Retrieval of Chlorophyll-a Concentration in Nanyi Lake Using the AutoGluon Framework
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sentinel-2 Imagery and Preprocessing
2.3. In Situ Water Quality Measurements and Preprocessing
2.4. Automatic Machine Learning Framework
2.5. Technical Workflow
3. Results and Discussion
3.1. Optimal Combination of Characteristic Spectral Bands
3.1.1. Feature Selection and Scoring
3.1.2. Feature Engineering and Evaluation
3.2. Remote Sensing-Based Inversion of Chlorophyll-a Concentration
3.3. Discussion
3.3.1. Advantages and Limitations of AutoGluon
3.3.2. Effects of Atmospheric Correction on Inversion Accuracy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Free, G.; Bresciani, M.; Trodd, W.; Tierney, D.; O’Boyle, S.; Plant, C.; Deakin, J. Estimation of lake ecological quality from Sentinel-2 remote sensing imagery. Hydrobiologia 2020, 847, 1423–1438. [Google Scholar] [CrossRef]
- Huang, W.; Mukherjee, D.; Chen, S. Assessment of Hurricane Ivan impact on chlorophyll-a in Pensacola Bay by MODIS 250 m remote sensing. Mar. Pollut. Bull. 2011, 62, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, B.A.; Hagy, J.D.; Conmy, R.N.; Lehrter, J.C.; Stumpf, R.P. An approach to developing numeric water quality criteria for coastal waters using the SeaWiFS satellite data record. Environ. Sci. Technol. 2012, 46, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Mishra, D.R.; Schaeffer, B.A.; Keith, D. Performance evaluation of normalized difference chlorophyll index in northern Gulf of Mexico estuaries using the Hyperspectral Imager for the Coastal Ocean. GIScience Remote Sens. 2014, 51, 175–198. [Google Scholar] [CrossRef]
- Mineeva, N. Chlorophyll and its role in freshwater ecosystem on the example of the Volga River reservoirs. In Chlorophylls; IntechOpen: London, UK, 2022. [Google Scholar]
- Liu, Y.; Li, J.; Xiao, C.; Zhang, F.; Wang, S. Inland water chlorophyll-a retrieval based on ZY-1 02D satellite hyperspectral observations. Natl. Remote Sens. Bull. 2022, 26, 168–178. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, Y.; Zhu, G.; Liu, X.; Zhou, Y.; Xu, H.; Qin, B.; Liu, G.; Li, Y. Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250 m MODIS-Aqua data. Remote Sens. Environ. 2015, 164, 43–56. [Google Scholar] [CrossRef]
- Gidudu, A.; Letaru, L.; Kulabako, R.N. Empirical modeling of chlorophyll a from MODIS satellite imagery for trophic status monitoring of Lake Victoria in East Africa. J. Great Lakes Res. 2021, 47, 1209–1218. [Google Scholar] [CrossRef]
- Ouma, Y.O.; Noor, K.; Herbert, K. Modelling Reservoir Chlorophyll-a, TSS, and Turbidity Using Sentinel-2A MSI and Landsat-8 OLI Satellite Sensors with Empirical Multivariate Regression. J. Sens. 2020, 2020, 8858408. [Google Scholar] [CrossRef]
- Dorji, P.; Fearns, P.; Broomhall, M. A semi-analytic model for estimating total suspended sediment concentration in turbid coastal waters of northern Western Australia using MODIS-Aqua 250 m data. Remote Sens. 2016, 8, 556. [Google Scholar] [CrossRef]
- Watanabe, F.; Alcântara, E.; Imai, N.; Rodrigues, T.; Bernardo, N. Estimation of chlorophyll-a concentration from optimizing a semi-analytical algorithm in productive inland waters. Remote Sens. 2018, 10, 227. [Google Scholar] [CrossRef]
- Allan, M.G.; Hamilton, D.P.; Hicks, B.; Brabyn, L. Empirical and semi-analytical chlorophyll a algorithms for multi-temporal monitoring of New Zealand lakes using Landsat. Environ. Monit. Assess. 2015, 187, 364. [Google Scholar] [CrossRef] [PubMed]
- Blix, K.; Li, J.; Massicotte, P.; Matsuoka, A. Developing a new machine-learning algorithm for estimating chlorophyll-a concentration in optically complex waters: A case study for high northern latitude waters by using Sentinel 3 OLCI. Remote Sens. 2019, 11, 2076. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, M.; Wang, Z. Estimation of chlorophyll-a Concentration of lakes based on SVM algorithm and Landsat 8 OLI images. Environ. Sci. Pollut. Res. 2020, 27, 14977–14990. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Luo, J.; Cao, Z.; Xue, K.; Qi, T.; Ma, J.; Liu, D.; Song, K.; Feng, L.; Duan, H. Random forest: An optimal chlorophyll-a algorithm for optically complex inland water suffering atmospheric correction uncertainties. J. Hydrol. 2022, 615, 128685. [Google Scholar] [CrossRef]
- Syariz, M.A.; Lin, C.H.; Nguyen, M.V.; Jaelani, L.M.; Blanco, A.C. WaterNet: A convolutional neural network for chlorophyll-a concentration retrieval. Remote Sens. 2020, 12, 1966. [Google Scholar] [CrossRef]
- Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020, 415, 295–316. [Google Scholar] [CrossRef]
- Bischl, B.; Binder, M.; Lang, M.; Pielok, T.; Richter, J.; Coors, S.; Thomas, J.; Ullmann, T.; Becker, M.; Boulesteix, A.L.; et al. Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2023, 13, e1484. [Google Scholar] [CrossRef]
- Claesen, M.; De Moor, B. Hyperparameter search in machine learning. arXiv 2015, arXiv:1502.02127. [Google Scholar] [CrossRef]
- Erickson, N.; Mueller, J.; Shirkov, A.; Zhang, H.; Larroy, P.; Li, M.; Smola, A. Autogluon-tabular: Robust and accurate automl for structured data. arXiv 2020, arXiv:2003.06505. [Google Scholar]
- Madni, H.A.; Umer, M.; Ishaq, A.; Abuzinadah, N.; Saidani, O.; Alsubai, S.; Hamdi, M.; Ashraf, I. Water-quality prediction based on H2O AutoML and explainable AI techniques. Water 2023, 15, 475. [Google Scholar] [CrossRef]
- Kim, G.E.; Steller, M.; Olson, S. Modeling watershed nutrient concentrations with AutoML. In Proceedings of the 10th International Conference on Climate Informatics, Online, 22–25 September 2020; pp. 86–90. [Google Scholar]
- Prasad, D.V.V.; Kumar, P.S.; Venkataramana, L.Y.; Prasannamedha, G.; Harshana, S.; Srividya, S.J.; Harrinei, K.; Indraganti, S. Automating water quality analysis using ML and auto ML techniques. Environ. Res. 2021, 202, 111720. [Google Scholar] [CrossRef] [PubMed]
- Prasad, D.V.V.; Venkataramana, L.Y.; Kumar, P.S.; Prasannamedha, G.; Harshana, S.; Srividya, S.J.; Harrinei, K.; Indraganti, S. Analysis and prediction of water quality using deep learning and auto deep learning techniques. Sci. Total Environ. 2022, 821, 153311. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Qi, C.; Li, G.; Zhang, W. TP concentration inversion and pollution sources in Nanyi Lake based on Landsat 8 data and InVEST model. Sustainability 2023, 15, 9678. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Acolite for Sentinel-2: Aquatic applications of MSI imagery. In Proceedings of the 2016 ESA Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; Volume 9. [Google Scholar]
- Vanhellemont, Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
- Castagna, A.; Vanhellemont, Q. A generalized physics-based correction for adjacency effects. Appl. Opt. 2025, 64, 2719–2743. [Google Scholar] [CrossRef]
- HJ 897-2017; Water Quality—Determination of Chlorophyll a—Spectrophotometric Method. Ministry of Ecology and Environment of People’s Republic of China: Beijing, China, 2017. Available online: https://english.mee.gov.cn/Resources/standards/water_environment/method_standard2/201801/t20180105_429208.shtml (accessed on 18 July 2025).
- Johan, F.; Jafri, M.; Lim, H.; Maznah, W.W. Laboratory measurement: Chlorophyll-a concentration measurement with acetone method using spectrophotometer. In Proceedings of the 2014 IEEE International Conference on Industrial Engineering and Engineering Management, Selangor Darul Ehsan, Malaysia, 9–12 December 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 744–748. [Google Scholar]
- Tang, J.W.; Tian, G.L.; Wang, X.Y.; Wang, X.M.; Song, Q.J. The methods of water spectra measurement and analysis I: Above-water method. J. Natl. Remote Sens. Bull. 2004, 8, 37–44. [Google Scholar]
- Qian-cheng, D.; Yong, X.; Zui, T.; Wen, S.; Fei-yu, P.; Yi, S.; Bang-hui, Y. Research on fluorescence retrieval algorithm of chlorophyll a concentration in Nanyi lake. Spectrosc. Spectr. Anal. 2022, 42, 3941–3947. [Google Scholar]
- Cui, T.; Ding, J.; Jia, F.; Mu, B.; Liu, R.; Xu, P.; Liu, J.; Zhang, J. Out-of-band response for the Coastal Zone Imager (CZI) onboard China’s ocean color satellite HY-1C: Effect on the observation just above the sea surface. Sensors 2018, 18, 3067. [Google Scholar] [CrossRef] [PubMed]
- Zounemat-Kermani, M.; Batelaan, O.; Fadaee, M.; Hinkelmann, R. Ensemble machine learning paradigms in hydrology: A review. J. Hydrol. 2021, 598, 126266. [Google Scholar] [CrossRef]
- Ting, K.M.; Witten, I.H. Stacking Bagged and Dagged Models. In Proceedings of the 14th International Conference on Machine Learning, San Francisco, CA, USA, 8–12 July 1997; pp. 367–375. [Google Scholar]
- Cohen, I.; Huang, Y.; Chen, J.; Benesty, J.; Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. In Noise Reduction in Speech Processing; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–4. [Google Scholar]
- Fushiki, T. Estimation of prediction error by using K-fold cross-validation. Stat. Comput. 2011, 21, 137–146. [Google Scholar] [CrossRef]
- Delegido, J.; Verrelst, J.; Alonso, L.; Moreno, J. Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors 2011, 11, 7063–7081. [Google Scholar] [CrossRef] [PubMed]
- Clevers, J.G.; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Bramich, J.; Bolch, C.J.; Fischer, A. Improved red-edge chlorophyll-a detection for Sentinel 2. Ecol. Indic. 2021, 120, 106876. [Google Scholar] [CrossRef]
- Al-Najjar, H.A.; Pradhan, B.; Beydoun, G.; Sarkar, R.; Park, H.J.; Alamri, A. A novel method using explainable artificial intelligence (XAI)-based Shapley Additive Explanations for spatial landslide prediction using Time-Series SAR dataset. Gondwana Res. 2023, 123, 107–124. [Google Scholar] [CrossRef]
- Sun, D.; Gu, Q.; Wen, H.; Xu, J.; Zhang, Y.; Shi, S.; Xue, M.; Zhou, X. Assessment of landslide susceptibility along mountain highways based on different machine learning algorithms and mapping units by hybrid factors screening and sample optimization. Gondwana Res. 2023, 123, 89–106. [Google Scholar] [CrossRef]
- Hamrick, J.M. A Three-Dimensional Environmental Fluid Dynamics Computer Code: Theoretical and Computational Aspects; Virginia Institute of Marine Science: Gloucester Point, VA, USA, 1992. [Google Scholar]
- Chen, C.; Chen, Q.; Yao, S.; He, M.; Zhang, J.; Li, G.; Lin, Y. Combining physical-based model and machine learning to forecast chlorophyll-a concentration in freshwater lakes. Sci. Total Environ. 2024, 907, 168097. [Google Scholar] [CrossRef] [PubMed]
- Ansari, A.F.; Stella, L.; Turkmen, C.; Zhang, X.; Mercado, P.; Shen, H.; Shchur, O.; Rangapuram, S.S.; Arango, S.P.; Kapoor, S.; et al. Chronos: Learning the language of time series. arXiv 2024, arXiv:2403.07815. [Google Scholar] [CrossRef]
- Zemp, M.; Chao, Q.; Han Dolman, A.J.; Herold, M.; Krug, T.; Speich, S.; Suda, K.; Thorne, P.; Yu, W. GCOS 2022 Implementation Plan; Technical Report; World Meteorological Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Pahlevan, N.; Mangin, A.; Balasubramanian, S.V.; Smith, B.; Alikas, K.; Arai, K.; Barbosa, C.; Bélanger, S.; Binding, C.; Bresciani, M.; et al. ACIX-Aqua: A global assessment of atmospheric correction methods for Landsat-8 and Sentinel-2 over lakes, rivers, and coastal waters. Remote Sens. Environ. 2021, 258, 112366. [Google Scholar] [CrossRef]
- Cetinic, I.; McClain, C.R.; Werdell, P.J.; Ahmad, Z.; Franz, B.A.; Karakoylu, E.M.; McKinna, L.I.; Patt, F.S. PACE Technical Report Series, Volume 6: Data Product Requirements and Error Budgets Consensus Document; Technical Report; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2019.
- Frouin, R.J.; Franz, B.A.; Ibrahim, A.; Knobelspiesse, K.; Ahmad, Z.; Cairns, B.; Chowdhary, J.; Dierssen, H.M.; Tan, J.; Dubovik, O.; et al. Atmospheric correction of satellite ocean-color imagery during the PACE era. Front. Earth Sci. 2019, 7, 145. [Google Scholar] [CrossRef] [PubMed]
Band | Wavelength Range (nm) | Central Wavelength (nm) | Bandwidth (nm) | Spatial Resolution (m) |
---|---|---|---|---|
B1 | 411–456 | 443 | 20 | 60 |
B2 | 456–532 | 490 | 65 | 10 |
B3 | 536–582 | 560 | 35 | 10 |
B4 | 646–685 | 665 | 30 | 10 |
B5 | 694–714 | 705 | 15 | 20 |
B6 | 730–748 | 740 | 15 | 20 |
B7 | 766–794 | 783 | 20 | 20 |
B8 | 774–907 | 842 | 105 | 10 |
B8A | 848–880 | 865 | 20 | 20 |
B9 | 930–957 | 945 | 20 | 60 |
B10 | 1339–1415 | 1375 | 30 | 60 |
B11 | 1538–1679 | 1610 | 90 | 20 |
B12 | 2065–2303 | 2190 | 180 | 20 |
Date | Number of Samples | Overpassing Satellite | Matching Samples | Cloud Cover |
---|---|---|---|---|
2 June 2022 | 10 | Sentinel-2A | 4 | 24.2% |
15 June 2022 | 12 | Sentinel-2A | 6 | 2.96% |
1 August 2022 | 12 | Sentinel-2A | 12 | 28.1% |
2 August 2022 | 12 | - | - | - |
19 September 2022 | 13 | - | - | - |
18 October 2022 | 26 | Sentinel-2B | 26 | 0.01% |
Band | R2 (S2B) | MAPE (S2B) | MdSA (S2B) | R2 (S2A) | MAPE (S2A) | MdSA (S2A) |
---|---|---|---|---|---|---|
B2 | 0.92 | 13.19% | 14.31% | 0.28 | 25.12% | 24.44% |
B3 | 0.92 | 6.89% | 5.29% | 0.61 | 20.22% | 19.33% |
B4 | 0.94 | 6.61% | 6.95% | 0.80 | 13.32% | 11.50% |
B5 | 0.92 | 11.20% | 9.51% | 0.70 | 12.05% | 7.44% |
B6 | 0.90 | 9.34% | 9.46% | 0.12 | 36.73% | 29.44% |
B7 | 0.90 | 11.28% | 10.35% | 0.37 | 47.92% | 36.56% |
B8 | 0.89 | 12.09% | 9.04% | 0.03 | 42.77% | 44.30% |
B8A | 0.84 | 11.10% | 6.92% | 0.002 | 76.25% | 66.84% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, W.; Liang, J.; Yang, L.; Guo, S.; Jia, R. Retrieval of Chlorophyll-a Concentration in Nanyi Lake Using the AutoGluon Framework. Water 2025, 17, 2190. https://doi.org/10.3390/w17152190
Gu W, Liang J, Yang L, Guo S, Jia R. Retrieval of Chlorophyll-a Concentration in Nanyi Lake Using the AutoGluon Framework. Water. 2025; 17(15):2190. https://doi.org/10.3390/w17152190
Chicago/Turabian StyleGu, Weibin, Ji Liang, Lian Yang, Shanshan Guo, and Ruixin Jia. 2025. "Retrieval of Chlorophyll-a Concentration in Nanyi Lake Using the AutoGluon Framework" Water 17, no. 15: 2190. https://doi.org/10.3390/w17152190
APA StyleGu, W., Liang, J., Yang, L., Guo, S., & Jia, R. (2025). Retrieval of Chlorophyll-a Concentration in Nanyi Lake Using the AutoGluon Framework. Water, 17(15), 2190. https://doi.org/10.3390/w17152190