DynaFusion-SLAM: Multi-Sensor Fusion and Dynamic Optimization of Autonomous Navigation Algorithms for Pasture-Pushing Robot
Abstract
:1. Introduction
2. Related Work
2.1. Design of Navigation System for Pasture-Pushing Robot
2.1.1. Operational Requirements for Research Context
2.1.2. Robot Structure
3. Experiment
3.1. Laser SLAM Algorithm Selection
Gazebo Emulation Platform Test
3.2. Mapping and Navigation Based on Multi-Sensor Fusion
3.2.1. Principles and Improvements of the RTAB-Map Algorithm
3.2.2. Construction of a Multi-Sensor Fusion Navigation Algorithm Framework
3.3. Autonomous Navigation Experiment in a Simulated Pasture Scenario
3.3.1. Simulation Scenario Construction
3.3.2. Experimental Environmental Reconstruction of RTAB-Map Algorithm Incorporating Multi-Source Odometry Data
3.3.3. Autonomous Navigation Experiment 1
3.3.4. Autonomous Navigation Experiment 2
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, D.; Huang, Y.; Xiong, Y.; Liu, J.; Tan, Z.; Lv, S. Research progress on robotic technology in the field of livestock and poultry farming. J. South China Agric. Univ. 2024, 45, 624–634. [Google Scholar]
- Doss, A.S.A.; Jeyabalan, A.; Borah, P.R.; Lingampally, P.K.; Schilberg, I.D. Advancements in Agricultural Automation: A Comprehensive Review of Artificial Intelligence and Humanoid Robotics in Farming. Int. J. Humanoid Robot. 2024, 21, 2350012. [Google Scholar] [CrossRef]
- Pavkin, D.Y.; Nikitin, E.A.; Shilin, D.V.; Belyakov, M.V.; Golyshkov, I.A.; Mikhailichenko, S.; Chepurina, E. Development Results of a Cross-Platform Positioning System for a Robotics Feed System at a Dairy Cattle Complex. Agriculture 2023, 13, 1422. [Google Scholar] [CrossRef]
- Pavkin, D.Y.; Shilin, D.V.; Nikitin, E.A.; Kiryushin, I.A. Designing and Simulating the Control Process of a Feed Pusher Robot Used on a Dairy Farm. Appl. Sci. 2021, 11, 10665. [Google Scholar] [CrossRef]
- Zhang, Q.; Ren, H.; Hu, J. Design and Experiment of Intelligent Feed-pushing Robot Based on Information Fusion. Trans. Chin. Soc. Agric. Mach. 2023, 54, 78–84, 93. [Google Scholar]
- Jiang, W.; Hao, H.; Fan, J.; Wang, L.; Wang, H. Rabbit feeding robot: Autonomous navigation and precision feeding. Biosyst. Eng. 2024, 239, 68–80. [Google Scholar] [CrossRef]
- Bae, J.; Park, S.; Jeon, K.; Choi, J.Y. Autonomous System of TMR (Total Mixed Ration) Feed Feeding Robot for Smart Cattle Farm. Int. J. Precis. Eng. Manuf. 2023, 24, 423–433. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, W.; Yang, J.; Wu, W.; Miao, H.; Zhang, S. An Approach for Autonomous Feeding Robot Path Planning in Poultry Smart Farm. Animals 2022, 12, 3089. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, J.; Ren, H. Experimental Study on Intelligent Pushing Method of Feeding Assistant Robot. J. South China Univ. Technol. Nat. Sci. Ed. 2022, 50, 111–120. [Google Scholar]
- Xie, B.; Jin, Y.; Faheem, M.; Gao, W.; Liu, J.; Jiang, H.; Cai, L.; Li, Y. Research progress of autonomous navigation technology for multi-agricultural scenes. Comput. Electron. Agric. 2023, 211, 107963. [Google Scholar] [CrossRef]
- Liu, K.; Yu, J.; Huang, Z.; Liu, L.; Shi, Y. Autonomous navigation system for greenhouse tomato picking robot based on laser SLAM. Alex. Eng. J. 2024, 100, 208–219. [Google Scholar] [CrossRef]
- Song, H.; Duan, Y.; Li, R.; Jiao, Y.; Wang, Z. Autonomous Navigation System for Pasture Intelligent Overthrowing Forage Robot Based on Laser SLAM. Trans. Chin. Soc. Agric. Mach. 2023, 54, 293–301. [Google Scholar]
- Zhou, X.; Wu, F.; Zou, X.; Meng, H.; Zhang, Y.; Luo, X. Method for locating picking points of grape clusters using multi-object recognition. Trans. Chin. Soc. Agric. Eng. 2023, 39, 166–177. [Google Scholar]
- Tian, F.; Hu, G.; Yu, S.; Wang, R.; Song, Z.; Yan, Y.; Li, F.; Wang, Z.; Yu, Z. Navigation Path Extraction and Experimental Research of Pusher Robot Based on Binocular Vision. Appl. Sci. 2022, 12, 6641. [Google Scholar] [CrossRef]
- Dong, R.; Wang, Y.; Kan, J. Visual Navigation Method for Robot Based on Improved ORB_SLAM2. Trans. Chin. Soc. Agric. Mach. 2022, 53, 306–317. [Google Scholar]
- Pan, Z.; Zhou, X.; Xu, X.; Liu, K.; Ji, H.; Lu, F.; Ye, C.; Zhou, W. Research on navigation and mapping in pregnancy pig house based on laser-vision fusion technology. Acta Agric. Zhejiangensis 2024, 36, 2358–2367. [Google Scholar]
- Han, W.; Gu, Q.; Gu, H.; Xia, R.; Gao, Y.; Zhou, Z.; Luo, K.; Fang, X.; Zhang, Y. Design of Chili Field Navigation System Based on Multi-Sensor and Optimized TEB Algorithm. Agronomy 2024, 14, 2872. [Google Scholar] [CrossRef]
- Liu, M.; Tao, Y.; Wang, Z.; Cui, W.; Shi, T. Research on Simultaneous localization and mapping Algorithm based on Lidar and IMU. Math. Biosci. Eng. 2023, 20, 8954–8974. [Google Scholar] [CrossRef]
- Wang, Z.; Li, P.; Zhang, Q.; Zhu, L.; Tian, W. A LiDAR-depth camera information fusion method for human robot collaboration environment. Inf. Fusion 2025, 114, 102717. [Google Scholar] [CrossRef]
- Su, Z.; Zou, W.; Zhai, C.; Tan, H.; Yang, S.; Qin, X. Design of an Autonomous Orchard Navigation System Based on Multi-Sensor Fusion. Agronomy 2024, 14, 2825. [Google Scholar] [CrossRef]
- Elamin, A.; El-Rabbany, A.; Jacob, S. Event-Based Visual/Inertial Odometry for UAV Indoor Navigation. Sensors 2025, 25, 61. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Li, Z.; Lv, Z.; Zhou, C.; Wu, P.; Zhu, C.; Liu, W. Research on Positioning Accuracy of Mobile Robot in Indoor Environment Based on Improved RTABMAP Algorithm. Sensors 2023, 23, 9468. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Cao, J.; Li, S.; Huang, Z.; Wang, J.; Liu, G. Map Construction and Path Planning Method for a Mobile Robot Based on Multi-Sensor Information Fusion. Appl. Sci. 2022, 12, 2913. [Google Scholar] [CrossRef]
- Wang, J.; Huang, L.; Shi, Y.; Zhang, X.; Qi, L. Design of robot autonomous navigation system based on optimized Hector-SLAM algorithm. Chin. J. Eng. Des. 2023, 30, 678–686. [Google Scholar]
- Singh, A.V.; Agrawal, Y.; Gupta, R.; Kumar, A.; Bohara, V.A. ANROLA: Autonomous Navigation with ROS and Laser Odometry. In Proceedings of the 15th International Conference on Communication Systems and Networks (COMSNETS), Bangalore, India, 3–8 January 2023. [Google Scholar]
- Lin, C.-J.; Peng, C.-C.; Lu, S.-Y. Real-Time Localization for an AMR Based on RTAB-MAP. Actuators 2025, 14, 117. [Google Scholar] [CrossRef]
Position | Measured Value/cm |
---|---|
L1 | 400 |
L2 | 400 |
L3 | 320 |
L4 | 320 |
L5 | 250 |
L6 | 220 |
L7 | 250 |
L8 | 220 |
Position | Environmental Real Values /cm | Map Measurements/cm | Error Absolute Value /cm | Absolute Relative Error /% |
---|---|---|---|---|
L1 | 400 | 375.092 | 24.908 | 6.227 |
L2 | 400 | 383.315 | 16.685 | 4.171 |
L3 | 320 | 308.318 | 11.682 | 3.651 |
L4 | 320 | 309.559 | 10.441 | 3.263 |
L5 | 250 | 255.383 | 5.383 | 2.153 |
L6 | 220 | 225.539 | 5.539 | 2.518 |
L7 | 250 | 247.014 | 2.986 | 1.194 |
L8 | 220 | 226.689 | 6.689 | 3.040 |
Position | Environmental Real Values /cm | Map Measurements/cm | Error Absolute Value /cm | Absolute Relative Error /% |
---|---|---|---|---|
L1 | 400 | 400.756 | 0.756 | 0.189 |
L2 | 400 | 401.175 | 1.175 | 0.294 |
L3 | 320 | 321.042 | 1.042 | 0.326 |
L4 | 320 | 321.090 | 1.090 | 0.341 |
L5 | 250 | 252.351 | 2.351 | 0.940 |
L6 | 220 | 218.588 | 1.412 | 0.642 |
L7 | 250 | 250.466 | 0.466 | 0.186 |
L8 | 220 | 224.456 | 4.456 | 2.025 |
Position | Target Point Coordinate | Actual Coordinate | X Direction Error/m | Y Direction Error/m | Distance Error /m |
---|---|---|---|---|---|
0 | (1.340, 0.147) | (1.349, 0.117) | 0.009 | 0.030 | 0.031 |
1 | (1.260, 2.270) | (1.370, 2.278) | 0.110 | 0.080 | 0.094 |
2 | (0.243, 4.400) | (0.259, 4.376) | 0.016 | 0.024 | 0.029 |
3 | (0.112, 6.880) | (0.312, 7.030) | 0.200 | 0.150 | 0.173 |
4 | (−0.877, 6.660) | (−1.007, 6.805) | 0.130 | 0.145 | 0.137 |
5 | (−0.667, 4.320) | (−0.546, 4.418) | 0.121 | 0.098 | 0.109 |
Test-ID | Method | Std | RMSE | Min | Median | Mean | Max |
---|---|---|---|---|---|---|---|
Test 1 | Improvemed RTAB-Map | 0.051921 | 0.090829 | 0.003545 | 0.054863 | 0.074526 | 0.187753 |
RTAB-Map | 0.053364 | 0.092448 | 0.003425 | 0.053719 | 0.075491 | 0.188597 | |
AMCL | 0.067224 | 0.123937 | 0.000707 | 0.096345 | 0.104122 | 0.296027 |
Test-ID | Method | Std | RMSE | Min | Median | Mean | Max |
---|---|---|---|---|---|---|---|
Improvemed RTAB-Map | 0.144401 | 0.226886 | 0.023805 | 0.110312 | 0.175002 | 0.500843 | |
Test 2 | RTAB-Map | 0.145673 | 0.230114 | 0.012198 | 0.118120 | 0.178134 | 0.506492 |
AMCL | 0.132963 | 0.219043 | 0.021416 | 0.134551 | 0.174070 | 0.526699 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Fang, J.; Zhao, Y. DynaFusion-SLAM: Multi-Sensor Fusion and Dynamic Optimization of Autonomous Navigation Algorithms for Pasture-Pushing Robot. Sensors 2025, 25, 3395. https://doi.org/10.3390/s25113395
Liu Z, Fang J, Zhao Y. DynaFusion-SLAM: Multi-Sensor Fusion and Dynamic Optimization of Autonomous Navigation Algorithms for Pasture-Pushing Robot. Sensors. 2025; 25(11):3395. https://doi.org/10.3390/s25113395
Chicago/Turabian StyleLiu, Zhiwei, Jiandong Fang, and Yudong Zhao. 2025. "DynaFusion-SLAM: Multi-Sensor Fusion and Dynamic Optimization of Autonomous Navigation Algorithms for Pasture-Pushing Robot" Sensors 25, no. 11: 3395. https://doi.org/10.3390/s25113395
APA StyleLiu, Z., Fang, J., & Zhao, Y. (2025). DynaFusion-SLAM: Multi-Sensor Fusion and Dynamic Optimization of Autonomous Navigation Algorithms for Pasture-Pushing Robot. Sensors, 25(11), 3395. https://doi.org/10.3390/s25113395