PI3K, AKT, NF-κB, and IL-17 proteins. Analysis of mice fecal samples through 16S rRNA gene sequencing demonstrated that TFPV adjusted the equilibrium of gut microbiota by boosting the abundance of Dubosiella and diminishing that of Enterococcus, Romboutsia, and Enterobacter. Untargeted metabolomics analysis further revealed that TFPV reduced inosine and ADP levels while increasing dGMP levels by the regulation of purine metabolism, ultimately resulting in decreased uric acid levels and thereby alleviating intestinal inflammation. Additionally, TFPV safeguarded the intestinal mucosal barrier by enhancing the expression of tight junctions. In conclusion, TFPV alleviates UC by blocking the PI3K/AKT/NF-κB and IL-17 signaling pathways, lessening intestinal inflammation and injury, safeguarding intestinal barrier integrity, balancing gut microbiota, and lowering uric acid levels, suggesting its promise as a therapeutic agent for UC. Full article
Show Figures

Graphical abstract

16 pages, 860 KB  
Article
Exploratory Analysis on Physiological and Biomechanical Correlates of Performance in the CrossFit Benchmark Workout Fran
by Alexandra Malheiro, Pedro Forte, David Rodríguez Rosell, Diogo L. Marques and Mário C. Marques
J. Funct. Morphol. Kinesiol. 2025, 10(4), 387; https://doi.org/10.3390/jfmk10040387 - 5 Oct 2025
Viewed by 366
Abstract
Background: The multifactorial nature of CrossFit performance remains incompletely understood, particularly regarding sex- and experience-related physiological and biomechanical factors. Methods: Fifteen trained athletes (8 males, 7 females) completed assessments of anthropometry, estimated one-repetition maximums (bench press, back squat, deadlift), squat jump [...] Read more.
Background: The multifactorial nature of CrossFit performance remains incompletely understood, particularly regarding sex- and experience-related physiological and biomechanical factors. Methods: Fifteen trained athletes (8 males, 7 females) completed assessments of anthropometry, estimated one-repetition maximums (bench press, back squat, deadlift), squat jump (SJ), maximal oxygen uptake (VO2max), ventilatory responses (V˙E), and heart rate (HR). Spearman, Pearson, and partial correlations were calculated with Holm and false discovery rate (FDR) corrections. Results: Males displayed greater body mass, lean and muscle mass, maximal strength, and aerobic capacity than females (all Holm-adjusted p < 0.01). Experienced athletes completed Fran faster than beginners despite broadly similar anthropometric and aerobic profiles. In the pooled sample, WOD time showed moderate negative relationships with estimated 1RM back squat (ρ = −0.54), deadlift (ρ = −0.56), and bench press (ρ = −0.65) before correction; none remained significant after Holm/FDR adjustment, and partial correlations controlling for training years were further attenuated. Conclusions: This exploratory study provides preliminary evidence suggesting that maximal strength may contribute to Fran performance, whereas conventional aerobic measures were less influential. However, given the very small sample (n = 15, 8 males and 7 females) and the fact that no relationships remained statistically significant after correction for multiple testing, the results must be regarded as preliminary, hypothesis-generating evidence only, requiring confirmation in larger and adequately powered studies. Full article
(This article belongs to the Special Issue Biomechanical Analysis in Physical Activity and Sports—2nd Edition)
Show Figures

Figure 1

29 pages, 435 KB  
Article
Public Debt, Oil Rent, and Financial Development in MENA Countries: A Fractional Response Model Approach (FRM)
by Mashael Fahad Alkhurayji and Hamed Mohammed Alhoshan
Economies 2025, 13(10), 288; https://doi.org/10.3390/economies13100288 - 2 Oct 2025
Viewed by 300
Abstract
The rapid accumulation of public debt raises global concern over its implications for financial markets. This study examines the effect of domestic public debt on financial development in Middle East and North Africa (MENA) countries, a region marked by sharp heterogeneity in institutions, [...] Read more.
The rapid accumulation of public debt raises global concern over its implications for financial markets. This study examines the effect of domestic public debt on financial development in Middle East and North Africa (MENA) countries, a region marked by sharp heterogeneity in institutions, debt dynamics, and oil dependence, using annual panel data for 16 countries over the period (2000–2020). Our analysis employs a fractional response model (FRM), which accounts for the bounded nature of the dependent variable, corrects for heteroskedasticity, and incorporates country fixed effects. The findings reveal a significant negative effect of domestic public debt on financial development, consistent with the lazy banks and crowding-out hypotheses. This adverse relationship persists across different income groups and debt percentiles, with modest attenuation at higher debt levels. Oil rents are also found to exert a robust negative effect, highlighting the structural vulnerabilities associated with oil dependence. These results emphasize the importance of debt management, fiscal frameworks that account for commodity cycles, and policies to reduce the sovereign–bank nexus in fostering sustainable financial development in the region. Full article
(This article belongs to the Section Macroeconomics, Monetary Economics, and Financial Markets)
13 pages, 810 KB  
Article
Association Between Depressive Symptoms and Altered Heart Rate Variability in Obstructive Sleep Apnea
by Ji Hye Shin, Min Ji Song and Ji Hyun Kim
J. Clin. Med. 2025, 14(19), 6978; https://doi.org/10.3390/jcm14196978 - 2 Oct 2025
Viewed by 361
Abstract
Background/Objectives: Obstructive sleep apnea (OSA) is strongly associated with cardiovascular morbidity, and depressive symptoms are common in affected individuals. Both OSA and depression have been linked to autonomic dysfunction, but the independent contribution of depressive symptoms to autonomic dysfunction in OSA remains unclear. [...] Read more.
Background/Objectives: Obstructive sleep apnea (OSA) is strongly associated with cardiovascular morbidity, and depressive symptoms are common in affected individuals. Both OSA and depression have been linked to autonomic dysfunction, but the independent contribution of depressive symptoms to autonomic dysfunction in OSA remains unclear. We investigated whether depressive symptom severity is associated with autonomic function, indexed by heart-rate variability (HRV), in patients with OSA. Methods: We retrospectively analyzed 1713 adults with OSA at a university-affiliated sleep center from 2011 to 2024. HRV was derived from electrocardiography during polysomnography, and frequency-domain indices (natural log-transformed LF, HF, VLF, TP, and LF/HF) were computed. Depressive symptoms were assessed using the Beck Depression Inventory-II (BDI-II). Associations between BDI-II and HRV indices were evaluated using univariable and multivariable linear regressions. Results: In univariable regression analyses, higher BDI-II scores were significantly associated with lower HRV indices (ln LF, ln HF, ln VLF, ln TP; all p < 0.01). In multivariable analyses, higher BDI-II scores were independently associated with lower ln LF, ln HF, and ln TP (all p < 0.05), adjusting for age, sex, body mass index, hypertension, diabetes, apnea–hypopnea index, arousal index, and sleep quality. Conclusions: Greater depressive symptom burden is independently associated with reductions in multiple HRV indices, suggesting attenuated parasympathetic activity and autonomic dysregulation in patients with OSA. These findings support integrated management strategies that address both physiological and psychological domains in OSA and motivate longitudinal studies to test whether effective depression treatment improves HRV and mitigates long-term cardiovascular risk. Full article
(This article belongs to the Special Issue Obstructive Sleep Apnea: Latest Advances and Prospects)
Show Figures

Figure 1

18 pages, 1932 KB  
Article
MemristiveAdamW: An Optimization Algorithm for Spiking Neural Networks Incorporating Memristive Effects
by Fan Jiang, Zhiwei Ma, Zheng Gong and Jumei Zhou
Algorithms 2025, 18(10), 618; https://doi.org/10.3390/a18100618 - 30 Sep 2025
Viewed by 228
Abstract
Spiking Neural Networks (SNNs), with their event-driven and energy-efficient characteristics, have shown great promise in processing data from neuromorphic sensors. However, the sparse and non-stationary nature of event-based data poses significant challenges to optimization, particularly when using conventional algorithms such as AdamW, which [...] Read more.
Spiking Neural Networks (SNNs), with their event-driven and energy-efficient characteristics, have shown great promise in processing data from neuromorphic sensors. However, the sparse and non-stationary nature of event-based data poses significant challenges to optimization, particularly when using conventional algorithms such as AdamW, which assume smooth gradient dynamics. To address this limitation, we propose MemristiveAdamW, a novel algorithm that integrates memristor-inspired dynamic adjustment mechanisms into the AdamW framework. This optimization algorithm introduces three biologically motivated modules: (1) a direction-aware modulation mechanism that adapts the update direction based on gradient change trends; (2) a memristive perturbation model that encodes history-sensitive adjustment inspired by the physical characteristics of memristors; and (3) a memory decay strategy that ensures stable convergence by attenuating perturbations over time. Extensive experiments are conducted on two representative event-based datasets, Prophesee NCARS and GEN1, across three SNN architectures: Spiking VGG-11, Spiking MobileNet-64, and Spiking DenseNet-121. Results demonstrate that MemristiveAdamW consistently improves convergence speed, classification accuracy, and training stability compared to standard AdamW, with the most significant gains observed in shallow or lightweight SNNs. These findings suggest that memristor-inspired optimization offers a biologically plausible and computationally effective paradigm for training SNNs on event-driven data. Full article
(This article belongs to the Section Combinatorial Optimization, Graph, and Network Algorithms)
Show Figures

Figure 1

25 pages, 5512 KB  
Review
Histone Deacetylases in Neurodegenerative Diseases and Their Potential Role as Therapeutic Targets: Shedding Light on Astrocytes
by Pedro de Sena Murteira Pinheiro, Luan Pereira Diniz, Lucas S. Franco, Michele Siqueira and Flávia Carvalho Alcantara Gomes
Pharmaceuticals 2025, 18(10), 1471; https://doi.org/10.3390/ph18101471 - 30 Sep 2025
Viewed by 461
Abstract
Histone deacetylases (HDACs) are crucial enzymes involved in the regulation of gene expression through chromatin remodeling, impacting numerous cellular processes, including cell proliferation, differentiation, and survival. In recent years, HDACs have emerged as therapeutic targets for neurodegenerative diseases (NDDs), such as Alzheimer’s disease, [...] Read more.
Histone deacetylases (HDACs) are crucial enzymes involved in the regulation of gene expression through chromatin remodeling, impacting numerous cellular processes, including cell proliferation, differentiation, and survival. In recent years, HDACs have emerged as therapeutic targets for neurodegenerative diseases (NDDs), such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, given their role in modulating neuronal plasticity, neuroinflammation, and neuronal survival. HDAC inhibitors (HDACi) are small molecules that prevent the deacetylation of histones, thereby promoting a more relaxed chromatin structure and enhancing gene expression associated with neuroprotective pathways. Preclinical and clinical studies have demonstrated that HDACi can mitigate neurodegeneration, reduce neuroinflammatory markers, and improve cognitive and motor functions, positioning them as promising therapeutic agents for NDDs. Given the complexity and multifactorial nature of NDDs, therapeutic success will likely depend on multi-target drugs as well as new cellular and molecular therapeutic targets. Emerging evidence suggests that HDACi can modulate the function of astrocytes, a glial cell type critically involved in neuroinflammation, synaptic regulation, and the progression of neurodegenerative diseases. Consequently, HDACi targeting astrocytic pathways represent a novel approach in NDDs therapy. By modulating HDAC activity specifically in astrocytes, these inhibitors may attenuate pathological inflammation and promote a neuroprotective environment, offering a complementary strategy to neuron-focused treatments. This review aims to provide an overview of HDACs and HDACi in the context of neurodegeneration, emphasizing their molecular mechanisms, therapeutic potential, and limitations. Additionally, it explores the emerging role of astrocytes as targets for HDACi, proposing that this glial cell type could enhance the efficacy of HDACs-targeted therapies in NDD management. Full article
Show Figures

Figure 1

Back to TopTop