Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (359)

Search Parameters:
Keywords = narrow band measurements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8010 KiB  
Article
Mono-(Ni, Au) and Bimetallic (Ni-Au) Nanoparticles-Loaded ZnAlO Mixed Oxides as Sunlight-Driven Photocatalysts for Environmental Remediation
by Monica Pavel, Liubovi Cretu, Catalin Negrila, Daniela C. Culita, Anca Vasile, Razvan State, Ioan Balint and Florica Papa
Molecules 2025, 30(15), 3249; https://doi.org/10.3390/molecules30153249 - 2 Aug 2025
Viewed by 235
Abstract
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was [...] Read more.
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was obtained via the thermal decomposition of its corresponding layered double hydroxide (LDH) precursors. X-ray diffraction (XRD) patterns confirmed the successful fabrication of the nanocomposites, including the synthesis of the metallic NPs, the formation of LDH-like structure, and the subsequent transformation to ZnO phase upon LDH calcination. The obtained nanostructures confirmed the nanoplate-like morphology inherited from the original LDH precursors, which tended to aggregate after the addition of gold NPs. According to the UV-Vis spectroscopy, loading NPs onto the ZnAlO support enhanced the light absorption and reduced the band gap energy. ATR-DRIFT spectroscopy, H2-TPR measurements, and XPS analysis provided information about the functional groups, surface composition, and reducibility of the materials. The catalytic performance of the developed nanostructures was evaluated by the photodegradation of bisphenol A (BPA), under simulated solar irradiation. The conversion of BPA over the bimetallic Ni-Au@ZnAlO reached up to 95% after 180 min of irradiation, exceeding the monometallic Ni@ZnAlO and Au@ZnAlO catalysts. Its enhanced activity was correlated with good dispersion of the bimetals, narrower band gap, and efficient charge carrier separation of the photo-induced e/h+ pairs. Full article
Show Figures

Graphical abstract

15 pages, 12546 KiB  
Article
Retrieval of Chlorophyll-a Concentration in Nanyi Lake Using the AutoGluon Framework
by Weibin Gu, Ji Liang, Lian Yang, Shanshan Guo and Ruixin Jia
Water 2025, 17(15), 2190; https://doi.org/10.3390/w17152190 - 23 Jul 2025
Viewed by 252
Abstract
The chlorophyll-a (Chl-a) concentration in lakes is a crucial parameter for monitoring water quality and assessing phytoplankton abundance. However, accurately retrieving Chl-a concentrations remains a significant challenge in remote sensing. To address the limitations of existing methods in terms of modeling efficiency and [...] Read more.
The chlorophyll-a (Chl-a) concentration in lakes is a crucial parameter for monitoring water quality and assessing phytoplankton abundance. However, accurately retrieving Chl-a concentrations remains a significant challenge in remote sensing. To address the limitations of existing methods in terms of modeling efficiency and adaptability, this study focuses on Lake Nanyi in Anhui Province. By integrating Sentinel-2 satellite imagery with in situ water quality measurements and employing the AutoML framework AutoGluon, a Chl-a inversion model based on narrow-band spectral features is developed. Feature selection and model ensembling identify bands B6 (740 nm) and B7 (783 nm) as the optimal combination, which are then applied to multi-temporal imagery from October 2022 to generate spatial mean distributions of Chl-a in Lake Nanyi. The results demonstrate that the AutoGluon framework significantly outperforms traditional methods in both model accuracy (R2: 0.94, RMSE: 1.67 μg/L) and development efficiency. The retrieval results reveal spatial heterogeneity in Chl-a concentration, with higher concentrations observed in the southern part of the western lake and the western side of the eastern lake, while the central lake area exhibits relatively lower concentrations, ranging from 3.66 to 21.39 μg/L. This study presents an efficient and reliable approach for lake ecological monitoring and underscores the potential of AutoML in water color remote sensing applications. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

26 pages, 10564 KiB  
Article
DynaFusion-SLAM: Multi-Sensor Fusion and Dynamic Optimization of Autonomous Navigation Algorithms for Pasture-Pushing Robot
by Zhiwei Liu, Jiandong Fang and Yudong Zhao
Sensors 2025, 25(11), 3395; https://doi.org/10.3390/s25113395 - 28 May 2025
Viewed by 642
Abstract
Aiming to address the problems of fewer related studies on autonomous navigation algorithms based on multi-sensor fusion in complex scenarios in pastures, lower degrees of fusion, and insufficient cruising accuracy of the operation path in complex outdoor environments, a multimodal autonomous navigation system [...] Read more.
Aiming to address the problems of fewer related studies on autonomous navigation algorithms based on multi-sensor fusion in complex scenarios in pastures, lower degrees of fusion, and insufficient cruising accuracy of the operation path in complex outdoor environments, a multimodal autonomous navigation system is proposed based on a loosely coupled architecture of Cartographer–RTAB-Map (real-time appearance-based mapping). Through laser-vision inertial guidance multi-sensor data fusion, the system achieves high-precision mapping and robust path planning in complex scenes. First, comparing the mainstream laser SLAM algorithms (Hector/Gmapping/Cartographer) through simulation experiments, Cartographer is found to have a significant memory efficiency advantage in large-scale scenarios and is thus chosen as the front-end odometer. Secondly, a two-way position optimization mechanism is innovatively designed: (1) When building the map, Cartographer processes the laser with IMU and odometer data to generate mileage estimations, which provide positioning compensation for RTAB-Map. (2) RTAB-Map fuses the depth camera point cloud and laser data, corrects the global position through visual closed-loop detection, and then uses 2D localization to construct a bimodal environment representation containing a 2D raster map and a 3D point cloud, achieving a complete description of the simulated ranch environment and material morphology and constructing a framework for the navigation algorithm of the pushing robot based on the two types of fused data. During navigation, the combination of RTAB-Map’s global localization and AMCL’s local localization is used to generate a smoother and robust positional attitude by fusing IMU and odometer data through the EKF algorithm. Global path planning is performed using Dijkstra’s algorithm and combined with the TEB (Timed Elastic Band) algorithm for local path planning. Finally, experimental validation is performed in a laboratory-simulated pasture environment. The results indicate that when the RTAB-Map algorithm fuses with the multi-source odometry, its performance is significantly improved in the laboratory-simulated ranch scenario, the maximum absolute value of the error of the map measurement size is narrowed from 24.908 cm to 4.456 cm, the maximum absolute value of the relative error is reduced from 6.227% to 2.025%, and the absolute value of the error at each location is significantly reduced. At the same time, the introduction of multi-source mileage fusion can effectively avoid the phenomenon of large-scale offset or drift in the process of map construction. On this basis, the robot constructs a fusion map containing a simulated pasture environment and material patterns. In the navigation accuracy test experiments, our proposed method reduces the root mean square error (RMSE) coefficient by 1.7% and Std by 2.7% compared with that of RTAB-MAP. The RMSE is reduced by 26.7% and Std by 22.8% compared to that of the AMCL algorithm. On this basis, the robot successfully traverses the six preset points, and the measured X and Y directions and the overall position errors of the six points meet the requirements of the pasture-pushing task. The robot successfully returns to the starting point after completing the task of multi-point navigation, achieving autonomous navigation of the robot. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

16 pages, 3214 KiB  
Article
Tailoring β-Bi2O3 Nanoparticles via Mg Doping for Superior Photocatalytic Activity and Hydrogen Evolution
by Ibrahim M. Sharaf, Mohamed S. I. Koubisy, Fatemah H. Alkallas, Amira Ben Gouider Trabelsi and Abdelaziz Mohamed Aboraia
Catalysts 2025, 15(6), 519; https://doi.org/10.3390/catal15060519 - 24 May 2025
Viewed by 687
Abstract
Bismuth oxide (β-Bi2O3) is a promising visible-light-driven photocatalyst due to its narrow direct bandgap, but its practical application is hindered by rapid electron–hole recombination and limited surface active sites. This study demonstrates a sol-gel synthesis approach to tailor β-Bi [...] Read more.
Bismuth oxide (β-Bi2O3) is a promising visible-light-driven photocatalyst due to its narrow direct bandgap, but its practical application is hindered by rapid electron–hole recombination and limited surface active sites. This study demonstrates a sol-gel synthesis approach to tailor β-Bi2O3 nanoparticles through magnesium (Mg) doping, achieving remarkable enhancements in the photocatalytic degradation of organic pollutants and hydrogen evolution. The structural analysis through XRD, SEM, and EDX confirmed Mg-doping concentrations of 0.025 to 0.1 M led to crystallite size reduction from 79 nm to 13 nm, while the UV–Vis bandgap measurement showed it decreased from 3.8 eV to 3.08–3.3 eV. The photodegradation efficiency increased through Mg doping at a 0.1 M concentration, with the highest rate constant value of 0.0217 min−1. The doping process led to VB potential reduction between 3.37 V (pristine) and 2.78–2.91 V across the doped samples when referenced to SCE. The photocatalytic performance of Mg0.075Bi1.925O3 improved with its 3.2 V VB potential because the photoelectric band arrangement enhanced both light absorption and charge separation. The combination of modifications through Mg doping yielded an enhanced photocatalytic performance, which proves that magnesium doping is a pivotal approach to modifying β-Bi2O3 suitable for environmentally and energy-related applications. Full article
(This article belongs to the Special Issue Design and Application of Combined Catalysis)
Show Figures

Figure 1

17 pages, 14203 KiB  
Article
Low-Profile Omnidirectional and Wide-Angle Beam Scanning Antenna Array Based on Epsilon-Near-Zero and Fabry–Perot Co-Resonance
by Jiaxin Li, Lin Zhao, Dan Long and Hui Xie
Electronics 2025, 14(10), 2012; https://doi.org/10.3390/electronics14102012 - 15 May 2025
Viewed by 824
Abstract
To address the inherent contradiction between low-profile design and high gain in traditional omnidirectional antennas, as well as the narrow bandwidth constraints of ENZ antennas, this study presents a dual-mode ENZ-FP collaborative resonant antenna array design utilizing a substrate-integrated waveguide (SIW). Through systematic [...] Read more.
To address the inherent contradiction between low-profile design and high gain in traditional omnidirectional antennas, as well as the narrow bandwidth constraints of ENZ antennas, this study presents a dual-mode ENZ-FP collaborative resonant antenna array design utilizing a substrate-integrated waveguide (SIW). Through systematic analysis of ENZ media’s quasi-static field distribution, we innovatively integrated it with Fabry–Perot (F–P) resonance, achieving unprecedented dual-band omnidirectional radiation at 5.18 GHz and 5.72 GHz within a single ENZ antenna configuration for the first time. The directivity of both frequencies reached 12.0 dBi, with a remarkably low profile of only 0.018λ. We then extended this design to an ENZ-FP dual-mode beam-scanning array. By incorporating phase control technology, we achieved wide-angle scanning despite low-profile constraints. The measured 3 dB beam coverage angles at the dual frequencies were ±63° and ±65°, respectively. Moreover, by loading the impedance matching network, the −10 dB impedance bandwidth of the antenna array was further extended to 2.4% and 2.7%, respectively, thus overcoming the narrowband limitations of the ENZ antenna and enhancing practical applicability. The antennas were manufactured using PCB (Printed Circuit Board) technology, offering high integration and cost efficiency. This provides a new paradigm for UAV (Unmanned Aerial Vehicle) communication and radar detection systems featuring multi-band operation, a low-profile design, and flexible beam control capabilities. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

10 pages, 3365 KiB  
Article
Design of Small-Sized Spiral Slot PIFA Antenna Used Conformally in Laminated Body Tissues
by Rong Li, Jian Liu, Cuizhen Sun, Wang Yao, Ying Tian and Xiaojun Huang
Sensors 2025, 25(9), 2938; https://doi.org/10.3390/s25092938 - 7 May 2025
Viewed by 584
Abstract
This paper presents a novel Spiral Slot Planar Inverted-F Antenna (SSPIFA) specifically designed for telemedicine and healthcare applications, featuring compact size, biocompatible safety, and high integration suitability. By replacing the conventional top metal patch of a Planar Inverted-F Antenna (PIFA) with a slot [...] Read more.
This paper presents a novel Spiral Slot Planar Inverted-F Antenna (SSPIFA) specifically designed for telemedicine and healthcare applications, featuring compact size, biocompatible safety, and high integration suitability. By replacing the conventional top metal patch of a Planar Inverted-F Antenna (PIFA) with a slot spiral radiator whose geometry is precisely matched to the ground plane, the proposed antenna achieves a significant size reduction, making it ideal for encapsulation in miniaturized medical devices—a critical requirement for implantation scenarios. Tailored for the ISM 915 MHz band, the antenna is fabricated with a four-turn slot spiral etched on a 30 mm-diameter dielectric substrate, achieving an overall height of 22 mm and an electrically small profile of approximately 0.09λ × 0.06λ (λ: free-space wavelength at the center frequency). Simulation and measurement results demonstrate a −16 dB impedance matching (S11 parameter) at the target frequency, accompanied by a narrow fractional bandwidth of 1% and stable right-hand circular polarization (RHCP). When implanted in a layered biological tissue model (skin, fat, muscle), the antenna exhibits a near-omni directional radiation pattern in the azimuthal plane, with a peak gain of 2.94 dBi and consistent performance across the target band. These characteristics highlight the SSPIFA’s potential for reliable wireless communication in implantable medical systems, balancing miniaturization, radiation efficiency, and biocompatible design. Full article
(This article belongs to the Special Issue Metasurfaces for Enhanced Communication and Radar Detection)
Show Figures

Figure 1

12 pages, 4429 KiB  
Article
Optimized NaYF4: Er3+/Yb3+ Upconversion Nanocomplexes via Oleic Acid for Biomedical Applications
by Ha Thi Phuong, Le Thi Vinh, Tong Quang Cong, Tran Quoc Tien, Nguyen Duc Van, Vu Thi Hong Ha, Vu Ngoc Phan, Le Thi Hoi, Pham Duc Thang, Do Thi Thao and Tran Thu Huong
Inorganics 2025, 13(5), 140; https://doi.org/10.3390/inorganics13050140 - 29 Apr 2025
Cited by 1 | Viewed by 767
Abstract
This study presents the synthesis of NaYF4: Er3+/Yb3+ upconversion luminescent nanomaterials using a wet chemistry method. The role of oleic acid in influencing the size, shape, and luminescent properties of the materials was also investigated. The results showed [...] Read more.
This study presents the synthesis of NaYF4: Er3+/Yb3+ upconversion luminescent nanomaterials using a wet chemistry method. The role of oleic acid in influencing the size, shape, and luminescent properties of the materials was also investigated. The results showed that, at a suitable oleic acid concentration of 10−3 M, the obtained nanoparticles exhibited a nearly spherical morphology with diameters ranging from 150 to 250 nm and predominantly display a hexagonal (β-NaYF4) crystalline phase. Photoluminescence measurements under 980 nm laser excitation reveal that these nanoparticles emit strong, stable luminescence with narrow emission bands characteristic of Er3+ transitions. Subsequently, the nanoparticles were coated with a silica shell, functionalized with amine groups, and conjugated with IgG antibodies via glutaraldehyde (GA) to form the bio-nano complex β-NaYF4: Er3+/Yb3+@SNGA-IgG. In vitro experiments using fluorescence microscopy demonstrated that the complex effectively labels HeLa cervical cancer cells. With its robust upconversion luminescence and excellent biocompatibility, the developed nanocomplex shows promising potential for rapid pathogen detection and other biomedical applications. Full article
(This article belongs to the Special Issue Biological Activity of Metal Complexes)
Show Figures

Figure 1

25 pages, 5598 KiB  
Article
Quad-Frequency Wide-Lane, Narrow-Lane and Hatch–Melbourne–Wübbena Combinations: The Beidou Case
by Daniele Borio, Melania Susi and Kinga Wȩzka
Electronics 2025, 14(9), 1805; https://doi.org/10.3390/electronics14091805 - 28 Apr 2025
Viewed by 430
Abstract
The pseudoranges of a Global Navigation Satellite System (GNSS) meta-signal can be reconstructed from the observations of its side-band components. More specifically, the Hatch–Melbourne–Wübbena (HMW) code-carrier combination is used to solve the ambiguity associated to the wide-lane carrier phase combination of the side-band [...] Read more.
The pseudoranges of a Global Navigation Satellite System (GNSS) meta-signal can be reconstructed from the observations of its side-band components. More specifically, the Hatch–Melbourne–Wübbena (HMW) code-carrier combination is used to solve the ambiguity associated to the wide-lane carrier phase combination of the side-band components, obtaining a high-accuracy pseudorange. The HMW and the wide-lane combinations thus play a key role in constructing meta-signal measurements. The theory of GNSS meta-signals was recently extended to the case with a number of components equal to a power of two. This theory can be used to generalize HMW and wide-lane combinations to the quad-frequency case. This is carried out through a Hadamard matrix of order four, which defines a narrow-lane and three wide-lane combinations. This paper characterizes meta-signal-inspired quad-frequency HMW and wide-lane measurements combinations using Beidou Navigation Satellite System (BDS) observations. Two professional Septentrio PolarRx5S multi-frequency, multi-constellation receivers were set up in a zero-baseline configuration and used to collect observables from all the BDS open frequencies. These measurements are used to characterize different quad-frequency HMW and wide-lane carrier combinations. Some of the combinations analyzed have large equivalent wavelengths and have the potential to enable single-epoch ambiguity resolution in scenarios where short convergence times are required. Full article
(This article belongs to the Special Issue Precision Positioning and Navigation Communication Systems)
Show Figures

Graphical abstract

22 pages, 4650 KiB  
Article
RGB Indices Can Be Used to Estimate NDVI, PRI, and Fv/Fm in Wheat and Pea Plants Under Soil Drought and Salinization
by Yuriy Zolin, Alyona Popova, Lyubov Yudina, Kseniya Grebneva, Karina Abasheva, Vladimir Sukhov and Ekaterina Sukhova
Plants 2025, 14(9), 1284; https://doi.org/10.3390/plants14091284 - 23 Apr 2025
Viewed by 703
Abstract
Soil drought and salinization are key abiotic stressors for agricultural plants; the development of methods of their early detection is an important applied task. Measurement of red-green-blue (RGB) indices, which are calculated on basis of color images, is a simple method of proximal [...] Read more.
Soil drought and salinization are key abiotic stressors for agricultural plants; the development of methods of their early detection is an important applied task. Measurement of red-green-blue (RGB) indices, which are calculated on basis of color images, is a simple method of proximal and remote sensing of plant health under the action of stressors. Potentially, RGB indices can be used to estimate narrow-band reflectance indices and/or photosynthetic parameters in plants. Analysis of this problem was the main task of the current work. We investigated relationships of six RGB indices (r, g, b, ExG, VEG, and VARI) to widely used narrow-band reflectance indices (the normalized difference vegetation index, NDVI, and photochemical reflectance index, PRI) and the potential quantum yield of photosystem II (Fv/Fm) in wheat and pea plants under soil drought and salinization. It was shown that investigated RGB indices, NDVI, PRI, and Fv/Fm were significantly changed under the action of both stressors; changes in some RGB indices (e.g., ExG) were initiated on the early stage of action of drought or salinization. Correlation analysis showed that RGB indices (especially, ExG, VARY, and g) were strongly related to the NDVI, PRI, and Fv/Fm; linear regressions between these values were calculated. It means that RGB indices measured by simple and low-cost color cameras can be used to estimate plant parameters (NDVI, PRI, and Fv/Fm) requiring sophisticated equipment to measure. Full article
Show Figures

Figure 1

19 pages, 566 KiB  
Article
Bayesian FDOA Positioning with Correlated Measurement Noise
by Wenjun Zhang, Xi Li, Yi Liu, Le Yang and Fucheng Guo
Remote Sens. 2025, 17(7), 1266; https://doi.org/10.3390/rs17071266 - 2 Apr 2025
Viewed by 349
Abstract
In this paper, the problem of source localization using only frequency difference of arrival (FDOA) measurements is considered. A new FDOA-only localization technique is developed to determine the position of a narrow-band source. In this scenario, time difference of arrival (TDOA) measurements are [...] Read more.
In this paper, the problem of source localization using only frequency difference of arrival (FDOA) measurements is considered. A new FDOA-only localization technique is developed to determine the position of a narrow-band source. In this scenario, time difference of arrival (TDOA) measurements are not normally useful because they may have large errors due to the received signal having a small bandwidth. Conventional localization algorithms such as the two-stage weighted least squares (TSWLS) method, which jointly exploits TDOA and FDOA measurements for positioning, are thus no longer applicable since they will suffer from the thresholding effect and yield meaningless localization results. FDOA-only localization is non-trivial, mainly due to the high nonlinearity inherent in FDOA equations. Even with two FDOA measurements being available, FDOA-only localization still requires finding the roots of a high-order polynomial. For practical scenarios with more sensors, a divide-and-conquer (DAC) approach may be applied, but the positioning solution is suboptimal due to ignoring the correlation between FDOA measurements. To address these challenges, in this work, we propose a Bayesian approach for FDOA-only source positioning. The developed method, referred to as the Gaussian division method (GDM), first converts one FDOA measurement into a Gaussian mixture model (GMM) that specifies the prior distribution of the source position. Next, the GDM assumes uncorrelated FDOA measurements and fuses the remaining FDOAs sequentially by invoking nonlinear filtering techniques to obtain an initial positioning result. The GDM refines the solution by taking into account and compensating for the information loss caused by ignoring that the FDOAs are in fact correlated. Extensive simulations demonstrate that the proposed algorithm provides improved performance over existing methods and that it can attain the Cramér–Rao lower bound (CRLB) accuracy under moderate noise levels. Full article
Show Figures

Figure 1

11 pages, 3802 KiB  
Article
A Combined Approach Using Strip Grafts and Xenogenic Dermal Matrix for Peri-Implant Keratinized Mucosa Augmentation in the Mandible: A Case Series
by Xinda Li, Dániel Palkovics, Péter Windisch, Željka Perić Kačarević and Attila Horváth
Biomedicines 2025, 13(4), 806; https://doi.org/10.3390/biomedicines13040806 - 27 Mar 2025
Viewed by 605
Abstract
Background: Ensuring a minimum peri-implant keratinized mucosa width (PIKM-W) is critical for maintaining dental implant health, as inadequate PIKM-W is associated with increased risks of plaque accumulation, mucosal inflammation, and peri-implantitis. While epithelialized connective tissue grafts (ECTGs) are considered the gold standard for [...] Read more.
Background: Ensuring a minimum peri-implant keratinized mucosa width (PIKM-W) is critical for maintaining dental implant health, as inadequate PIKM-W is associated with increased risks of plaque accumulation, mucosal inflammation, and peri-implantitis. While epithelialized connective tissue grafts (ECTGs) are considered the gold standard for soft tissue augmentation, they often lead to significant patient morbidity. Xenogeneic dermal matrices (XDMs) offer a less invasive alternative, but are prone to shrinkage, particularly in the mandible. The aim of this study was to evaluate a new surgical method to overcome these limitations with the combination of a narrow band of ECTG (autogenous strip graft, ASG) and an XDM to augment the PIKM-W in the posterior mandible. Methods: Twelve patients with a PIKM-W of less than 2 mm in the mandible underwent peri-implant soft tissue augmentation using this combined approach. Changes in the PIKM-W were measured preoperatively; immediately postoperatively; and at 1, 3, 6, 9, and 12 months. Graft remodeling (shrinkage or contraction) and PIKM thickness (PIKM-T) were also evaluated over time. Results: Preoperatively, the mean PIKM-W was 0.39 ± 0.40 mm and the PIKM-T was 1.36 ± 0.43 mm. At 6 months, the mean PIKM-W was 4.93 ± 0.98 mm and the PIKM-T was 2.88 ± 0.80 mm, with shrinkage of 39.2 ± 14.1%. By 12 months, the mean PIKM-W stabilized at 4.58 ± 1.28 mm and the PIKM-T stabilized at 2.83 ± 0.65 mm, with shrinkage of 42.2% ± 16.8%. Conclusions: There were statistically significant differences in clinical parameters between the baseline and 6 and 12 months (p < 0.05). This technique demonstrated the potential for stable augmentation of PIKM-W and PIKM-T over time, with manageable shrinkage. However, further studies with larger sample sizes are needed to confirm its clinical efficacy as an alternative for mandibular keratinized mucosa augmentation around implants. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

11 pages, 1240 KiB  
Article
Calibration of a Quartz Tuning Fork as a Sound Detector
by Judith Falkhofen and Marcus Wolff
Appl. Sci. 2025, 15(7), 3655; https://doi.org/10.3390/app15073655 - 26 Mar 2025
Viewed by 365
Abstract
This study compares the performance of a quartz tuning fork (QTF) with a highly sensitive ultrasound microphone in the context of acoustic measurements, applying the substitution calibration method. QTF sensors are increasingly used for high-precision tasks due to their sensitivity and stability, while [...] Read more.
This study compares the performance of a quartz tuning fork (QTF) with a highly sensitive ultrasound microphone in the context of acoustic measurements, applying the substitution calibration method. QTF sensors are increasingly used for high-precision tasks due to their sensitivity and stability, while microphones are still the standard in general acoustic measurements. The aim of this study is to evaluate both technologies across several key performance metrics, including linearity of response, sensitivity, noise characteristics, and acoustic detection limit. Which sensor is better suited to which acoustic and physical condition? The results show that QTFs perform exceptionally well in applications requiring high precision, especially in high-frequency and narrow-band measurements. The signal-to-noise-ratio (SNR) of the QTF at its resonance frequency is 14 dB higher than that of the microphone, whereas the detection limit and linearity are comparable. The findings suggest that QTF sensors are particularly advantageous for specialized applications like photoacoustic spectroscopy (PAS). Full article
(This article belongs to the Special Issue Application of Ultrasonic Non-destructive Testing)
Show Figures

Figure 1

21 pages, 5943 KiB  
Article
Application of a Soft-Switching Adaptive Kalman Filter for Over-Range Measurements in a Low-Frequency Extension of MHD Sensors
by Junze Tong, Shaocen Shi, Fuchao Wang and Dapeng Tian
Aerospace 2025, 12(3), 192; https://doi.org/10.3390/aerospace12030192 - 27 Feb 2025
Cited by 1 | Viewed by 1093
Abstract
The increasing demand for image quality in aerospace remote sensing has led to higher performance requirements for inertial stabilization platforms equipped with image sensors, particularly in terms of bandwidth. To achieve wide-bandwidth control in optical stabilization platforms, engineers employ magneto-hydrodynamic (MHD) sensors as [...] Read more.
The increasing demand for image quality in aerospace remote sensing has led to higher performance requirements for inertial stabilization platforms equipped with image sensors, particularly in terms of bandwidth. To achieve wide-bandwidth control in optical stabilization platforms, engineers employ magneto-hydrodynamic (MHD) sensors as key components to enhance system performance because of their wide measurement bandwidth (5–1000 Hz). While MHD sensors offer a wide-frequency response, they are limited by a narrow measuring range and low sensitivity at low frequencies, making them unsuitable as standalone sensors. To address the challenges of over-range measurement and the loss of low-frequency signals, in this study, we developed a soft-switching adaptive Kalman filter method, which enables us to dynamically adjust the fusion weights in the Kalman filter so we can obtain wide-band measurement signals even when the MHD sensor experiences over-range conditions. The proposed method was validated with fusion experiments involving a fiber-optic gyroscope and an MHD sensor; the results demonstrate its ability to expand the sensing bandwidth, regardless of the operating conditions of the MHD sensor. Full article
(This article belongs to the Topic Multi-Sensor Integrated Navigation Systems)
Show Figures

Figure 1

15 pages, 4641 KiB  
Article
Low-Bandgap Ferroelectric h-LuMnO3 Thin Films for Photovoltaic Applications
by Abderrazzak Ait Bassou, Lisete Fernandes, Denis O. Alikin, Mafalda S. Moreira, Bogdan Postolnyi, Rui Vilarinho, José Ramiro Fernandes, Fábio Gabriel Figueiras and Pedro B. Tavares
Materials 2025, 18(5), 1058; https://doi.org/10.3390/ma18051058 - 27 Feb 2025
Viewed by 731
Abstract
This work explores the deposition of hexagonal (h-) LuMnO3 thin films in the P63cm phase and investigates the conditions under which the synergy of ferroelectric and photoactive properties, can be achieved to confirm the potential of this material [...] Read more.
This work explores the deposition of hexagonal (h-) LuMnO3 thin films in the P63cm phase and investigates the conditions under which the synergy of ferroelectric and photoactive properties, can be achieved to confirm the potential of this material for applications in the development of next-generation photovoltaic devices. Single-phase h-LuMnO3 was successfully deposited on different substrates, and the thermal stability of the material was confirmed by Micro-Raman spectroscopy analysis from 77 to 850 K, revealing the suitable ferro- to para-electric transition near 760 K. Optical measurements confirm the relatively narrow band gap at 1.5 eV, which corresponds to the h-LuMnO3 system. The presence of domain structures and the signature of hysteresis loops consistent with ferroelectric behaviour were confirmed by piezoresponse force microscopy. In addition, light-dependent photocurrent measurements revealed the photoactive sensitivity of the material. Full article
(This article belongs to the Special Issue Advanced Photovoltaic Materials: Properties and Applications)
Show Figures

Graphical abstract

13 pages, 4761 KiB  
Article
Growth Rate, Tree Rings, and Wood Anatomy of a Tropical Cloud Forest Tree Invader
by Guadalupe Williams-Linera, Milton H. Díaz-Toribio and Guillermo Angeles
Forests 2025, 16(2), 258; https://doi.org/10.3390/f16020258 - 30 Jan 2025
Viewed by 1035
Abstract
The presence of shade-tolerant tree invaders has been recently noted in tropical and temperate forest understories. Maximum growth rate is an important trait for exotic trees becoming invaders in a forest. This study aimed to determine the growth rate of Eriobotrya japonica in [...] Read more.
The presence of shade-tolerant tree invaders has been recently noted in tropical and temperate forest understories. Maximum growth rate is an important trait for exotic trees becoming invaders in a forest. This study aimed to determine the growth rate of Eriobotrya japonica in a secondary cloud forest in central Veracruz, Mexico. The objectives of this study were to determine wood density, tree ring boundaries and number, and their relationship to diameter at breast height (DBH) and climate data. Tree ring counts were obtained using Python-based software with subsequent visual validation. Growth rates were measured using diametric tape, dendrometric bands, and the pinning method. The number of rings increased with DBH, presenting values ranging from 14 to 27. Tree rings were delimited by fibers that were five times narrower in the ring limit zone than in the intra-ring zone. The growth ring delimitation zones were formed when vascular cambium activity stalled during the relatively dry-cold season (January–February). The growth rate of E. japonica was statistically similar (ca. 0.2 mm yr−1) regardless of the method employed to measure it. Relative growth rate was low (0.02 cm cm−1 yr−1). Wood density (0.76 g cm−3) values lay within the upper values for mature forest trees. Eriobotrya japonica is a potential invader, with traits such as high wood density and a relatively low growth rate, which are characteristic of the shade-tolerant tree species. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

Back to TopTop