Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (82)

Search Parameters:
Keywords = nanotube bundles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2680 KiB  
Article
Optimization of Ultrasonic Dispersion of Single-Walled SWCNT Inks for Improvement of Thermoelectric Performance in SWCNT Films Using Heat Source-Free Water-Floating SWCNT Thermoelectric Generators
by Yutaro Okano, Shuya Ochiai, Hiroto Nakayama, Kiyofumi Nagai and Masayuki Takashiri
Materials 2025, 18(14), 3339; https://doi.org/10.3390/ma18143339 - 16 Jul 2025
Viewed by 363
Abstract
Single-walled carbon nanotube (SWCNT) inks were prepared by mixing SWCNTs with ethanol and varying the amplitude of ultrasonic dispersion. When the SWCNT inks were prepared by dispersion amplitudes at 60% (nominal value of 200 W), the SWCNT inks had low viscosity and a [...] Read more.
Single-walled carbon nanotube (SWCNT) inks were prepared by mixing SWCNTs with ethanol and varying the amplitude of ultrasonic dispersion. When the SWCNT inks were prepared by dispersion amplitudes at 60% (nominal value of 200 W), the SWCNT inks had low viscosity and a small variation of the particle size. The SWCNT films fabricated under this dispersion condition had well-distributed SWCNT bundles and exhibited the highest power factor. However, when the dispersion amplitude was excessive, the viscosity of the SWCNT ink increased due to the reduced contact between the SWCNTs owing to over-dispersion, and the crystallinity of the SWCNT films decreased, exhibiting a lower power factor. When the optimized SWCNT films at 60% were applied to heat-source-free water-floating SWCNT-TEGs, an output voltage of 2.0 mV could be generated under sunlight irradiation. These findings are useful for preparing various electronic devices with SWCNT films to improve the film quality using ultrasonic dispersion. Full article
(This article belongs to the Special Issue Advanced Thermoelectric Materials and Micro/Nanoscale Heat Transfer)
Show Figures

Figure 1

41 pages, 6695 KiB  
Review
Design Innovation and Thermal Management Applications of Low-Dimensional Carbon-Based Smart Textiles
by Yating Pan, Shuyuan Lin, Yang Xue, Bingxian Ou, Zhen Li, Junhua Zhao and Ning Wei
Textiles 2025, 5(3), 27; https://doi.org/10.3390/textiles5030027 - 9 Jul 2025
Viewed by 444
Abstract
With the rapid development of wearable electronics, traditional rigid thermal management materials face limitations in flexibility, conformability, and multi-physics adaptability. Low-dimensional carbon materials such as graphene and carbon nanotubes combine ultrahigh thermal conductivity with outstanding mechanical compliance, making them promising building blocks for [...] Read more.
With the rapid development of wearable electronics, traditional rigid thermal management materials face limitations in flexibility, conformability, and multi-physics adaptability. Low-dimensional carbon materials such as graphene and carbon nanotubes combine ultrahigh thermal conductivity with outstanding mechanical compliance, making them promising building blocks for flexible thermal regulation. This review summarizes recent advances in integrating these materials into textile architectures, mapping the evolution of this emerging field. Key topics include phonon-dominated heat transfer mechanisms, strategies for modulating interfacial thermal resistance, and dimensional effects across scales; beyond these intrinsic factors, hierarchical textile configurations further tailor macroscopic performance. We highlight how one-dimensional fiber bundles, two-dimensional woven fabrics, and three-dimensional porous networks construct multi-directional thermal pathways while enhancing porosity and stress tolerance. As for practical applications, the performance of carbon-based textiles in wearable systems, flexible electronic packaging, and thermal coatings is also critically assessed. Current obstacles—namely limited manufacturing scalability, interfacial mismatches, and thermal performance degradation under repeated deformation—are analyzed. To overcome these challenges, future studies should prioritize the co-design of structural and thermo-mechanical properties, the integration of multiple functionalities, and optimization guided by data-driven approaches. This review thus lays a solid foundation for advancing carbon-based smart textiles toward next-generation flexible thermal management technologies. Full article
Show Figures

Figure 1

18 pages, 4393 KiB  
Article
Multiscale Modeling of Mechanical Response of Carbon Nanotube Yarn with Orthotropic Properties Across Hierarchies
by Aref Mehditabar, Hossein Esfandian and Seyed Sadegh Motallebi Hasankola
Computation 2025, 13(5), 119; https://doi.org/10.3390/computation13050119 - 14 May 2025
Viewed by 524
Abstract
This study aims to comprehensively evaluate the mechanical performance of dry-spun twisted carbon nanotube (CNT) yarns (CNTYs) subjected to uniaxial tensile load. To this end, in contrast to earlier approaches, the current research lies in an innovative approach to incorporating the orthotropic properties [...] Read more.
This study aims to comprehensively evaluate the mechanical performance of dry-spun twisted carbon nanotube (CNT) yarns (CNTYs) subjected to uniaxial tensile load. To this end, in contrast to earlier approaches, the current research lies in an innovative approach to incorporating the orthotropic properties of all hierarchical structures of a CNTY structure. The proposed bottom-up model ranges from nanoscale bundles to mesoscale fibrillar and, finally, microscale CNTYs. The proposed methodology distinguishes itself by addressing the interplay of constituents across multiple scale levels to compute the transverse properties (orthotropic nature). By doing so, rigidity and mass equivalent principles are adopted to introduce a replacement of the model by converting the truss structure containing two-node beam elements representing (vdW) van der Waals forces in a nanoscale bundle and inclined narrower bundles in mesoscale fibrillar used in previous works to the equivalent shell model. Followed by the evaluation of mechanical properties of nanoscale bundles, they are translated to the mesoscale level to quantify its orthotropic properties and then are fed into the microscale CNTY model. The results indicate that the resultant CNT bundle and fibrillar exhibit much lower transverse elastic modulus compared to those in the axial direction reported in the prior literature. For the sake of validation of the proposed method, the reproduced overall stress–strain curve of CNTYs is compared to that attained experimentally, showing excellent correlation. The presented theoretical approach provides a valuable tool for enhancing the understanding and predictive capabilities related to the mechanical performances of CNTY structures. Full article
(This article belongs to the Topic Advances in Computational Materials Sciences)
Show Figures

Figure 1

23 pages, 19803 KiB  
Article
CFD Study and Regression Analysis of the MHD Mixed Convection of CNT-Water Nanofluid in a Vented Rounded Edge Rectangular Cavity Having Inner Vertical Rod Bundle
by Walid Aich, Inès Hilali-Jaghdam, Amnah Alshahrani, Chemseddine Maatki, Badr M. Alshammari and Lioua Kolsi
Mathematics 2024, 12(23), 3677; https://doi.org/10.3390/math12233677 - 24 Nov 2024
Viewed by 988
Abstract
This current work provides a comprehensive Computational Fluid Dynamics (CFD) investigation of three-dimensional magnetohydrodynamic (MHD) mixed convection of carbon nanotube (CNT)-water nanofluid within a vented rectangular cavity featuring an internal vertical rod bundle with circular, square, and triangular cross-sections. The finite element method [...] Read more.
This current work provides a comprehensive Computational Fluid Dynamics (CFD) investigation of three-dimensional magnetohydrodynamic (MHD) mixed convection of carbon nanotube (CNT)-water nanofluid within a vented rectangular cavity featuring an internal vertical rod bundle with circular, square, and triangular cross-sections. The finite element method (FEM) was used to investigate the effects of key parameters, including the Richardson number (0.01 ≤ Ri ≤ 10), Hartmann number (0 ≤ Ha ≤ 100), and CNT nanoparticle concentration (0 ≤ ϕ ≤ 0.045), in relation to fluid flow and heat transfer performance. The CNT nanoparticle incorporation increases the nanofluid’s heat transfer capacity by up to 22%, with the highest average Nusselt number (Nuav) achieved with circular rods at ϕ = 0.045, which corresponds to the higher convective heat transfer efficiency. The magnetic field further stabilizes the flow by reducing thermal convection irregularities, with a 15% improvement in temperature distribution uniformity when Ha = 100. The investigation’s outcomes reveal that due to their smoother geometries, the circular rods exhibit better thermal exchange rates compared to square and triangular rods. Moreover, a polynomial regression model is used to correlate the governing parameters and heat transfer rates, and it achieves a high R2 of 0.964. These findings highlight the potential of CNT-water nanofluid and magnetic field applications for thermal management optimization in various engineering systems. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics II)
Show Figures

Figure 1

14 pages, 5108 KiB  
Article
Friction and Wear Behavior of Double-Walled Carbon Nanotube-Yttria-Stabilized ZrO2 Nanocomposites Prepared by Spark Plasma Sintering
by Anne Kasperski, Dalya Alkattan, Viviane Turq, Claude Estournès, Christophe Laurent and Alicia Weibel
Materials 2024, 17(15), 3824; https://doi.org/10.3390/ma17153824 - 2 Aug 2024
Cited by 1 | Viewed by 979
Abstract
Double-walled carbon nanotube-yttria-stabilized ZrO2 nanocomposites are prepared by a mixing route followed by Spark Plasma Sintering. The double-walled carbon nanotubes (DWCNTs) have been previously subjected to a covalent functionalization. The nanocomposites present a high densification and show a homogenous dispersion of DWCNTs [...] Read more.
Double-walled carbon nanotube-yttria-stabilized ZrO2 nanocomposites are prepared by a mixing route followed by Spark Plasma Sintering. The double-walled carbon nanotubes (DWCNTs) have been previously subjected to a covalent functionalization. The nanocomposites present a high densification and show a homogenous dispersion of DWCNTs into a matrix about 100 nm in size. The DWCNTs are well distributed at the matrix grain boundaries but form larger bundles upon the increase in carbon content. The Vickers microhardness of the nanocomposites decreases regularly upon the increase in carbon content. Incorporation of carbon at contents higher than 2 wt.% results in significantly lower friction coefficients, both against alumina and steel balls, possibly because of the elastic deformation of the DWCNTs at the surface of the sample. Their presence also favors a reduction of the steel/ceramic contacts and reduces the wear of the steel ball at high loads. DWCNTs improve wear resistance and reduce friction without incurring any severe damage, contrary to multi-walled carbon nanotubes. Full article
Show Figures

Figure 1

12 pages, 3439 KiB  
Article
Dispersion of Single-Walled Carbon Nanotubes by Aromatic Cyclic Schiff Bases via Non-Covalent Interactions
by Lun Li, Pengfei Zhou, Jiali Wen, Panli Sun and Zongxia Guo
Molecules 2024, 29(13), 3179; https://doi.org/10.3390/molecules29133179 - 3 Jul 2024
Cited by 4 | Viewed by 1613
Abstract
One of the challenging issues that hinders the application of single-walled carbon nanotubes (SWCNTs) is the poor solubility and the inevitable formation of bundles. Efforts still need to be made towards solving the problem. Herein, we report a non-covalent strategy to disperse aggregated [...] Read more.
One of the challenging issues that hinders the application of single-walled carbon nanotubes (SWCNTs) is the poor solubility and the inevitable formation of bundles. Efforts still need to be made towards solving the problem. Herein, we report a non-covalent strategy to disperse aggregated SWCNTs by aromatic cyclic Schiff bases assisted by ultrasonic techniques. The aromatic cyclic Schiff base (OMM) was synthesized via Schiff base reactions, and the molecular structure was determined by ATR-FT-IR, solid-state 13C-NMR, and HRMS. Although the yielded product showed poor solubility in aqueous solution and organic solvents, it could interact with and disperse the aggregated SWCNTs in dimethyl formamide (DMF) under the condition of ultrasound. UV-vis-NIR, FL, Raman spectra, AFM, and TEM, along with computer simulations, provide evidence for the interactions between OMM molecules and SWCNTs and the dispersion thereof. The semiconductive (7,5), (8,6), (12,1), and (9,7)-SWCNTs expressed a preference for dissolution. The capability of dispersion is contributed by π-π, C-H·π, and lone pair (lp)·π interactions between OMM and SWCNTs based on the simulated results. The present non-covalent strategy could provide inspiration for preparing organic cyclic compounds as dispersants for SWCNTs and then facilitate their further utilization. Full article
(This article belongs to the Special Issue Carbon Nanomaterials: Synthesis and Application, 2nd Edition)
Show Figures

Figure 1

18 pages, 2939 KiB  
Article
Structural, Electrical, and Optical Properties of Single-Walled Carbon Nanotubes Synthesized through Floating Catalyst Chemical Vapor Deposition
by Melorina Dolafi Rezaee, Biplav Dahal, John Watt, Mahir Abrar, Deidra R. Hodges and Wenzhi Li
Nanomaterials 2024, 14(11), 965; https://doi.org/10.3390/nano14110965 - 2 Jun 2024
Cited by 5 | Viewed by 3715
Abstract
Single-walled carbon nanotube (SWCNT) thin films were synthesized by using a floating catalyst chemical vapor deposition (FCCVD) method with a low flow rate (200 sccm) of mixed gases (Ar and H2). SWCNT thin films with different thicknesses can be prepared by [...] Read more.
Single-walled carbon nanotube (SWCNT) thin films were synthesized by using a floating catalyst chemical vapor deposition (FCCVD) method with a low flow rate (200 sccm) of mixed gases (Ar and H2). SWCNT thin films with different thicknesses can be prepared by controlling the collection time of the SWCNTs on membrane filters. Transmission electron microscopy (TEM) showed that the SWCNTs formed bundles and that they had an average diameter of 1.46 nm. The Raman spectra of the SWCNT films suggested that the synthesized SWCNTs were very well crystallized. Although the electrical properties of SWCNTs have been widely studied so far, the Hall effect of SWCNTs has not been fully studied to explore the electrical characteristics of SWCNT thin films. In this research, Hall effect measurements have been performed to investigate the important electrical characteristics of SWCNTs, such as their carrier mobility, carrier density, Hall coefficient, conductivity, and sheet resistance. The samples with transmittance between 95 and 43% showed a high carrier density of 1021–1023 cm−3. The SWCNTs were also treated using Brønsted acids (HCl, HNO3, H2SO4) to enhance their electrical properties. After the acid treatments, the samples maintained their p-type nature. The carrier mobility and conductivity increased, and the sheet resistance decreased for all treated samples. The highest mobility of 1.5 cm2/Vs was obtained with the sulfuric acid treatment at 80 °C, while the highest conductivity (30,720 S/m) and lowest sheet resistance (43 ohm/square) were achieved with the nitric acid treatment at room temperature. Different functional groups were identified in our synthesized SWCNTs before and after the acid treatments using Fourier-Transform Infrared Spectroscopy (FTIR). Full article
Show Figures

Figure 1

12 pages, 2515 KiB  
Article
Stretchable and Flexible Painted Thermoelectric Generators on Japanese Paper Using Inks Dispersed with P- and N-Type Single-Walled Carbon Nanotubes
by Takumi Nakajima, Koki Hoshino, Hisatoshi Yamamoto, Keisuke Kaneko, Yutaro Okano and Masayuki Takashiri
Sensors 2024, 24(9), 2946; https://doi.org/10.3390/s24092946 - 6 May 2024
Cited by 8 | Viewed by 1997
Abstract
As power sources for Internet-of-Things sensors, thermoelectric generators must exhibit compactness, flexibility, and low manufacturing costs. Stretchable and flexible painted thermoelectric generators were fabricated on Japanese paper using inks with dispersed p- and n-type single-walled carbon nanotubes (SWCNTs). The p- and n-type SWCNT [...] Read more.
As power sources for Internet-of-Things sensors, thermoelectric generators must exhibit compactness, flexibility, and low manufacturing costs. Stretchable and flexible painted thermoelectric generators were fabricated on Japanese paper using inks with dispersed p- and n-type single-walled carbon nanotubes (SWCNTs). The p- and n-type SWCNT inks were dispersed using the anionic surfactant of sodium dodecylbenzene sulfonate and the cationic surfactant of dimethyldioctadecylammonium chloride, respectively. The bundle diameters of the p- and n-type SWCNT layers painted on Japanese paper differed significantly; however, the crystallinities of both types of layers were almost the same. The thermoelectric properties of both types of layers exhibited mostly the same values at 30 °C; however, the properties, particularly the electrical conductivity, of the n-type layer increased linearly, and of the p-type layer decreased as the temperature increased. The p- and n-type SWCNT inks were used to paint striped patterns on Japanese paper. By folding at the boundaries of the patterns, painted generators can shrink and expand, even on curved surfaces. The painted generator (length: 145 mm, height: 13 mm) exhibited an output voltage of 10.4 mV and a maximum power of 0.21 μW with a temperature difference of 64 K at 120 °C on the hot side. Full article
(This article belongs to the Special Issue Feature Papers in Wearables 2024)
Show Figures

Figure 1

16 pages, 17516 KiB  
Article
Estimation of the Band Gap of Carbon Nanotube Bundles
by Yi Ding and Jing-Zhe Chen
Materials 2024, 17(7), 1530; https://doi.org/10.3390/ma17071530 - 27 Mar 2024
Cited by 1 | Viewed by 1899
Abstract
The electronic structure of carbon nanotube bundles (CNTBs) can be a tough task for the routine first-principle calculation. The difficulty comes from several issues including the atomic structure, the boundary condition, and above all the very large number of atoms that makes the [...] Read more.
The electronic structure of carbon nanotube bundles (CNTBs) can be a tough task for the routine first-principle calculation. The difficulty comes from several issues including the atomic structure, the boundary condition, and above all the very large number of atoms that makes the calculation quite cumbersome. In this work, we estimated the band gap of the CNTBs based on the results from single-walled carbon nanotubes (SWCNTs) under different deformations. The effects of squeezing, stretching, and torsion on the bands of SWCNTs were investigated through first-principle calculations, from which the band gaps of bundles were analyzed because the effects of these deformations were qualitatively independent when the distortions were small. Specifically, the gaps of (4,4) and (8,0) CNTBs under a reasonable torsional strength were predicted, wherein we were able to see metal–semiconductor and semiconductor–metal transitions, respectively. Such reversible mechanical modification of the conductivity may be helpful to the future band-gap engineering in nanoscale circuits. Full article
(This article belongs to the Topic Advances in Computational Materials Sciences)
Show Figures

Figure 1

5 pages, 508 KiB  
Proceeding Paper
Unbundling SWCNT Mechanically via Nanomanipulation Using AFM
by Ahmed Kreta, Mohamed A. Swillam, Albert Guirguis and Abdou Hassanien
Eng. Proc. 2023, 56(1), 83; https://doi.org/10.3390/ASEC2023-15346 - 26 Oct 2023
Cited by 3 | Viewed by 1084
Abstract
Carbon nanotubes (CNTs) are cylindrical nanostructures fabricated from carbon atoms that seem like seamless cylinders composed of rolled sheets of graphite. Owing to the unique properties of single-walled carbon nanotubes (SWCNTs), they are a promising candidate in various fields such as chemical sensing, [...] Read more.
Carbon nanotubes (CNTs) are cylindrical nanostructures fabricated from carbon atoms that seem like seamless cylinders composed of rolled sheets of graphite. Owing to the unique properties of single-walled carbon nanotubes (SWCNTs), they are a promising candidate in various fields such as chemical sensing, hydrogen storage, catalyst support, electronics, nanobalances, and nanotubes. Because of their small size, large surface area, high sensitivity, and reversible behavior at room temperature, CNTs are ideal for measuring gas. They also show improved electron transfer when used as electrodes in electrochemical reactions and serve as solid media for protein immobilization on biosensors. SWCNTs can be metallic or semi-conductive, counting on their structural properties. In this study, an atomic force microscope (AFM) was used as a powerful tool to manipulate and disaggregate SWCNTs. By precisely controlling the AFM probe, it was possible to manipulate individual SWCNTs and separate them from the bundle structures. Next, the electrical transport of disaggregated SWCNTs was studied using the conductive atomic force microscope (cAFM) technique. Thus, current-voltage measurements on the unbundled branches of SWCNTs were carried out. Interestingly, these current-voltage measurements have allowed us to unravel the complex electrical characteristics of the nanotube bundle, which is a very crucial issue for gating effects as well as the resistance of the interconnects within carbon nanotube network devices. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

16 pages, 12309 KiB  
Article
Effect of Dispersing Carbon Nanotube in Aqueous Solution by Poly-Carboxylic-Based Surfactants on Mechanical and Microstructural Properties as Cementitious Composites
by Won-Woo Kim, Jae-Heum Moon and Seung-Tae Lee
Materials 2023, 16(21), 6880; https://doi.org/10.3390/ma16216880 - 26 Oct 2023
Viewed by 1708
Abstract
The development of high-performance concrete using carbon nanotubes (CNTs), which is used in various industries owing to its excellent mechanical properties, has attracted much attention, leading to ongoing research in this area. However, when mixing CNTs into cement paste, there has been limited [...] Read more.
The development of high-performance concrete using carbon nanotubes (CNTs), which is used in various industries owing to its excellent mechanical properties, has attracted much attention, leading to ongoing research in this area. However, when mixing CNTs into cement paste, there has been limited focus on the dispersibility, and, in most cases, aqueous dispersions of CNTs used in other industrial sectors are used. Because CNTs form the structures of bundles or aggregates owing to their high aspect ratio and van der Waals force between particles, the desired dispersibility cannot be obtained when mixing CNTs in powder form with other materials. Therefore, in this study, we examined the applicability of CNT aqueous dispersions using PC-based plasticizer used in concrete. Aqueous dispersions of CNT using PC-based surfactants are prepared and their properties are compared with those of a PVP-based aqueous dispersion. To analyze the mechanical properties, the compressive strength and flexural strength are measured on the 28th day. Then, the dispersibility and microstructure are analyzed using scanning electron microscopy image analysis, thermogravimetric analysis, and BET (Brunauer–Emmett–Teller) analysis. The analysis results show the enhancement of mechanical properties due to the mixing of the CNT dispersion, and the results confirm the applicability of the proposed CNT aqueous dispersions using PC-based surfactants. Full article
(This article belongs to the Special Issue Advanced Materials and Nanotechnologies in Building Composites)
Show Figures

Figure 1

22 pages, 9466 KiB  
Review
Design of DNA-Based Artificial Transmembrane Channels for Biosensing and Biomedical Applications
by Wanyu Xu, Hui Chen, Yang Li, Shuangna Liu, Kemin Wang and Jianbo Liu
Chemosensors 2023, 11(9), 508; https://doi.org/10.3390/chemosensors11090508 - 18 Sep 2023
Cited by 3 | Viewed by 3435
Abstract
Biomolecular channels on the cell membrane are essential for transporting substances across the membrane to maintain cell physiological activity. Artificial transmembrane channels used to mimic biological membrane channels can regulate intra/extracellular ionic and molecular homeostasis, and they elucidate cellular structures and functionalities. Due [...] Read more.
Biomolecular channels on the cell membrane are essential for transporting substances across the membrane to maintain cell physiological activity. Artificial transmembrane channels used to mimic biological membrane channels can regulate intra/extracellular ionic and molecular homeostasis, and they elucidate cellular structures and functionalities. Due to their program design, facile preparation, and high biocompatibility, DNA nanostructures have been widely used as scaffolds for the design of artificial transmembrane channels and exploited for ionic and molecular transport and biomedical applications. DNA-based artificial channels can be designed from two structural modules: DNA nanotubes/nanopores as transport modules for mass transportation and hydrophobic segments as anchor modules for membrane immobilization. In this review, various lipophilic modification strategies for the design of DNA channels and membrane insertion are outlined. Several types of DNA transmembrane channels are systematically summarized, including DNA wireframe channels, DNA helix bundle channels, DNA tile channels, DNA origami channels, and so on. We then discuss efforts to exploit them in biosensor and biomedical applications. For example, ligand-gated and environmental stimuli-responsive artificial transmembrane channels have been designed for transmembrane signal transduction. DNA-based artificial channels have been developed for cell mimicry and the regulation of cell behaviors. Finally, we provide some perspectives on the challenges and future developments of artificial transmembrane channel research in biomimetic science and biomedical applications. Full article
Show Figures

Figure 1

24 pages, 13257 KiB  
Article
Molecular Relay Stations in Membrane Nanotubes: IRSp53 Involved in Actin-Based Force Generation
by Tamás Madarász, Brigitta Brunner, Henriett Halász, Elek Telek, János Matkó, Miklós Nyitrai and Edina Szabó-Meleg
Int. J. Mol. Sci. 2023, 24(17), 13112; https://doi.org/10.3390/ijms241713112 - 23 Aug 2023
Cited by 4 | Viewed by 2169
Abstract
Membrane nanotubes are cell protrusions that grow to tens of micrometres and functionally connect cells. Actin filaments are semi-flexible polymers, and their polymerisation provides force for the formation and growth of membrane nanotubes. The molecular bases for the provision of appropriate force through [...] Read more.
Membrane nanotubes are cell protrusions that grow to tens of micrometres and functionally connect cells. Actin filaments are semi-flexible polymers, and their polymerisation provides force for the formation and growth of membrane nanotubes. The molecular bases for the provision of appropriate force through such long distances are not yet clear. Actin filament bundles are likely involved in these processes; however, even actin bundles weaken when growing over long distances, and there must be a mechanism for their regeneration along the nanotubes. We investigated the possibility of the formation of periodic molecular relay stations along membrane nanotubes by describing the interactions of actin with full-length IRSp53 protein and its N-terminal I-BAR domain. We concluded that I-BAR is involved in the early phase of the formation of cell projections, while IRSp53 is also important for the elongation of protrusions. Considering that IRSp53 binds to the membrane along the nanotubes and nucleates actin polymerisation, we propose that, in membrane nanotubes, IRSp53 establishes molecular relay stations for actin polymerisation and, as a result, supports the generation of force required for the growth of nanotubes. Full article
(This article belongs to the Special Issue Protein-Protein Interactions in Cellular Function)
Show Figures

Figure 1

10 pages, 919 KiB  
Article
Carbon Nanotubes for Confinement-Induced Energetic Nanomaterials
by Ruben Acevedo, Brigitte Soula, Anne Marie Galibert and Emmanuel Flahaut
Nanomaterials 2023, 13(12), 1845; https://doi.org/10.3390/nano13121845 - 12 Jun 2023
Viewed by 1794
Abstract
Oxidized carbon nanotubes obtained by catalytic chemical vapor deposition were filled with an aqueous solution of nano-energetic materials using a very simple impregnation method. The work compares different energetic materials but focuses especially on an inorganic compound belonging to the Werner complexes, [Co(NH [...] Read more.
Oxidized carbon nanotubes obtained by catalytic chemical vapor deposition were filled with an aqueous solution of nano-energetic materials using a very simple impregnation method. The work compares different energetic materials but focuses especially on an inorganic compound belonging to the Werner complexes, [Co(NH3)6][NO3]3. Our results show a large increase in released energy upon heating, which we demonstrate to be related to the confinement of the nano-energetic material either directly by filling of the inner channel of carbon nanotubes or to insertion in the triangular channels between adjacent nanotubes when they form bundles. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

12 pages, 3195 KiB  
Article
Organic Thermoelectric Nanocomposites Assembled via Spraying Layer-by-Layer Method
by Seojin Kim, You Young Byun, InYoung Lee, Woohyeon Cho, Gyungho Kim, Mario Culebras, Junho Jang and Chungyeon Cho
Nanomaterials 2023, 13(5), 866; https://doi.org/10.3390/nano13050866 - 25 Feb 2023
Cited by 4 | Viewed by 2703
Abstract
Thermoelectric (TE) materials have been considered as a promising energy harvesting technology for sustainably providing power to electronic devices. In particular, organic-based TE materials that consist of conducting polymers and carbon nanofillers make a large variety of applications. In this work, we develop [...] Read more.
Thermoelectric (TE) materials have been considered as a promising energy harvesting technology for sustainably providing power to electronic devices. In particular, organic-based TE materials that consist of conducting polymers and carbon nanofillers make a large variety of applications. In this work, we develop organic TE nanocomposites via successive spraying of intrinsically conductive polymers such as polyaniline (PANi) and poly(3,4-ethylenedioxy- thiophene):poly(styrenesulfonate) (PEDOT:PSS) and carbon nanofillers, and single-walled carbon nanotubes (SWNT). It is found that the growth rate of the layer-by-layer (LbL) thin films, which comprise a PANi/SWNT-PEDOT:PSS repeating sequence, made by the spraying method is greater than that of the same ones assembled by traditional dip coating. The surface structure of multilayer thin films constructed by the spraying approach show excellent coverage of highly networked individual and bundled SWNT, which is similarly to what is observed when carbon nanotubes-based LbL assemblies are formed by classic dipping. The multilayer thin films via the spray-assisted LbL process exhibit significantly improved TE performances. A 20-bilayer PANi/SWNT-PEDOT:PSS thin film (~90 nm thick) yields an electrical conductivity of 14.3 S/cm and Seebeck coefficient of 76 μV/K. These two values translate to a power factor of 8.2 μW/m·K2, which is 9 times as large as the same films fabricated by a classic immersion process. We believe that this LbL spraying method will open up many opportunities in developing multifunctional thin films for large-scaled industrial use due to rapid processing and the ease with which it is applied. Full article
(This article belongs to the Special Issue Nanostructured Thermoelectric Materials)
Show Figures

Figure 1

Back to TopTop