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Abstract: Thermoelectric (TE) materials have been considered as a promising energy harvesting tech-
nology for sustainably providing power to electronic devices. In particular, organic-based TE materi-
als that consist of conducting polymers and carbon nanofillers make a large variety of applications. In
this work, we develop organic TE nanocomposites via successive spraying of intrinsically conductive
polymers such as polyaniline (PANi) and poly(3,4-ethylenedioxy- thiophene):poly(styrenesulfonate)
(PEDOT:PSS) and carbon nanofillers, and single-walled carbon nanotubes (SWNT). It is found that
the growth rate of the layer-by-layer (LbL) thin films, which comprise a PANi/SWNT-PEDOT:PSS
repeating sequence, made by the spraying method is greater than that of the same ones assembled by
traditional dip coating. The surface structure of multilayer thin films constructed by the spraying
approach show excellent coverage of highly networked individual and bundled SWNT, which is
similarly to what is observed when carbon nanotubes-based LbL assemblies are formed by classic
dipping. The multilayer thin films via the spray-assisted LbL process exhibit significantly improved
TE performances. A 20-bilayer PANi/SWNT-PEDOT:PSS thin film (~90 nm thick) yields an electrical
conductivity of 14.3 S/cm and Seebeck coefficient of 76 µV/K. These two values translate to a power
factor of 8.2 µW/m·K2, which is 9 times as large as the same films fabricated by a classic immersion
process. We believe that this LbL spraying method will open up many opportunities in developing
multifunctional thin films for large-scaled industrial use due to rapid processing and the ease with
which it is applied.

Keywords: layer-by-layer; spraying; thermoelectric; carbon nanotubes; polymer nanocomposites

1. Introduction

As the use of electronic devices increases with the advancement of science, technology,
and industry in modern society, the demand for energy has also rapidly increased [1,2]. En-
vironmental issues regarding traditional energy sources such as fossil fuels have led to the
stimulation of many researchers to find alternative candidates [3–5]. To date, various energy
harvesting techniques using mechanics, electronics, magnetics, heat, and biochemistry have
been developed [6–8]. Among these, thermoelectrics (TEs), which directly convert the electricity
from thermal energy induced by cooling or heating or other waste heat, have been recognized
as a viable and renewable energy harvesting technology [9–11]. The performance of TE devices
can be evaluated by the dimensionless figure of merit (ZT), as per the following equation:
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ZT = S2·σ·T/k (1)

where S, σ, k, and T are Seebeck coefficient (also called the thermopower), electrical
conductivity, thermal conductivity, and absolute temperature, respectively. The power
factor (PF), defined as S2·σ, is also used to evaluate the TE efficiency. According to this
Equation (1), the TE materials with high PF and low k make the high-performance TE
devices with large ZT value [12–14].

The inorganic-based materials (for example, Bi2Te3, PbTe, Sb2Te3, etc.) have been
widely used because of their high TE performance (i.e., high ZT) [12,15–17]. However, these
materials have several drawbacks such as toxicity, high cost, poor mechanical flexibility,
scarcity of raw materials, and difficulty in processing, which hinder widespread applica-
tion [12,18]. Meanwhile, organic-based TE materials that contain intrinsically conductive
polymers or their composites incorporated with carbon nanofillers, such as graphene
and/or carbon nanotubes (CNTs), have been proved to be promising alternatives for inor-
ganics due to their multiple advantages including low cost, solution-based processability,
light weight, and flexibility [19–24]. Although the organic TE materials typically exhibit
low k in the range of 0.1~5 W/m·K, which is ideal for high-performance TE devices, the
obtained ZT is far below relative to that of inorganic-based composites, due to their low S
and σ values. To overcome these, the strategies of fabricating composites, where carbon
materials are compounded in conducting polymers matrix, have been suggested, which
have exhibited reasonably good TE behaviors [1,10,12,25].

Several approaches for fabrication of organic TE composites have been made using
simple mixing, solvent thermal method, template-directed in situ polymerization, polymer
emulsion, and electrodeposition [26–30]. However, these methods have shown the limits in
controlling the nanoscale film structure/property, which ultimately produces low PF [31,32].
Our group has demonstrated that the synergistic combination of polyelectrolytes and
carbon nanofillers via layer-by-layer (LbL) assembly creates highly ordered nanocomposites
with large PF [3,33]. The LbL method has been utilized for developing multifunctional thin
films including bio-film inhabitation, flame retardant, gas sensors, and solar cells [18,34].
LbL coatings are mainly based on electrostatic interactions through charge compensation
between oppositely charged components, but other interactions including hydrophobic,
van der Waals interactions, π–π interactions, and hydrogen bonding are also employed to
form ultra-thin films on various types of substrates [35–39].

In this regards, the LbL assembly method provides a facile technology to obtain highly
ordered nanocomposites with precisely controlled thin-film architectures at a molecular
level [40–42]. The dip coating method is the one of the most widely used LbL techniques
due to its simple processing, but limited sample sizes and time-consuming steps to achieve
the desired properties have remained to be solved to expand its wider applications into
commercial areas [31]. LbL spraying technique has been recognized as a promising al-
ternative to the traditional dip coating method. Spray-assisted deposition process offers
faster coating, typically taking a few seconds, while the deposition time for dipping is 5 to
20 min to complete each layer. In addition, the resultant multilayer thin films assembled
via the spray-LbL technique preserve the chemical nature of each component with no loss
of structural control [43]. Therefore, spray coating offers an opportunity to circumvent
inherent drawbacks in dip-assisted assembly.

Herein, the hybrid nanocomposites were fabricated with polyaniline (PANi) and
poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)-stabilized single-
walled carbon nanotube (SWNT) using the LbL assembly technique. The multilayer growth
behavior, films’ morphology, and thermoelectric performance via successive spraying
were compared to classic dipping. The spray-based LbL assembly produced a higher
electrical conductivity with a similar Seebeck coefficient, translating to a larger power factor
relative to a classic immersion process. A 20-bilayer PANi/SWNT-PEDOT:PSS (~90 nm in
thickness) exhibited a power factor of 8.2 µW/m·K2, which is 9 times as large as the same
films fabricated by the dipping process.
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2. Materials and Methods
2.1. Materials

Polyaniline (PANi, MW = 50,000 g/mol) and N,N-dimethyl acetamide (DMAC) were
purchased from Sigma-Aldrich (Milwaukee, WI, USA). PANi solution for multilayer de-
position was prepared as follows: 0.1 g of PANi powder was first dissolved in 30 g of
DMAC under continuous stirring for 30 min and then sonicated for 90 min, after which
the mixture was stirred for overnight. Then, 270 mL of pH 3.0 water was added to the
PANi–DMAC solution, and the PANi bath was adjusted to pH 2.5 prior to LbL coating.
Poly(3,4-ethylenedioxy thiophene):polystyrene sulfonate (PEDOT:PSS, Clevios P) was ob-
tained from Heraeus Precious Metals (Hanau, Germany). Single-walled carbon nanotubes
(SWNT) were provided from Cheap Tubes Inc. (Brattleboro, VT, USA). All chemicals were
used as received without purification. Deionized (D.I) water with a specific resistance
greater than 18 MΩ was used in all aqueous solutions. In order to make stable SWNT-
PEDOT:PSS suspensions in water, 0.2 g of SWNT was sonicated in 2 wt% of PEDOT:PSS
solution using bath sonicators for 1 h, and then tip sonication (Bandelin Sonopuls) was
followed for 30 min with 50 W power in an ice water bath.

2.2. Layer-by-Layer Assembly

In order to fabricate the multilayer thin films using traditional dip coating LbL process,
substrates such as glass slides or poly(ethylene terephthalate) (PET) were first immersed
into the positively charged PANi solution for 5 min and rinsed with D.I water. The
positively charged sample was then dipped into the SWNT-PEDOT:PSS suspension for 5
min, along with a rinsing step, which results in one deposition sequence of a PANi/SWNT-
PEDOT:PSS bilayer (BL). After this initial BL was deposited, the remaining number of BLs
were created using 1 min deposition until the desired number of BLs was achieved. For a
spray-based coating, the substrates were vertically oriented, with a distance of 15 cm from
the substrate. Each component was sprayed for 15 sec with no rinse steps between each
spray coating process. The thin films made by both spraying and dipping process were
air-dried overnight, prior to analyses.

2.3. Thin Film Characterization

The thickness of the thin films deposited on silicon wafers was measured by a
NanoMap-PS contact mode stylus Profilometer. Top surface images of the nanocomposites
were analyzed by atomic force microscopy (AFM) (Nanostation IITM Surface Imaging
Systems, Herzogenrath, Germany) in the non-contact mode at a scan rate of 1 Hz and
S-4800 field emission scanning electron microscope (Core Facility for Supporting Analysis
& Imaging of Biomedical Materials, FE-SEM, Hitachi, Japan). The UV–vis absorbance spec-
tra of the thin films deposited on quartz slides were recorded using a Shimadzu UV-1900
spectrophotometer (Japan).

2.4. Thermoelectric Property Measurements

The sheet resistance of thin films deposited on glass slides was acquired using a
four-point probe system (CMT-100S, Advanced Instrument Technology). The probe tips
were 0.4 mm in diameter with a 0.72 mm tip spacing between the probes. The electrical
conductivity was calculated by taking the inverse of the product of the sheet resistance
and the thickness of the thin films. Both carrier concentration and mobility were analyzed
using a Hall effect measurement system (Ecopia, HMS-3000, Gyeonggi-do, South Korea).
A magnetic field of ±1 T was applied to 2 × 2 cm square samples in the van der Pauw
geometry. Carrier mobility was calculated with the Drude-Sommerfeld free electron model,
σ = neµ, where σ, n, e, and µ are the electrical conductivity, charge carrier concentration,
electronic charge, and carrier mobility, respectively [44]. The Seebeck coefficient of the thin
films deposited on glass slides was determined with a custom-built four-point probe setup,
where electrical voltage and temperature difference are measured by two copper wires and
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two T-type thermocouples. The reported Seebeck coefficient values were obtained from the
slope of the linear fitting of ∆T and ∆V.

3. Results

Figure 1a is a schematic illustration of the LbL deposition process to form the mul-
tilayer nanocomposite (i.e., PANi/SWNT-PEDOT:PSS) thin film via the spray coating
method. Detailed conditions are explained in the Materials and Methods section. Figure 1b
represents the chemical structures of conducting polymers (i.e., PANi and PEDOT:PSS) and
SWNT used in this work. The strong electrostatic interaction between positively charged
PANi and negatively charged PEDOT:PSS is the main driving force for creating the multi-
layer thin films. SWNTs are assembled through π–π interactions and Van der Walls forces,
with the polymers carried along [3]. Figure 1c shows photo images of dark-green PANi
and SWNT, stabilized in PEDOT:PSS solutions. Sonicating carbon nanotubes in an anionic
polymer creates a homogeneously dispersed suspension, as confirmed by an atomic force
microscope (AFM) image in which nanotubes are uniformly distributed on the surface. By
increasing the spraying time per each solution from 5 to 30 s, it turned out that the optimum
spraying time for spray-based multilayer system was found to be 15 s per solution, which
was enough time to uniformly coat on the substrates.
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Figure 1. (a) Illustration for fabrication process of LbL-thermoelectric nanocomposites via spray
approach, (b) chemical structures of PEDOT:PSS, SWNT, and PANi used in this study, and (c) photo-
graph of PANi and SWNT, stabilized in PEDOT:PSS, along with a corresponding AFM image that
shows uniformly dispersed SWNT in PEDOT:PSS solution.

3.1. Growth Behavior

In an effort to investigate how the growth behavior is influenced by coating methods,
the thickness of the thin films deposited on glass substrates was measured with a profilome-
ter after every four cycles (i.e., four BLs) (Figure 2). All multilayer thin films with and
without carbon nanotubes deposited grew linearly proportional to the number of deposi-
tion cycles. The thin films made with SWNT were grown thicker than PANi/PEDOT:PSS
films, which is most likely due to the three-dimensional structure of nanotubes. Interest-
ingly, the film thickness of the spray-coated samples exhibited the slightly larger growth
rate (4.5 nm per BL) relative to that of dip-coated ones (4.0 nm per BL). Deposition times
for achieving 20 BLs were 90 min for the immersion process, while it only took 10 min in
the case of the spraying method. This emphasizes that the spray coating speeds up the
whole build-up process with the multilayer structure unaffected. The difference in growth
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behavior between two deposition approaches is likely due to a rinse step. As explained in
the Materials and Methods section, the dip coating procedure had intermediate rinse steps
between each deposition, which remove excessively and physically absorbed components.
This results in a relatively thinner PANi/SWNT-PEDOT:PSS structure, as compared to that
made by spraying method in the absence of rinsing. In conventional LbL assembly, the
deposition steps require the rinsing process to remove loosely bound polyelectrolyte chains
on the film surface and avoid any risk of cross-contamination of the assembled multilayers
due to the formation of aggregates by interacting with the oppositely charged components
to be deposited. However, as reported by others, the rinsing steps could be skipped in
spray-LbL assembly because the shear forces on the film surface and the droplets draining
off the surface remove the loosely bound materials [45]. In the present study, the LbL
films with no rinse steps between each deposition exhibit high thermoelectric properties
without sacrificing a highly conjugated carbon network that is commonly associated with a
traditional LbL deposition, as discussed below.
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Figure 2. Thickness of the films with and without SWNT deposited via dipping and spraying
method. The symbols represent the following: (circles) PANi/SWNT-PEDOT:PSS assemblies built by
the spraying process (closed symbols) and traditional dipping approach (open symbols); (squares)
PANi/PEDOT:PSS films formed by the spraying process (closed symbols) and traditional dipping
method (open symbols).

Figure 3 shows photographs of PANi/SWNT-PEDOT:PSS thin films with 20 BLs
spray-coated on PET substrates during various mechanical deformation such as bending
(Figure 3a) and twisting (Figure 3b), which highlights the high mechanical flexibility, indi-
cating stability of multilayer thin film without any delamination. Although an investigation
on the effect of electrical properties upon external stimuli is not focused on the present study,
a 20 BL PANi/SWNT-PEDOT:PSS nanocomposite exhibited that the resistance increased
only 10% after 100 cycles of bending (with 1.5 cm radius) and twisting.
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3.2. Thermoelectric Performances

The electrical properties of PANi/SWNT-PEDOT:PSS thin films assembled by
classic LbL and spray-LbL methods were analyzed as a function of BL deposited to
investigate as to how coating technologies affect the thermoelectric performances. The
sheet resistance of dip-coated samples, measured with a four-point probe system, was
decreased from 800 to 65 kΩ/sq at 4 and 20 BLs, respectively (Figure 4a). The very high
sheet resistance (>1 MΩ/sq) of the PANi/PEDOT:PSS thin films made by both dipping
and spraying method prevented their measurement in electrical properties. The spray-
assisted samples also showed dramatic decrease in sheet resistance form 80 kΩ/sq at
4 BLs to 7.8 kΩ/sq at 20 BLs (Figure 4b). Electrical conductivity was obtained by
multiplying the inverse of sheet resistance by film thickness. As the number of layers
deposited increased, the conductivity of both systems was gradually increased. With
more cycles (or bilayers) deposited, more SWNT are effectively utilized, bridging a
continuous conjugative structure. This implies that a more continuous polymer-carbon
nanotubes conductive network pathway is formed with increasing thickness, providing
more efficient electron transport.
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Figure 4. Sheet resistance and electrical conductivity of PANi/SWNT-PEDOT:PSS thin films that are
coated by (a) traditional dipping and (b) spraying method.

Compared to the traditional dip coating method, the electrical conductivity of PANi/SWNT-
PEDOT:PSS thin films prepared by spraying approach was more greatly enhanced. The maxi-
mum conductivity of 14.3 S/cm was achieved at 20 BLs, which is 8 times larger than the samples
assembled by the conventional LbL dipping method (1.8 S/cm). These results indicate that
the spraying method creates a more efficient electron conduction network during deposition.
Polymer-based composites, composed of graphene or carbon nanotubes, become electrically
conductive when their concentration is above the percolation threshold [46]. In the sprayed
PANi/SWNT-PEDOT:PSS thin films, the electrical conductivity leveled off to 14.1 S/cm at
24 BLs. This suggests that the present system has a SWNT concentration above the percolation
threshold with a uniform alignment of the three-dimensional network structure.

A highly conjugated carbon network was confirmed by UV-vis spectroscopy. Figure 5
shows the UV-vis spectra of aqueous solutions of PANi and PEDOT:PSS and sprayed thin
films with and without SWNT deposited. The two absorption peaks at 274 and 330 nm were
observed in the UV-vis spectra. The first absorption band is assigned to the aromatic rings
from SWNT and PEDOT:PSS [10,12]. A peak at 321 nm corresponds to the π–π* transitions
in benzenoid units of the conducting emeraldine state of PANi [47]. This absorbance peak
was red-shifted to 330 nm wavelength in the sprayed PANi/SWNT-PEDOT:PSS thin films,
which indicates expanded conjugation length due to the strong π–π interfacial interaction
of PANi oriented along the SWNT [48].
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The Seebeck coefficient as a number of deposition cycles was investigated, as shown in
Figure 6. Instead of calculating ZT value, the power factor, in the form of S2·σ, was used to
evaluate the TE performances because it is hard to measure the accurate thermal conductivity
of the thin films less than 1 µm [49,50]. The values of Seebeck coefficient are positive, indicating
a p-type TE material with hole-dominated carrier transport. The nanocomposites via both
deposition methods exhibited a slight increase in Seebeck coefficient with layers added (dip
coating: 65 µV/K at 4 BLs to 72 µV/K at 20 BLs; spray coating: 68 µV/K at 4 BLs to 76 µV/K
at 20 BLs). Intrinsically, semiconducting nanotubes are n-type, but they are converted to p-type
in the air because they are highly susceptible to oxygen doping [51]. Therefore, the Seebeck
coefficient of n-type organic semiconductors, including carbon nanotubes (CNTs), becomes
positive over time due to the electron withdrawal effects by the absorbed oxygen molecules
on nanotube [52,53]. In the present study, the PANi/SWNT-PEDOT:PSS nanocomposites
made from dipping and spraying methods exhibited a p-type behavior. Their thermoelectric
properties, such as the electrical conductivity and Seebeck coefficient, remained stable over
time under ambient conditions. Based on the electrical conductivity and Seebeck coefficient,
the power factor of PANi/SWNT-PEDOT:PSS thin films was calculated as a function of
layers deposited. In a similar manner to electrical conductivity, the power factor of both
systems increased with increasing layers. The spray-assisted LbL films had a power factor of
8.2 µW/m·K2, which is almost 9 times as large as the same films made by the traditional LbL
dip coating (0.93 µW/m·K2).

The focus of the present study is to introduce the spray-based coating concept and
its baseline TE performance with comparison to the traditional LbL-dip method. Fewer
layers in spray-LbL showed similar properties (growth behavior and electrical properties)
in a faster deposition rate. Although the TE properties of the present study is relatively
lower as compared to the previous studies that are fabricated via the spraying process,
we believe that either post-treatment with acids such as concentrated H2SO4 or secondary
doping could increase the electrical conductivity and, hence, the power factor [54–57].
In the present study, the PANi is only partially doped, and much higher conductivities
could be realized in the LbL process by further doping in low-pH solutions of HCl or
methane sulfonic acid. In this work, we used a pH 2.5 PANi solution, and it was not further
doped by HCl or methane sulfonic acid. There are some reports regarding the additional
improvement of electric conductivity in PANi such as the use of camphor sulfonic acid
(CSA) [58]. Additionally, different molecular packing states of PANi (from compacted
coil to expanded coil) can be controlled by the dissolution of the CSA-doped PANi into
m-cresol by tuning the m-cresol content in the solvent [59]. The influence of further doping
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in low-pH solutions of HCl or CSA and of the preparation of PANi mixed with m-cresol
on the thermoelectric properties is now being studied. We expect that both the doping
step and the solvent effect will reveal the intrinsic correlation between the thermoelectric
properties and the molecular chain structure.
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3.3. Multilayer Structure

In order to confirm the surface morphology of fabricated nanocomposite thin
films, atomic force microscope (AFM), and scanning electron microscope (SEM) anal-
yses were carried out. Figure 7a,b represent AFM images of PANi/PEDOT:PSS and
PANi/SWNT-PEDOT:PSS thin films via the spray coating method, respectively. The
sprayed-PANi/PEDOT:PSS thin films exhibited a continuous and featureless surface
structure. However, in the case of the SWNT-incorporated thin film, the AFM-generated
surface structure of PANi/SWNT-PEDOT:PSS assembly revealed what appear to be
individual carbon nanotubes and their bundles. Continuously interconnected polymeric
SWNT networks were formed on the surface. The SEM image of the spray-coated multi-
layer thin films showed a network structure consisting of intertwined carbon nanotubes
(Figure 7c). These surface structures further highlight the feasibility of the spray coating
approach to obtain functional thin films without sacrificing highly dispersed carbon
nanotube networks.

Nanomaterials 2023, 13, x FOR PEER REVIEW 9 of 13 
 

 

 

Figure 7. AFM height images of (a) PANi/PEDOT:PSS and (b) PANi/SWNT-PEDOT:PSS, and (c) 

SEM micrograph of 20 BL PANi/SWNT-PEDOT:PSS thin films deposited on glass slides via spray-

ing method. The inset in the SEM image shows higher resolution of the SWNT network. 

3.4. Thermoelectric Behavior 

Interestingly, the electrical conductivity and Seebeck coefficient in the PANi/SWNT-

PEDOT:PSS thin films assembled by the spraying method were decoupled, which is an 

unusual observation in conventional inorganic-based TE materials. To reveal such a rare 

observation of a simultaneous increase in both electrical conductivity and Seebeck coeffi-

cient, carrier concentration and carrier mobility were analyzed by using Hall effect meas-

urements in van der Pauw geometry at room temperature (Figure 8a). By increasing the 

number of deposition cycles, the carrier concentration of the sprayed-multilayers was de-

creased from 1.45 × 1021 cm−3 at 12 BLs to 1.23 × 1021 cm−3 at 20 BLs. However, the carrier 

mobility was increased with the number of deposition cycles (0.05 cm2/Vs at 12 BLs to 0.09 

cm2/Vs at 20 BLs). The reason for a simultaneous increase in TE properties is thought to 

be mainly driven by enhanced carrier mobility. This is consistent with the results observed 

where the polymer nanocomposites, compounded with carbonaceous materials, have nu-

merous interfaces that impede low energy carriers and facilitate the transport of the high 

energy counterparts [10,12]. Therefore, an energy filtering effect formed in the highly or-

dered structure of the multilayer assembly with single-digit nanometer-thick layers im-

proves the power factor. 

In an effort to see the applicability of organic TE materials to the industrial utilization, 

we have sprayed each component onto the PET substrates and measured the output volt-

age and power of the coated multilayer assemblies. Figure 8b shows the output perfor-

mance (i.e., output voltage, output current, and output power) in the spray-coated 

PANi/SWNT-PEDOT:PSS thin films. When incident resistance and internal resistance val-

ues were corresponded, the maximum power factor of nanocomposites can be observed 

[60]. The output voltage and power of spray-coated multilayers were increased with the 

layers deposited. The maximum power output was 0.01 nW at a temperature gradient of 

6.1 K in the 20 BLs PANi/SWNT-PEDOT:PSS thin films. Although this performance is very 

low for the application of organic TE, the power output can be maximized by assembling 

multi-module devices with a sufficiently large temperature gradient. 

Figure 7. AFM height images of (a) PANi/PEDOT:PSS and (b) PANi/SWNT-PEDOT:PSS, and (c) SEM
micrograph of 20 BL PANi/SWNT-PEDOT:PSS thin films deposited on glass slides via spray-ing
method. The inset in the SEM image shows higher resolution of the SWNT network.

3.4. Thermoelectric Behavior

Interestingly, the electrical conductivity and Seebeck coefficient in the PANi/SWNT-
PEDOT:PSS thin films assembled by the spraying method were decoupled, which is an
unusual observation in conventional inorganic-based TE materials. To reveal such a rare ob-
servation of a simultaneous increase in both electrical conductivity and Seebeck coefficient,
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carrier concentration and carrier mobility were analyzed by using Hall effect measurements
in van der Pauw geometry at room temperature (Figure 8a). By increasing the number of
deposition cycles, the carrier concentration of the sprayed-multilayers was decreased from
1.45 × 1021 cm−3 at 12 BLs to 1.23 × 1021 cm−3 at 20 BLs. However, the carrier mobility
was increased with the number of deposition cycles (0.05 cm2/Vs at 12 BLs to 0.09 cm2/Vs
at 20 BLs). The reason for a simultaneous increase in TE properties is thought to be mainly
driven by enhanced carrier mobility. This is consistent with the results observed where
the polymer nanocomposites, compounded with carbonaceous materials, have numerous
interfaces that impede low energy carriers and facilitate the transport of the high energy
counterparts [10,12]. Therefore, an energy filtering effect formed in the highly ordered
structure of the multilayer assembly with single-digit nanometer-thick layers improves the
power factor.
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In an effort to see the applicability of organic TE materials to the industrial utilization, we
have sprayed each component onto the PET substrates and measured the output voltage and
power of the coated multilayer assemblies. Figure 8b shows the output performance (i.e., out-
put voltage, output current, and output power) in the spray-coated PANi/SWNT-PEDOT:PSS
thin films. When incident resistance and internal resistance values were corresponded, the
maximum power factor of nanocomposites can be observed [60]. The output voltage and
power of spray-coated multilayers were increased with the layers deposited. The maximum
power output was 0.01 nW at a temperature gradient of 6.1 K in the 20 BLs PANi/SWNT-
PEDOT:PSS thin films. Although this performance is very low for the application of organic TE,
the power output can be maximized by assembling multi-module devices with a sufficiently
large temperature gradient.

4. Conclusions

The spraying LbL deposition method was employed to fabricate the multilayer thin
films by alternately depositing PANi and SWNT, stabilized in aqueous PEDOT:PSS solu-
tions. The spray-assisted PANi/SWNT-PEDOT:PSS systems showed greater growth rate
with much shorter deposition times relative to the same ones constructed by traditional
dip coating. A highly interconnected and layered SWNT architecture was observed, which
is commonly associated with the classical immersion process. A 20-bilayer PANi/SWNT-
PEDOT:PSS thin film yielded a power factor of 8.2 µW/m·K2, which is 9 times as large as
the same films made with a conventional dip coating method. The experimental parameters
including spraying times, spraying distance on the receiving surface, and concentration of
each component are crucial conditions to optimize the present work in terms of TE perfor-
mance. A manuscript is currently in preparation for evaluating these spraying conditions
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for both physical properties and impact on TE behavior. This spray-based LbL assembly is
expected to be applicable for large-scale industrial use due to its simple operation, versa-
tility, and rapid processing that produces multifunctional coatings without sacrificing the
advantages of the conventional dipping method.
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