Exploratory Analysis on Physiological and Biomechanical Correlates of Performance in the CrossFit Benchmark Workout Fran
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample
2.3. Maximum Strength Assessment in the Back Squat, Bench Press, and Deadlift
2.3.1. Back Squat
2.3.2. Bench Press
2.3.3. Deadlift
2.4. Squat-Jump Test
2.5. Treadmill Test for Respiratory Gas Exchange and Heart Rate Evaluation
2.6. Workout of the Day (WOD)
2.7. Rating of Perceived Exertion (RPE)
2.8. Variables Extracted for Analysis
2.9. Statistical Analysis
3. Results
3.1. Exploratory Analysis of Sex Differences in Anthropometric, Physiological, and Biomechanical Characteristics
3.2. Association Between Key Variables and WOD Performance
4. Discussion
4.1. Limitations
4.2. Practical Aplications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
1RM | One-repetition maximum |
BS | Back squat |
BP | Bench press |
DL | Deadlift |
SJ | Squat jump |
HR | Heart rate |
HRV | Heart rate variability |
VO2max | Maximal oxygen uptake |
VO2mean | Mean oxygen uptake |
VE | Ventilation |
RPE | Rating of perceived exertion |
WOD | Workout of the Day |
HIFT | High-intensity functional training |
Rx | As prescribed (standard workout load in CrossFit) |
References
- Tan, K.L.; Chung, H.J. Injury causes and recovery management strategies among Singapore crossfitters. ACPES J. Phys. Educ. Sport Health (AJPESH) 2021, 1, 134–144. [Google Scholar] [CrossRef]
- Toledo, R.; Dias, M.; Toledo, R.; Erotides, R.; Pinto, D.; Reis, V.; Novaes, J.S.; Vianna, J.M.; Heinrich, K. Comparison of physiological responses and training load between different CrossFit workouts with equalized volume in men and women. Life 2021, 11, 586. [Google Scholar] [CrossRef] [PubMed]
- Meier, N.; Schlie, J.; Schmidt, A. CrossFit: Unknowable’ or predictable?—A systematic review on predictors of CrossFit performance. Sports 2023, 11, 112. [Google Scholar] [CrossRef] [PubMed]
- Mangine, G.; Tankersley, J.; McDougle, J.; Velazquez, N.; Roberts, M.; Esmat, T.; VanDusseldorp, T.A.; Feito, Y. Predictors of CrossFit Open performance. Sports 2020, 8, 102. [Google Scholar] [CrossRef] [PubMed]
- Bellar, D.; Hatchett, A.; Judge, L.; Breaux, M.; Marcus, L. The relationship of aerobic capacity, anaerobic peak power and experience to performance in hit exercise. Biol. Sport 2015, 32, 315–320. [Google Scholar] [CrossRef]
- Dexheimer, J.D.; Schroeder, E.T.; Sawyer, B.J.; Pettitt, R.W.; Aguinaldo, A.L.; Torrence, W.A. Physiological Performance Measures as Indicators of CrossFit® Performance. Sports 2019, 7, 93. [Google Scholar] [CrossRef]
- Dominski, F.; Serafim, T.; Siqueira, T.; Andrade, A. Psychological variables of CrossFit participants: A systematic review. Sport Sci. Health 2020, 17, 21–41. [Google Scholar] [CrossRef]
- Meyer, J.; Morrison, J.; Zuniga, J. The benefits and risks of CrossFit: A systematic review. Workplace Health Saf. 2017, 65, 612–618. [Google Scholar] [CrossRef]
- Heinrich, K.; Beattie, C.; Crawford, D.; Stoepker, P.; George, J. Non-traditional physical education classes improve high school students’ movement competency and fitness: A mixed-methods program evaluation study. Int. J. Environ. Res. Public Health 2023, 20, 5914. [Google Scholar] [CrossRef]
- Martínez-Gómez, R.; Valenzuela, P.; Alejo, L.; Gil-Cabrera, J.; Montalvo-Pérez, A.; Talavera, E.; Barranco-Gil, D. Physiological predictors of competition performance in CrossFit athletes. Int. J. Environ. Res. Public Health 2020, 17, 3699. [Google Scholar] [CrossRef]
- Claudino, J.G.; Gabbett, T.J.; Bourgeois, F.; Souza, H.d.S.; Miranda, R.C.; Mezêncio, B.; Soncin, R.; Filho, C.A.C.; Bottaro, M.; Hernandez, A.J.; et al. CrossFit overview: Systematic review and meta-analysis. Sports Med.-Open 2018, 4, 11. [Google Scholar] [CrossRef]
- Tibana, R.; Neto, I.; Sousa, N.; Romeiro, C.; Hanai, A.; Brandão, H.; Dominski, F.H.; Voltarelli, F. Local muscle endurance and strength had strong relationship with CrossFit open 2020 in amateur athletes. Sports 2021, 9, 98. [Google Scholar] [CrossRef]
- Behm, D.G.; Young, J.D.; Whitten, J.H.D.; Reid, J.C.; Quigley, P.J.; Low, J.; Li, Y.; Lima, C.D.; Hodgson, D.D.; Chaouachi, A.; et al. Effectiveness of traditional strength vs. power training on muscle strength, power and speed with youth: A systematic review and meta-analysis. Front. Physiol. 2017, 8, 423. [Google Scholar] [CrossRef]
- Qiu, S.; Alzhab, S.; Picard, G.; Taylor, J.A. Ventilation limits aerobic capacity after functional electrical stimulation row training in high spinal cord injury. Med. Sci. Sports Exerc. 2016, 48, 1111–1118. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, O.A.; Hesse, A.S.; Betker, M.R.; Lundstrom, C.J.; Conroy, W.E.; Gao, Z. Cardiovascular fitness and associated comorbidities in an executive health program. Exerc. Med. 2022, 6, 5. [Google Scholar] [CrossRef]
- Sauvé, B.; Haugan, M.; Paulsen, G. Physical and physiological characteristics of elite CrossFit athletes. Sports 2024, 12, 162. [Google Scholar] [CrossRef]
- Benavides-Ubric, A.; Díez-Fernández, M.D.; Rodríguez-Pérez, M.A.; Ortega-Becerra, M.; Pareja Blanco, F. Analysis of the Load-Velocity relationship in deadlift exercise. J. Sports Sci. Med. 2020, 19, 452–459. [Google Scholar]
- Lourenco, T.F.; Martins, L.E.B.; Tessutti, L.S.; Brenzikofer, R.; Macedo, D.V. Reproducibility of an Incremental Treadmill V̇o2max Test with Gas Exchange Analysis for Runners. J. Strength Cond. Res. 2011, 25, 1994–1999. [Google Scholar] [CrossRef]
- Sánchez-Medina, L.; González-Badillo, J.J. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med. Sci. Sports Exerc. 2011, 43, 1725–1734. [Google Scholar] [CrossRef]
- Anderson, F.C.; Pandy, M.G. A dynamic optimization model for the prediction of gait. J. Biomech. 1993, 26, 155–166. [Google Scholar]
- Young, M. The use of a jump test to assess leg power in athletes. Strength Cond. J. 1995, 17, 18–21. [Google Scholar]
- González-Hernández, J.M.; García-Ramos, A.; Castaño-Zambudio, A.; Capelo-Ramírez, F.; Marquez, G.; Boullosa, D.; Jiménez-Reyes, P. Mechanical, metabolic, and perceptual acute responses to different set configurations in full squat. J. Strength Cond. Res. 2020, 34, 1581–1590. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Belmonte, A.; Buendía-Romero, Á.; Pallares, G.J.; Martínez-Cava, A. Velocity-based method in free-weight and machine-based training modalities: The degree of freedom matters. J. Strength Cond. Res. 2023, 37, e500–e509. [Google Scholar] [CrossRef]
- Sánchez-Medina, L.; Pallarés, J.G.; Pérez, C.E.; Morán-Navarro, R.; González-Badillo, J.J. Estimation of Relative Load From Bar Velocity in the Full Back Squat Exercise. Sports Med. Int. Open 2017, 1, E80–E88. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sanchez-Medina, L.; Perez, C.E.; Gonzalez-Badillo, J.J. Importance of the propulsive phase in strength assessment. Int. J. Sports Med. 2010, 31, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Cataldi, S.; Francavilla, V.; Bonavolontà, V.; Florio, O.; Carvutto, R.; Candia, M.; Fischetti, F. Proposal for a fitness program in the school setting during the covid 19 pandemic: Effects of an 8-week CrossFit program on psychophysical well-being in healthy adolescents. Int. J. Environ. Res. Public Health 2021, 18, 3141. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Gómez, R.; Valenzuela, L.P.; Barranco-Gil, D.; Moral-González, S.; García-González, A.; Lucia, A. Full-squat as a determinant of performance in CrossFit. Int. J. Sports Med. 2019, 40, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Sanfilippo, J.; Krueger, D.; Heiderscheit, B.C.; Binkley, N. Dual-energy x-ray absorptiometry body composition in ncaa division i athletes: Exploration of mass distribution. Sports Health A Multidiscip. Approach 2019, 11, 453–460. [Google Scholar] [CrossRef]
- Langford, E.L.; Bergstrom, H.C.; Lanham, S.; Eastman, A.Q.; Best, S.; Ma, X.; Abel, M.G. Evaluation of work efficiency in structural firefighters. J. Strength Cond. Res. 2023, 37, 2457–2466. [Google Scholar] [CrossRef]
- Feito, Y.; Heinrich, K.M.; Butcher, S.J.; Poston, W.S.C. High-Intensity Functional Training (HIFT): Definition and Research Implications for Improved Fitness. Sports 2018, 6, 76. [Google Scholar] [CrossRef]
- Rios, M.; Becker, K.M.; Monteiro, A.S.; Fonseca, P.; Pyne, D.B.; Reis, V.M.; Moreira-Gonçalves, D.; Fernandes, R.J. Effect of the fran crossfit workout on oxygen uptake kinetics, energetics, and postexercise muscle function in trained crossfitters. Int. J. Sports Physiol. Perform. 2024, 19, 299–306. [Google Scholar] [CrossRef]
- Cruz-Díaz, D.; Hita-Contreras, F.; Martínez-Amat, A.; Aibar-Almazán, A.; Kim, K. Ankle-joint self mobilization and crossfit training in patients with chronic ankle instability: A randomized controlled trial. J. Athl. Train. 2020, 55, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Édouard, P.; Feddermann-Demont, N.; Alonso, J.; Branco, P.; Junge, A. Injury risk is different between male and female athletes during 14 international athletics championships. Br. J. Sports Med. 2017, 51, 315. [Google Scholar] [CrossRef]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Lazinica, B.; Schoenfeld, B.; Pedisic, Z. Test–Retest Reliability of the One-Repetition Maximum (1RM) Strength Assessment: A Systematic Review. Sports Med.-Open 2020, 6, 31. [Google Scholar] [CrossRef]
- González-Badillo, J.J.; Sánchez-Medina, L. Movement velocity as a measure of loading intensity in resistance training. Int. J. Sports Med. 2010, 31, 347–352. [Google Scholar] [CrossRef]
- Martínez-Valência, M.A.; Linthorne, N.P.; Alcaráz, P.E. Effect of lower body explosive power on sprint time in a sled-towing exercise. Sci. Sports 2013, 28, e175–e178. [Google Scholar] [CrossRef]
- Lawson, D.J.; Olmos, A.A.; Stahl, C.A.; Lopes dos Santos, M.; Goodin, J.R.; Dawes, J.J. Validity, reliability, and sensitivity of a commercially available velocity measuring device when performing selected exercises. Int. J. Exerc. Sci. 2024, 17, 1250–1279. [Google Scholar] [CrossRef]
- Marzano-Felisatti, J.M.; Lucca, L.D.; Luján, J.F.G.; Priego-Quesada, J.I.; Pino-Ortega, J. A preliminary investigation about the influence of wimu protm location on heart rate accuracy: A comparative study in cycle ergometer. Sensors 2024, 24, 988. [Google Scholar] [CrossRef]
- Batterham, A.M.; Hopkins, W.G. Making meaningful inferences about magnitudes. Int. J. Sports Physiol. Perform. 2006, 1, 50–57. [Google Scholar] [CrossRef]
- O’Neal, C.W.; Mancini, J.A.; DeGraff, A. Contextualizing the psychosocial well-being of military members and their partners: The importance of community and relationship provisions. Am. J. Community Psychol. 2016, 58, 477–487. [Google Scholar] [CrossRef]
- McLaren, S.J.; Graham, M.; Spears, I.R.; Weston, M. The sensitivity of differential ratings of perceived exertion as measures of internal load. Int. J. Sports Physiol. Perform. 2016, 11, 404–406. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Blair, M.L. Sex-based differences in physiology: What should we teach in the medical curriculum? Adv. Physiol. Educ. 2007, 31, 23–25. [Google Scholar] [CrossRef]
- Hunter, S.K.; Angadi, S.S.; Bhargava, A.; Harper, J.; Hirschberg, A.L.; Levine, B.D.; Moreau, K.L.; Nokoff, N.J.; Stachenfeld, N.S.; Bermon, S. The biological basis of sex differences in athletic performance: Consensus statement for the american college of sports medicine. Med. Sci. Sports Exerc. 2023, 55, 2328–2360. [Google Scholar] [CrossRef] [PubMed]
- Senefeld, J.; Hunter, S. Hormonal basis of biological sex differences in human athletic performance. Endocrinology 2024, 165, bqae036. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Cui, Z.; Shen, D.; Li, G.; Li, Q. Testosterone levels positively linked to muscle mass but not strength in adult males aged 20–59 years: A cross-sectional study. Front. Physiol. 2025, 16, 1512268. [Google Scholar] [CrossRef] [PubMed]
- Hodžić, D.; D’Hulst, G.; Leuenberger, R.; Arnet, J.; Westerhuis, E.; Roth, R.; Schmidt-Trucksäss, A.; Knaier, R.; Wagner, J. Physiological profiles of male and female CrossFit athletes. bioRxiv 2023. [Google Scholar] [CrossRef]
- Butcher, S.; Neyedly, T.; Horvey, K.J.; Benko, C. Do physiological measures predict selected CrossFit benchmark performance? J. Sports Med. 2015, 241. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988. [Google Scholar]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and anovas. Front. Psychol. 2013, 4. [Google Scholar] [CrossRef]
Variable | Male Mean ± SD | Female Mean ± SD | Hedges g (95% CI) |
---|---|---|---|
Age (years) | 28.9 ± 6.9 | 27.3 ± 5.6 | 0.24 (−0.78, 1.25) |
Weight (kg) | 79.8 ± 9.8 | 61.9 ± 4.8 | 2.13 (0.86, 3.40) |
Height (cm) | 178.5 ± 9.4 | 164.9 ± 4.1 | 1.72 (0.53, 2.91) |
Fat Mass (%) | 17.7 ± 5.0 | 19.7 ± 2.2 | −0.49 (−1.52, 0.54) |
Lean Mass (kg) | 65.7 ± 9.5 | 49.6 ± 3.3 | 2.07 (0.82, 3.33) |
Muscle Mass (kg) | 33.9 ± 2.9 | 22.1 ± 1.6 | 4.61 (2.67, 6.54) |
Years of CrossFit | 4.4 ± 4.2 | 3.7 ± 1.5 | 0.19 (−0.83, 1.21) |
VO2max (mL/kg/min) | 57.4 ± 6.7 | 44.4 ± 5.1 | 2.04 (0.79, 3.30) |
1RM Back Squat (kg) | 124.1 ± 24.2 | 82.4 ± 10.5 | 2.03 (0.80, 3.31) |
1RM Deadlift (kg) | 155.4 ± 27.9 | 111.7 ± 6.3 | 1.97 (0.73, 3.20) |
1RM Bench Press (kg) | 89.0 ± 17.7 | 47.1 ± 7.9 | 2.81 (1.38, 4.23) |
SJ height (cm) | 32.2 ± 5.6 | 26.7 ± 5.2 | 0.95 (−0.12, 2.02) |
WOD Time (sec) | 374.9 ± 153.6 | 476.1 ± 189.9 | −0.56 (−1.59, 0.48) |
Variables | Males (n = 8) Mean ± SD | Female (n = 7) Mean ± SD | Mann–Whitney U | p (Holm adj.) |
---|---|---|---|---|
Body mass (kg) | 79.0 ± 8.8 | 62.3 ± 5.3 | 55.0 | 0.006 |
Height (cm) | 179 ± 9 | 166 ± 5 | 53.5 | 0.010 |
Lean mass (kg) | 65.0 ± 8.1 | 48.0 ± 4.2 | 56.0 | 0.005 |
Muscle mass (kg) | 33.9 ± 4.5 | 22.6 ± 2.8 | 56.0 | 0.005 |
Estimated 1RM Back Squat (kg) | 124 ± 28 | 84 ± 13 | 54.0 | 0.009 |
Estimated 1RM Deadlift (kg) | 151 ± 28 | 92 ± 15 | 52.0 | 0.015 |
Estimated 1RM Bench Press (kg) | 83 ± 16 | 43 ± 7 | 56.0 | 0.005 |
VO2max (mL·kg−1·min−1) | 55.1 ± 5.8 | 43.2 ± 6.7 | 55.0 | 0.006 |
Mean VO2 (mL·kg−1·min−1) | 42.3 ± 6.2 | 31.5 ± 5.3 | 53.0 | 0.010 |
Max Ventilation Emax (L·min−1) | 157 ± 28 | 107 ± 18 | 56.0 | 0.005 |
Variable | Pearson r (p) | Spearman ρ (p) | Partial r adj. Years of CF (p) | p Holm adj | p FDR adj |
---|---|---|---|---|---|
Age | −0.24 (0.394) | −0.19 (0.502) | 0.26 (0.342) | 0.394 | 0.394 |
Fat Mass (%) | 0.28 (0.315) | 0.23 (0.403) | 0.21 (0.462) | 0.946 | 0.349 |
Estimated 1RM Back Squat (kg) | −0.57 (0.026) | −0.54 (0.039) | −0.39 (0.155) | 0.318 | 0.111 |
Estimated 1RM Deadlift (kg) | −0.55 (0.033) | −0.56 (0.028) | −0.30 (0.284) | 0.359 | 0.111 |
Estimated 1RM Bench Press | −0.61 (0.016) | −0.65 (0.009) | −0.40 (0.137) | 0.225 | 0.111 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malheiro, A.; Forte, P.; Rodríguez Rosell, D.; Marques, D.L.; Marques, M.C. Exploratory Analysis on Physiological and Biomechanical Correlates of Performance in the CrossFit Benchmark Workout Fran. J. Funct. Morphol. Kinesiol. 2025, 10, 387. https://doi.org/10.3390/jfmk10040387
Malheiro A, Forte P, Rodríguez Rosell D, Marques DL, Marques MC. Exploratory Analysis on Physiological and Biomechanical Correlates of Performance in the CrossFit Benchmark Workout Fran. Journal of Functional Morphology and Kinesiology. 2025; 10(4):387. https://doi.org/10.3390/jfmk10040387
Chicago/Turabian StyleMalheiro, Alexandra, Pedro Forte, David Rodríguez Rosell, Diogo L. Marques, and Mário C. Marques. 2025. "Exploratory Analysis on Physiological and Biomechanical Correlates of Performance in the CrossFit Benchmark Workout Fran" Journal of Functional Morphology and Kinesiology 10, no. 4: 387. https://doi.org/10.3390/jfmk10040387
APA StyleMalheiro, A., Forte, P., Rodríguez Rosell, D., Marques, D. L., & Marques, M. C. (2025). Exploratory Analysis on Physiological and Biomechanical Correlates of Performance in the CrossFit Benchmark Workout Fran. Journal of Functional Morphology and Kinesiology, 10(4), 387. https://doi.org/10.3390/jfmk10040387