Dispersion of Single-Walled Carbon Nanotubes by Aromatic Cyclic Schiff Bases via Non-Covalent Interactions
Abstract
1. Introduction
2. Results
2.1. Synthesis of OMM
2.2. Characterizations of SWCNT Dispersions
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. General Procedure for Dispersion Preparations of SWCNTs and OMM-SWCNTs
4.3. Characterizations
4.4. Computational Simulation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Volder, M.F.L.D.; Tawfick, S.H.; Baughman, R.H.; John Hart, A. Carbon Nanotubes: Present and Future Commercial Applications. Science 2013, 339, 535–539. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Htoon, H.; Doorn, S.K.; Pernice, W.H.P.; Pyatkov, F.; Krupke, R.; Jeantet, A.; Chassagneux, Y.; Voisin, C. Carbon Nanotubes as Emerging Quantum-Light Sources. Nat. Mater. 2018, 17, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, S.; Peng, L.-M. Toward High-Performance Carbon Nanotube Photovoltaic Devices. Adv. Energy Mater. 2016, 6, 1600522. [Google Scholar] [CrossRef]
- Nanot, S.; Haroz, E.H.; Kim, J.-H.; Hauge, R.H.; Kono, J. Optoelectronic Properties of Single-Wall Carbon Nanotubes. Adv. Mater. 2012, 24, 4977–4994. [Google Scholar] [CrossRef] [PubMed]
- Gon, Y.; Adhikari, P.; Liu, Q.; Wang, T.; Gong, M.; Chan, W.-L.; Ching, W.-Y.; Wu, J. Designing the Interface of Carbon Nanotube/Biomaterials for High-Performance Ultra-Broadband Photodetection. ACS Appl. Mater. Interfaces 2017, 9, 11016–11024. [Google Scholar] [CrossRef]
- Bheel, N.; Mohammed, B.S.; Liew, M.S.; Zawawi, N.A.W.A. Durability Behaviours of Engineered Cementitious Composites Blended with Carbon Nanotubes against Sulphate and Acid Attacks by Applying RSM Modelling and Optimization. Buildings 2023, 13, 2032. [Google Scholar] [CrossRef]
- Pramanik, C.; Gissinger, J.R.; Kumar, S.; Heinz, H. Carbon Nanotube Dispersion in Solvents and Polymer Solutions: Mechanisms, Assembly, and Preferences. ACS Nano 2017, 11, 12805–12816. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, A.K.; Coleman, K.S. Poly(ethylene) Glycol/Single-Walled Carbon Nanotube Composites. J. Nanosci. Nanotechnol. 2008, 8, 4013–4016. [Google Scholar] [CrossRef] [PubMed]
- Fujigaya, T.; Nakashima, N. Non-covalent Polymer Wrapping of Carbon Nanotubes and the Role of Wrapped Polymers as Functional Dispersants. Sci. Technol. Adv. Mat. 2015, 16, 024802. [Google Scholar] [CrossRef]
- Arellano, L.M.; Barrejon, M.; Gobeze, H.B.; Gómez-Escalonilla, M.J.; Fierro, J.L.G.; D’Souza, F.; Langa, F. Charge Stabilizing Tris(triphenylamine)-Zinc Porphyrin-Carbon Nanotube Hybrids: Synthesis, Characterization and Excited State Charge Transfer Studies. Nanoscale 2017, 9, 7551–7558. [Google Scholar] [CrossRef]
- Kallmyer, N.E.; Huynh, T.; Graves, G.C.; Musielewicz, J.; Tamiev, D.; Reuel, N.F. Influence of Sonication Conditions and Wrapping Type on Yield and Fluorescent Quality of Noncovalently Functionalized Single-Walled Carbon Nanotubes. Carbon 2018, 139, 609–613. [Google Scholar] [CrossRef]
- Son, H.; Ji, J.-H.; Jeong, J.H.; Han, S.-H.; Koh, J.-H.; Park, J.S. Noncovalent Functionalization of Single-walled Carbon Nanotubes Using Alkylated Zinc-phthalocyanine for the β-phase Formation of a Polyvinylidene Fluoride Matrix. Polymer-Korea 2020, 44, 301–308. [Google Scholar] [CrossRef]
- Li, M.; Jiang, D.; Du, Z.; Yu, S.; Ge, X.; He, Y. Green Modification of Single-Walled Carbon Nanotubes Dispersion with Good Dispersibility and Long Storage Stability. J. Nanoparticle Res. 2023, 25, 85. [Google Scholar] [CrossRef]
- Kanimozhi, C.; Shea, M.J.; Ko, J.; Wei, W.; Huang, P.; Arnold, M.S.; Gopalan, P. Removable Nonconjugated Polymers To Debundle and Disperse Carbon Nanotubes. Macromolecules 2019, 52, 4278–4286. [Google Scholar] [CrossRef]
- Sloan, A.W.N.; Santana-Pereira, A.L.R.; Goswami, J.; Liles, M.R.; Davis, V.A. Single-Walled Carbon Nanotube Dispersion in Tryptic Soy Broth. ACS Macro Lett. 2017, 6, 1228–1231. [Google Scholar] [CrossRef] [PubMed]
- Tsarfati, Y.; Strauss, V.; Kuhri, S.; Krieg, E.; Weissman, H.; Shimoni, E.; Baram, J.; Guldi, D.M.; Rybtchinski, B. Dispersing Perylene Diimide/SWCNT Hybrids: Structural Insights at the Molecular Level and Fabricating Advanced Materials. J. Am. Chem. Soc. 2015, 137, 7429–7440. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Xing, Z.; Zhou, J.; Xu, H.; Wang, Z.; Li, G.; Yu, L. Electrostatic Interaction-controlled Dispersion of Carbon Nanotubes in a Ternary Composite for High-Performance Supercapacitors. Dalton Trans. 2022, 51, 5127–5137. [Google Scholar] [CrossRef] [PubMed]
- Gangele, A.; Garala, S.K.; Pandey, A.K. Influence of Van der Waals Forces on Elastic and Buckling Characteristics of Vertically Aligned Carbon Nanotubes. Int. J. Mech. Sci. 2018, 146, 191–199. [Google Scholar] [CrossRef]
- Chen, R.J.; Zhang, Y.; Wang, D.; Dai, H. Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization. J. Am. Chem. Soc. 2001, 123, 3838–3839. [Google Scholar] [CrossRef]
- Wang, K.-C.; Lin, P.-S.; Lin, Y.-C.; Tung, S.-H.; Chen, W.-C.; Liu, C.-L. Tunable Thermoelectric Performance of the Nanocomposites Formed by Diketopyrrolopyrrole/Isoindigo-Based Donor-Acceptor Random Conjugated Copolymers and Carbon Nanotubes. ACS Appl. Mater. Interfaces 2023, 15, 56116–56126. [Google Scholar] [CrossRef]
- Sesis, A.; Hodnett, M.; Memoli, G.; Wain, A.J.; Jurewicz, I.; Dalton, A.B.; Carey, J.D.; Hinds, G.; Hodnett, M.; Memoli, G.; et al. Influence of Acoustic Cavitation on the Controlled Ultrasonic Dispersion of Carbon Nanotubes. J. Phys. Chem. B 2013, 117, 15141–15150. [Google Scholar] [CrossRef] [PubMed]
- Hwang, K.; Lim, D.-H.; Lee, M.-H.; Kim, Y.-J.; Kim, Y.-a.; Yang, D.; Kim, Y.; Kim, D.-Y. Engineering the Structural Topology of Pyrene-Based Conjugated Polymers for the Selective Sorting of Semiconducting Single-Walled Carbon Nanotubes. Macromolecules 2021, 54, 6061–6072. [Google Scholar] [CrossRef]
- Nogueira, S.L.; Sahoo, S.K.; Jarrosson, T.; Serein-Spirau, K.; Lere-Porte, J.-P.; Moujaes, E.A.; Marletta, A.; Santos, A.P.; Fantini, C.; Furtado, C.A.; et al. A New Designed π Conjugated Molecule for Stable Single Walled Carbon Nanotube Dispersion in Aqueous Medium. J. Colloid. Interface Sci. 2016, 464, 117–125. [Google Scholar] [CrossRef]
- Gao, J.; Sengar, N.; Wu, N.; Jockusch, F.; Nuckolls, C.; Clancy, P.; Loo, Y.-L. Contorted Octabenzocircumbiphenyl Sorts Semiconducting Single-Walled Carbon Nanotubes with Structural Specificity. Chem. Mater. 2017, 29, 595–604. [Google Scholar] [CrossRef]
- Chamorro, R.; Juan-Fernandez, L.D.; Nieto-Ortega, B.; Mayoral, M.J.; Casado, S.; Ruiz-Gonzalez, L.; Perez, E.M.; Gonzalez-Rodriguez, D. Reversible Dispersion and Release of Carbon Nanotubes via Cooperative Clamping Interactions with Hydrogen-bonded Nanorings. Chem. Sci. 2018, 9, 4176–4184. [Google Scholar] [CrossRef]
- Sun, Y.; Fu, W.; Li, Z.; Wang, Z. Tailorable Aqueous Dispersion of Single-Walled Carbon Nanotubes Using Tetrachloroperylene-Based Bolaamphiphiles via Noncovalent Modification. Langmuir 2014, 30, 8615–8620. [Google Scholar] [CrossRef] [PubMed]
- Backes, C.; Schmidt, C.D.; Rosenlehner, K.; Hauke, F.; Coleman, J.N.; Hirsch, A. Nanotube Surfactant Design: The Versatility of Water-Soluble Perylene Bisimides. Adv. Mater. 2010, 22, 788–802. [Google Scholar] [CrossRef]
- Bouanis, F.Z.; Bensifia, M.; Florea, I.; Mahouche-chergui, S.; Carbonnier, B.; Grande, D.; Léonard, C.; Yassar, A.; Pribat, D. Non-covalent Functionalization of Single Walled Carbon Nanotubes with Fe-/Co-porphyrin and Co-phthalocyanine for Field-effect Transistor Applications. Org. Electron. 2021, 96, 106212. [Google Scholar] [CrossRef]
- Bassiouk, M.; Basiuk, V.A.; Basiuk, E.V.; Álvarez-Zauco, E.; Martinez-Herrera, M.; Rojas-Aguilar, M.; Puente-Lee, I. Noncovalent Functionalization of Single-Walled Carbon Nanotubes with Porphyrins. Appl. Surf. Sci. 2013, 275, 168–177. [Google Scholar] [CrossRef]
- Guo, Z.; Sun, P.; Zhang, X.; Lin, J.; Shi, T.; Liu, S.; Sun, A.; Li, Z. Amorphous Porous Organic Polymers Based on Schiff-Base Chemistry for Highly Efficient Iodine Capture. Chem-Asian. J. 2018, 13, 2046–2053. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Qi, Q.-Y.; Jian, G.-F.; Cui, F.-Z.; Tian, Y.; Zhao, X. Toward Covalent Organic Frameworks Bearing Three Different Kinds of Pores: The Strategy for Construction and COF-to-COF Transformation via Heterogeneous Linker Exchange. J. Am. Chem. Soc. 2017, 139, 6736–6743. [Google Scholar] [CrossRef] [PubMed]
- Geng, T.; Zhu, Z.; Zhang, W.; Wang, Y. A Nitrogen-rich Fluorescent Conjugated Microporous Polymer with Triazine and Triphenylamine Units for High Iodine Capture and Nitro Aromatic Compound Detection. J. Mater. Chem. 2017, 5, 7612–7617. [Google Scholar] [CrossRef]
- Wuerthner, F. Perylene Bisimide Dyes as Versatile Building Blocks for Functional Supramolecular Architectures. Chem. Commun 2004, 35, 1564–1579. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, A.; Nobusawa, K.; Hamano, T. Single-Walled Carbon Nanotubes Template the One-Dimensional Ordering of a Polythiophene Derivative. Org. Lett. 2006, 8, 5489–5492. [Google Scholar] [CrossRef] [PubMed]
- Weisman, R.B.; Bachilo, S.M. Dependence of Optical Transition Energies on Structure for Single-Walled Carbon Nanotubes in Aqueous Suspension: An Empirical Kataura Plot. Nano Lett. 2003, 3, 1235–1238. [Google Scholar] [CrossRef]
- Tan, Y.; Resasco, D.E. Dispersion of Single-Walled Carbon Nanotubes of Narrow Diameter Distribution. J. Phys. Chem. B 2005, 109, 14454–14460. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, M.J.; Bachilo, S.M.; Huffman, C.B.; Moore, V.C.; Strano, M.S.; Haroz, E.H.; Rialon, K.L.; Boul, P.J.; Noon, W.H.; Kittrell, C.; et al. Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes. Science 2002, 297, 593–596. [Google Scholar] [CrossRef] [PubMed]
- Arjun, M.; Münich, P.W.; Wagner, P.; Officer, D.L.; Guldi, D.M. Amphiphilic Zinc Porphyrin Single-Walled Carbon Nanotube Hybrids: Efficient Formation and Excited State Charge Transfer Studies. Small 2021, 17, 2005648. [Google Scholar] [CrossRef]
- Mandal, A.; Nandi, A.K. Noncovalent Functionalization of Multiwalled Carbon Nanotube by a Polythiophene-Based Compatibilizer: Reinforcement and Conductivity Improvement in Poly(vinylidene fluoride) Films. J. Phys. Chem. C 2012, 116, 9360–9371. [Google Scholar] [CrossRef]
- Menon, A.; Papadopoulos, I.; Harreiβ, C.; Mora-Fuentes, J.P.; Cortizo-Lacalle, D.; Mateo-Alonso, A.; Spiecker, E.; Guldi, D.M. Collecting up to 115% of Singlet-Fission Products by Single-Walled Carbon Nanotubes. ACS Nano 2020, 14, 8875–8886. [Google Scholar] [CrossRef]
- Rao, A.M.; Richter, E.; Bandow, S.; Chase, B.; Eklund, P.C.; Williams, K.A.; Fang, S.; Subbaswamy, K.R.; Menon, M.; Thess, A.; et al. Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes. Science 1997, 275, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, I.; Menon, A.; Plass, F.; Molina, D.; Harreiβ, C.; Kahnt, A.; Spiecker, E.; Sastre-Santos, Á.; Guldi, D.M. Efficient Charge-transfer from Diketopyrrolopyrroles to Single-Walled Carbon Nanotubes. Nanoscale 2021, 13, 11544–11551. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Xu, W.; Ye, J.; Liu, T.; Wang, J.; Tan, H.; Lin, Y.; Tange, M.; Sun, D.; Wu, L.; et al. Selective Dispersion of Large-Diameter Semiconducting Carbon Nanotubes by Functionalized Conjugated Dendritic Oligothiophenes for Use in Printed Thin Film Transistors. Adv. Funct. Mater. 2017, 27, 1703938. [Google Scholar] [CrossRef]
- Neel, A.J.; Hilton, M.J.; Sigman, M.S.; Toste1, F.D. Exploiting Non-covalent π Interactions for Catalyst Design. Nature 2017, 543, 637–646. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, D.; Duan, L.; Chen, W. Adsorption of Single-ringed N- and S-heterocyclic Aromatics on Carbon Nanotubes. Carbon 2010, 48, 3906–3915. [Google Scholar] [CrossRef]
- Shi, T.; Zheng, Q.D.; Zuo, W.W.; Liu, S.F.; Li, Z.B. Bimetallic Aluminum Complexes Supported by Bis(salicylaldimine) Ligand: Synthesis, Characterization and Ring-opening Polymerization of Lactide. Chin. J. Polym. Sci. 2018, 36, 149–156. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Zhou, P.; Wen, J.; Sun, P.; Guo, Z. Dispersion of Single-Walled Carbon Nanotubes by Aromatic Cyclic Schiff Bases via Non-Covalent Interactions. Molecules 2024, 29, 3179. https://doi.org/10.3390/molecules29133179
Li L, Zhou P, Wen J, Sun P, Guo Z. Dispersion of Single-Walled Carbon Nanotubes by Aromatic Cyclic Schiff Bases via Non-Covalent Interactions. Molecules. 2024; 29(13):3179. https://doi.org/10.3390/molecules29133179
Chicago/Turabian StyleLi, Lun, Pengfei Zhou, Jiali Wen, Panli Sun, and Zongxia Guo. 2024. "Dispersion of Single-Walled Carbon Nanotubes by Aromatic Cyclic Schiff Bases via Non-Covalent Interactions" Molecules 29, no. 13: 3179. https://doi.org/10.3390/molecules29133179
APA StyleLi, L., Zhou, P., Wen, J., Sun, P., & Guo, Z. (2024). Dispersion of Single-Walled Carbon Nanotubes by Aromatic Cyclic Schiff Bases via Non-Covalent Interactions. Molecules, 29(13), 3179. https://doi.org/10.3390/molecules29133179