materials-logo

Journal Browser

Journal Browser

Advanced Photovoltaic Materials: Properties and Applications

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Energy Materials".

Deadline for manuscript submissions: 20 September 2025 | Viewed by 1382

Special Issue Editor


E-Mail Website
Guest Editor
Virginia Polytechnic Institute, State University, Blacksburg, VA, USA
Interests: solar thermal and photovoltaics; thin films; semiconductor devices

Special Issue Information

Dear Colleagues,

Solar energy is the most productive approach to energy capture in nature. The development of promising solar cell materials and devices is extremely important and relevant in the context of clean and renewable energy sources for terrestrial applications. Nowadays, a variety of highly efficient devices are constantly emerging. Thin-film solar cells fabricated from chalcopyrite Cu(In,Ga)Se2 (CIGSe), kesterite Cu2ZnSn(S,Se)4 (CZTSSe), CdTe, Sb2Se3, and inorganic perovskite CsPb(I1−xBrx)3 show potential in the fast-growing photovoltaic (PV) market. Understanding the growth of the absorber layers, device performance, current challenges, and key strategies for performance enhancement is essential.

This Special Issue aims to provide an overview of the fabrication and characterization of novel solar cell materials and devices using different chemical and physical vapor deposition methods and to study the material properties and the device’s performance. Original research papers and short reviews addressing the synthesis and characterization of new and novel materials for solar cell applications and the device results.

We look forward to receiving your contributions.

Dr. Paruchuri Kondaiah
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • organic and inorganic photovoltaics
  • thin films
  • efficiency
  • transparent conducting films
  • device fabrication

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 4641 KiB  
Article
Low-Bandgap Ferroelectric h-LuMnO3 Thin Films for Photovoltaic Applications
by Abderrazzak Ait Bassou, Lisete Fernandes, Denis O. Alikin, Mafalda S. Moreira, Bogdan Postolnyi, Rui Vilarinho, José Ramiro Fernandes, Fábio Gabriel Figueiras and Pedro B. Tavares
Materials 2025, 18(5), 1058; https://doi.org/10.3390/ma18051058 - 27 Feb 2025
Viewed by 498
Abstract
This work explores the deposition of hexagonal (h-) LuMnO3 thin films in the P63cm phase and investigates the conditions under which the synergy of ferroelectric and photoactive properties, can be achieved to confirm the potential of this material [...] Read more.
This work explores the deposition of hexagonal (h-) LuMnO3 thin films in the P63cm phase and investigates the conditions under which the synergy of ferroelectric and photoactive properties, can be achieved to confirm the potential of this material for applications in the development of next-generation photovoltaic devices. Single-phase h-LuMnO3 was successfully deposited on different substrates, and the thermal stability of the material was confirmed by Micro-Raman spectroscopy analysis from 77 to 850 K, revealing the suitable ferro- to para-electric transition near 760 K. Optical measurements confirm the relatively narrow band gap at 1.5 eV, which corresponds to the h-LuMnO3 system. The presence of domain structures and the signature of hysteresis loops consistent with ferroelectric behaviour were confirmed by piezoresponse force microscopy. In addition, light-dependent photocurrent measurements revealed the photoactive sensitivity of the material. Full article
(This article belongs to the Special Issue Advanced Photovoltaic Materials: Properties and Applications)
Show Figures

Graphical abstract

15 pages, 6558 KiB  
Article
The Effect of Hydrogen Annealing on the Electronic Conductivity of Al-Doped Zinc Oxide Thin Films
by Ryoma Kawashige and Hideyuki Okumura
Materials 2025, 18(5), 1032; https://doi.org/10.3390/ma18051032 - 26 Feb 2025
Viewed by 294
Abstract
In this research, Hall effect experiments and optical fittings were mainly conducted to elucidate the effect of hydrogen annealing on the electronic properties of polycrystalline Al-doped Zinc Oxide thin films by distinguishing the scattering by ion impurities and the scattering by grain boundaries. [...] Read more.
In this research, Hall effect experiments and optical fittings were mainly conducted to elucidate the effect of hydrogen annealing on the electronic properties of polycrystalline Al-doped Zinc Oxide thin films by distinguishing the scattering by ion impurities and the scattering by grain boundaries. By comparing the carrier density and those mobilities of H2-annealed samples with Ar-annealed samples, the effect of H2 annealing was highlighted. AZO thin films were prepared on the quartz glass substrate at R.T. by an RF magnetron sputtering method, and the carrier density was controlled by changing the number of Al chips on the Zn target. After fabricating them, they were post-annealed in hydrogen or argon gas. Optical fitting was based on the Drude model using the experimental data of Near-Infrared spectroscopy, and the mobility at grain boundaries was analyzed by Seto’s theory. Other optical and crystalline properties were also checked by SEM, EDX, XRD and profilometer. It is indicated that the H2 annealing would improve both carrier density and mobility. The analysis referring to Seto’s theory implied that the improvement of mobility was caused by the carrier generation from introduced hydrogen atoms both at the grain boundary and its intragrain region. Furthermore, the effect of H2 annealing is relatively pronounced especially in low-doped region, which implies that Al and H have some interaction in AZO thin film. The interaction between Al and H in AZO thin film is still not confirmed, but this result implied that this interaction negatively affects the mobility at grain boundary. Full article
(This article belongs to the Special Issue Advanced Photovoltaic Materials: Properties and Applications)
Show Figures

Figure 1

Back to TopTop