Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (407)

Search Parameters:
Keywords = nanoparticules

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 2561 KiB  
Review
Lipid-Based Nanotechnologies for Delivery of Green Tea Catechins: Advances, Challenges, and Therapeutic Potential
by Stanila Stoeva-Grigorova, Nadezhda Ivanova, Yoana Sotirova, Maya Radeva-Ilieva, Nadezhda Hvarchanova and Kaloyan Georgiev
Pharmaceutics 2025, 17(8), 985; https://doi.org/10.3390/pharmaceutics17080985 - 30 Jul 2025
Viewed by 196
Abstract
Knowing the superior biochemical defense mechanisms of sessile organisms, it is not hard to believe the cure for any human sickness might be hidden in nature—we “just” have to identify it and make it safely available in the right dose to our organs [...] Read more.
Knowing the superior biochemical defense mechanisms of sessile organisms, it is not hard to believe the cure for any human sickness might be hidden in nature—we “just” have to identify it and make it safely available in the right dose to our organs and cells that are in need. For decades, green tea catechins (GTCs) have been a case in point. Because of their low redox potential and favorable positioning of hydroxyl groups, these flavonoid representatives (namely, catechin—C, epicatechin—EC, epicatechin gallate—ECG, epigallocatechin—EGC, epigallocatechin gallate—EGCG) are among the most potent plant-derived (and not only) antioxidants. The proven anti-inflammatory, neuroprotective, antimicrobial, and anticarcinogenic properties of these phytochemicals further contribute to their favorable pharmacological profile. Doubtlessly, GTCs hold the potential to “cope” with the majority of today‘s socially significant diseases, yet their mass use in clinical practice is still limited. Several factors related to the compounds’ membrane penetrability, chemical stability, and solubility overall determine their low bioavailability. Moreover, the antioxidant-to-pro-oxidant transitioning behavior of GTCs is highly conditional and, to a certain degree, unpredictable. The nanoparticulate delivery systems represent a logical approach to overcoming one or more of these therapeutic challenges. This review particularly focuses on the lipid-based nanotechnologies known to be a leading choice when it comes to drug permeation enhancement and not drug release modification nor drug stabilization solely. It is our goal to present the privileges of encapsulating green tea catechins in either vesicular or particulate lipid carriers with respect to the increasingly popular trends of advanced phytotherapy and functional nutrition. Full article
Show Figures

Graphical abstract

20 pages, 2822 KiB  
Article
Nanoparticle Formulation Generated from DDGS and Its Anthraquinone Synthesis Elicitation in Rubia tinctorum Hairy Roots
by Gonzalo Galaburri, Yazmín R. Kalapuj, María Perassolo, Julián Rodríguez Talou, Patricio G. Márquez, Romina J. Glisoni, Antonia Infantes-Molina, Enrique Rodríguez-Castellón and Juan M. Lázaro-Martínez
Polymers 2025, 17(15), 2021; https://doi.org/10.3390/polym17152021 - 24 Jul 2025
Viewed by 308
Abstract
A nanoparticle formulation was generated from distiller dried grains with solubles (DDGS), and its effect on the production of anthraquinones (AQs) was evaluated on Rubia tinctorum hairy roots. The DDGS material was washed with water and ethyl acetate to remove mainly the soluble [...] Read more.
A nanoparticle formulation was generated from distiller dried grains with solubles (DDGS), and its effect on the production of anthraquinones (AQs) was evaluated on Rubia tinctorum hairy roots. The DDGS material was washed with water and ethyl acetate to remove mainly the soluble organic/inorganic molecules and reduce the fat content, respectively, followed by an alkaline treatment to remove the polysaccharides. The resulting alkaline solutions were then lyophilized and redispersed in deionized water to generate a monodispersed nanoparticulate formulation (DDGS-NP) with a hydrodynamic diameter and zeta potential of 227 ± 42 nm and −53 ± 7 mV, respectively. The formulation demonstrated good colloidal stability over time, and sterilized DDGS-NPs maintained comparable physicochemical properties. The nanoparticles were enriched in protein fractions, unsaturated fatty acids, and orthophosphate anion components from DDGS, as determined by solid-state Nuclear Magnetic Resonance (NMR), X-ray photoelectron spectroscopy (XPS), organic elemental analysis (OEA), and inductively coupled plasma optical emission spectrometry (ICP-OES) techniques. The DDGS-NPs were tested at different concentrations on Rubia tinctorum hairy roots, in comparison to or in combination with methyl jasmonate (MeJ), for their capacity to induce the production of AQs. All DDGS-NP concentrations increased the production of specific AQs to 7.7 (100 mg L−1), 7.8 (200 mg L−1), and 9.3 µmol/gFW (500 mg L−1), with an extracellular AQ accumulation of 18 µM for the highest DDGS-NP concentration, in comparison with the control hairy roots (~2 µM AQ). The plant growth was not affected at any of the tested nanoparticle concentrations. Interestingly, the combination of DDGS-NPs and MeJ resulted in the highest extracellular AQ accumulation in R. tinctorum root cultures. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

18 pages, 3243 KiB  
Article
Potential Use of Cefiderocol and Nanosilver in Wound Dressings to Control Multidrug-Resistant Gram-Negative Bacteria
by Żaneta Binert-Kusztal, Agata Krakowska, Iwona Skiba-Kurek, Magdalena Luty-Błocho, Anna Kula, Aldona Olechowska-Jarząb, Przemysław Dorożyński and Tomasz Skalski
Molecules 2025, 30(15), 3072; https://doi.org/10.3390/molecules30153072 - 23 Jul 2025
Viewed by 272
Abstract
This study evaluated the antimicrobial efficacy of cefiderocol and various forms of silver (ionic and nanoparticulate) as potential components of wound-dressing reagents against both reference and multidrug-resistant (MDR) Gram-negative bacteria. The anticipated synergistic effect between cefiderocol and nanosilver was not consistently observed; in [...] Read more.
This study evaluated the antimicrobial efficacy of cefiderocol and various forms of silver (ionic and nanoparticulate) as potential components of wound-dressing reagents against both reference and multidrug-resistant (MDR) Gram-negative bacteria. The anticipated synergistic effect between cefiderocol and nanosilver was not consistently observed; in fact, for reference strains, the combination was less effective than cefiderocol alone. However, in MDR and cefiderocol-resistant A. baumannii strains, combining both agents enhanced antibacterial efficacy. Notably, the effectiveness of silver did not increase with concentration, and low or medium nanosilver concentrations were often more effective. Mechanistically, high concentrations of silver may antagonize cefiderocol’s action by inhibiting bacterial surface proteins involved in siderophore-mediated uptake. Generalized linear modeling confirmed that the strain type, silver form, concentration, and their interactions significantly influenced inhibition zones. These findings highlight the importance of agent selection, concentration, and formulation in designing effective antimicrobial wound dressings. They also suggest that further research is needed to optimize such combination therapies for clinical use. Full article
(This article belongs to the Special Issue Applied Chemistry in Europe)
Show Figures

Graphical abstract

20 pages, 3241 KiB  
Article
Amperometric Alcohol Vapour Detection and Mass Transport Diffusion Modelling in a Platinum-Based Sensor
by Luke Saunders, Ronan Baron and Benjamin R. Horrocks
Electrochem 2025, 6(3), 24; https://doi.org/10.3390/electrochem6030024 - 3 Jul 2025
Viewed by 439
Abstract
An important class of analytes are volatile organic carbons (VOCs), particularly aliphatic primary alcohols. Here, we report the straightforward modification of a commercially available carbon monoxide sensor to detect a range of aliphatic primary alcohols at room temperature. The mass transport mechanisms governing [...] Read more.
An important class of analytes are volatile organic carbons (VOCs), particularly aliphatic primary alcohols. Here, we report the straightforward modification of a commercially available carbon monoxide sensor to detect a range of aliphatic primary alcohols at room temperature. The mass transport mechanisms governing the performance of the sensor were investigated using diffusion in multiple layers of the sensor to model the response to an abrupt change in analyte concentration. The sensor was shown to have a large capacitance because of the nanoparticulate nature of the platinum working electrode. It was also shown that the modified sensor had performance characteristics that were mainly determined by the condensation of the analyte during diffusion through the membrane pores. The sensor was capable of a quantitative amperometric response (sensitivity of approximately 2.2 µA/ppm), with a limit of detection (LoD) of 17 ppm methanol, 2 ppm ethanol, 3 ppm heptan-1-ol, and displayed selectivity towards different VOC functional groups (the sensor gives an amperometric response to primary alcohols within 10 s, but not to esters or carboxylic acids). Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
Show Figures

Figure 1

33 pages, 3876 KiB  
Article
pH Gradient-Driven Loading of Doxorubicin into Niosomes: A Comparative Study Using Bromocresol Green as a Visual Indicator
by Mohammed Altaee, Ahmed Mostafa Faheem and Amal Ali Elkordy
Pharmaceutics 2025, 17(7), 862; https://doi.org/10.3390/pharmaceutics17070862 - 30 Jun 2025
Viewed by 410
Abstract
Background: The active (remote) loading of drugs into nanoparticulate systems via the pH gradient technique has been proven highly successful in liposomes, as numerous formulations have reached the market. However, this is not the case for niosomes, as the full potential of [...] Read more.
Background: The active (remote) loading of drugs into nanoparticulate systems via the pH gradient technique has been proven highly successful in liposomes, as numerous formulations have reached the market. However, this is not the case for niosomes, as the full potential of this area remains largely undiscovered. The purpose of this research is to study the effect of different co-surfactants (Cremophor RH 40, Cremophor ELP and Solutol HS-15) on stabilising the niosomal membrane to enable the creation of a pH gradient. Methods: For visualisation of pH gradients, pH indicator bromocresol green (BCG) was used as a novel encapsulated model molecule to visually investigate the ability of niosomes to entrap drugs through active loading. Thereafter, the optimised BCG niosomal formulation was applied to encapsulate a therapeutic drug molecule, doxorubicin, via pH gradient active loading. Niosomes were formulated via thin-film hydration using Span 60, cholesterol, with or without co-surfactants. Thin films were hydrated with either Trizma buffer or HEPES buffer for BCG, or ammonium sulfate for doxorubicin. The niosomes’ outer membrane pH was adjusted via either the addition of HCl or citric acid in the case of BCG, or by passing the niosomes through a Sephadex G50 gel column, pre-equilibrated with PBS or Trizma buffer, in the case of doxorubicin. Results: Niosomes formulated with Span 60 and cholesterol could not be formed at acidic pH and thus could not create a pH gradient. All three co-surfactants, when added to Span 60 and cholesterol, stabilised the niosomes and enabled them to form a pH gradient. Niosomes (after size reduction) containing Solutol HS-15 showed significantly higher entrapment efficiency of BCG when compared to Cremophor RH 40 and Cremophor ELP (67.86% vs. 15.57% vs. 17.81%, respectively, with sizes of 159.6 nm, 177.9 nm and 219.1 nm, respectively). The use of HEPES buffer resulted in a higher EE of BCG compared to Trizma buffer (72.85% vs. 67.86%) and achieved a size of 283.4 nm. The Solutol HS-15 containing formulation has exhibited 68.28% EE of doxorubicin with ammonium sulfate as the inner buffer, while the external buffer was Trizma with a size of 241.1 nm after extrusion. Conclusions: Niosomal formulations containing Solutol HS-15 are highly promising for remote drug loading. The novel use of BCG for studying pH gradient and drug loading into niosomes has proved beneficial and successful. Full article
(This article belongs to the Special Issue Advanced Liposomes for Drug Delivery, 2nd Edition)
Show Figures

Figure 1

21 pages, 2401 KiB  
Article
Co-Formulation of Iron Oxide and PLGA Nanoparticles to Deliver Curcumin and IFNα for Synergistic Anticancer Activity in A375 Melanoma Skin Cancer Cells
by Magdi Abobaker, Mershen Govender and Yahya E. Choonara
Pharmaceutics 2025, 17(7), 860; https://doi.org/10.3390/pharmaceutics17070860 - 30 Jun 2025
Viewed by 370
Abstract
Background/Objectives: Skin cancer remains a significant global health issue, driving the development of new treatment strategies to improve clinical outcomes and prevent recurrence. Traditional monotherapies often face obstacles such as bioactive resistance, prompting interest in combination therapies that enhance efficacy, while minimizing [...] Read more.
Background/Objectives: Skin cancer remains a significant global health issue, driving the development of new treatment strategies to improve clinical outcomes and prevent recurrence. Traditional monotherapies often face obstacles such as bioactive resistance, prompting interest in combination therapies that enhance efficacy, while minimizing side effects. This study investigated the use of a co-nanoparticle approach of iron oxide nanoparticles (NPs) surface-functionalized with curcumin (Cur-FeONPs) delivered with prolonged-release interferon alpha (IFNα)-loaded PLGA NPs (IFNα-PLGANPs) for the synergistic treatment of malignant melanoma tested in A375 cells. Methods: Extensive in vitro characterization studies of the Cur-FeONPs and IFNα-PLGANPs were performed, including zeta-size profiling, morphological studies, and structural validation, in addition to cytotoxicity assessments on A375 melanoma and NIH-3T3 fibroblast cells. Results: The Cur-FeONP and IFNα-PLGANPs synthesis processes yielded NPs with an average size of 111.0 nm and 97.0 nm, respectively. Morphological and structural validation studies determined the successful synthesis of the nanoparticulate systems, with cell viability analyses displaying significant cytotoxicity against A375 melanoma cells for the combination treatment, when compared to the individual platforms, with a minimal effect on NIH-3T3 fibroblast cells. Conclusions: The results of this study present a promising synergistic approach for enhanced anticancer activity in A375 melanoma skin cancer cells, providing a potential platform for future preclinical and clinical studies. Full article
Show Figures

Figure 1

20 pages, 1610 KiB  
Article
Comparative Analysis of Scientific Papers on LCA Applied to Nanoparticulated Building Materials
by Marco Antonio Sánchez-Burgos, Begoña Blandón-González, Esperanza Conradi-Galnares, Paula Porras-Pereira and Pilar Mercader-Moyano
Constr. Mater. 2025, 5(2), 37; https://doi.org/10.3390/constrmater5020037 - 30 May 2025
Viewed by 407
Abstract
Nanomaterials have emerged as versatile components revolutionizing diverse industries, yet their environmental and health impacts remain insufficiently explored. This paper delves into the latent hazards accompanying their evolution and integration, particularly within the construction sector. It addresses the critical gap in assessing their [...] Read more.
Nanomaterials have emerged as versatile components revolutionizing diverse industries, yet their environmental and health impacts remain insufficiently explored. This paper delves into the latent hazards accompanying their evolution and integration, particularly within the construction sector. It addresses the critical gap in assessing their life-cycle impacts, emphasizing the necessity of explicit reporting on nanoparticle emissions. Employing a Life Cycle Assessment (LCA) approach, this research evaluates the sustainability of nanomaterial applications. The absence of nanoparticle-specific data in existing product databases underscores the need for comprehensive life-cycle emission reporting. Since direct impact calculations remain unfeasible, incorporating predicted emissions and risk assessments into LCA studies is recommended. This study advocates for incorporating nanoparticle risk evaluations into LCA methodologies to enhance sustainability and environmental safety. By prioritizing precise emission data and predictive risk analysis, it advances nanomaterial environmental assessments, contributing to the responsible implementation of nanomaterials in construction. Full article
Show Figures

Figure 1

29 pages, 5293 KiB  
Article
A pH-Responsive Poly Beta-Amino Ester Nanoparticulate Thermo-Responsive PEG-PCL-PEG Hydrogel Dispersed System for the Delivery of Interferon Alpha to the Ocular Surface
by Yosra Abdalla, Lisa Claire du Toit, Philemon Ubanako and Yahya Essop Choonara
Pharmaceutics 2025, 17(6), 709; https://doi.org/10.3390/pharmaceutics17060709 - 28 May 2025
Viewed by 629
Abstract
Background/Objectives: The management of ocular tumours is faced with the challenge of developing a suitable treatment strategy with consideration of the anatomical and physiological protective barriers of the eye. Interferon alpha has been employed to treat patients with ocular tumours for decades; however, [...] Read more.
Background/Objectives: The management of ocular tumours is faced with the challenge of developing a suitable treatment strategy with consideration of the anatomical and physiological protective barriers of the eye. Interferon alpha has been employed to treat patients with ocular tumours for decades; however, its short half-life and poor tolerability necessitate frequent administration. This study focuses on the design of an injectable pH-responsive and protective nanoparticle system dispersed into a thermo-responsive hydrogel for site-specific sustained delivery of interferon alpha (IFN-α2b) in the treatment of ocular surface tumours. Methods: The synthesis of a poly(ethylene glycol)-poly(caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG) triblock copolymer (PECE) was undertaken. The IFN-α2b was encapsulated in poly(β-amino ester) (PBAE) nanoparticles (NP) with pH-responsive characteristics to proposedly release the IFNα-2b in response to the acidic nature of the tumour microenvironment. This was followed by characterisation via Fourier transform infrared spectroscopy (FT-IR), 1H-nuclear magnetic resonance (1H-NMR) analysis, differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD) analysis, thermogravimetric analysis (TGA), and thermal-transition analysis of the PECE hydrogels. Results: Release studies demonstrated that the PBAE nanoparticulate PEG-PCL-PEG hydrogel was both pH-responsive, while providing controlled release of IFN-α2b, and thermo-responsive. Release analysis highlighted that IFN-α2b-loaded NP dispersed into the hydrogel (IFNH) further prolonged the release of IFN-α2b with a pH-responsive yet controlled release rate in an acidic environment simulating a tumour microenvironment. The developed system proved to be biocompatible with human retinal pigment epithelial cells and the released IFN-α demonstrated bioactivity in the presence of an A172 glioblastoma cell line. Conclusions: In conclusion, the PECE hydrogel has promising potential for application as an ocular drug delivery system for the treatment of ocular tumours and could potentially overcome and prevent the drawbacks associated with the commercially available IFN-α2b injection. Full article
Show Figures

Graphical abstract

28 pages, 3876 KiB  
Review
Ocular Drug Delivery: Emerging Approaches and Advances
by Shilpkala Gade, Yin So, Deepakkumar Mishra, Shubhamkumar M. Baviskar, Ahmad A. Assiri, Katie Glover, Ravi Sheshala, Lalitkumar K. Vora and Raghu Raj Singh Thakur
Pharmaceutics 2025, 17(5), 599; https://doi.org/10.3390/pharmaceutics17050599 - 1 May 2025
Viewed by 1543
Abstract
Complex anatomical and physiological barriers make the eye a challenging organ to treat from a drug delivery perspective. Currently available treatment methods (topical eyedrops) for anterior segment diseases pose several limitations in terms of bioavailability and patient compliance. Conventional drug delivery methods to [...] Read more.
Complex anatomical and physiological barriers make the eye a challenging organ to treat from a drug delivery perspective. Currently available treatment methods (topical eyedrops) for anterior segment diseases pose several limitations in terms of bioavailability and patient compliance. Conventional drug delivery methods to treat posterior segment ocular diseases are primarily intravitreal injection (IVT) of solutions. IVT is highly invasive and leads to retinal toxicity, endophthalmitis, and intraocular inflammation, frequently requiring professional administration and frequent clinical visits. Advanced drug delivery treatment strategies could improve patient compliance and convenience. Long-acting drug delivery platforms (biodegradable or nonbiodegradable) provide sustained/controlled release of drugs for at least four to six months. Smart drug delivery alternatives, for instance, in situ forming implants, are injectable formulations that form semisolid-to-solid implants in response to the various stimuli of pH, light, osmolarity, and temperature. Additionally, nanoparticulate drug delivery systems, contact lenses, electrospun patches, and microneedle-based drug delivery systems provide minimally invasive treatment options for ocular disorders. This comprehensive review focuses on advanced drug delivery options for the management of ocular disorders. Full article
(This article belongs to the Special Issue Ophthalmic Drug Delivery, 3rd Edition)
Show Figures

Figure 1

14 pages, 11978 KiB  
Article
Dietary Rutin Ameliorates Nanoparticle Zinc Oxide-Induced Toxicity in Mice by Potentiating Antioxidant Defense Mechanisms
by Xiaofang He, Longfei Ma, Jiaqi Zhang, Binbin Zhou, Shun Chen, Minhang Tu, Gentan Cai, Tian Wang and Chao Wang
Nutrients 2025, 17(9), 1495; https://doi.org/10.3390/nu17091495 - 29 Apr 2025
Viewed by 484
Abstract
In animal production, nanoparticulate zinc oxide exhibits synergistic antibacterial efficacy coupled with growth-promoting effects, positioning itself as a novel antibiotic alternative with enhanced biosafety profiles. However, its dose-dependent toxicity poses challenges. Objective: The experimental design sought to quantify the protective effects of dietary [...] Read more.
In animal production, nanoparticulate zinc oxide exhibits synergistic antibacterial efficacy coupled with growth-promoting effects, positioning itself as a novel antibiotic alternative with enhanced biosafety profiles. However, its dose-dependent toxicity poses challenges. Objective: The experimental design sought to quantify the protective effects of dietary rutin against zinc-overload-induced damage. Methods: A zinc-overload murine model was established by giving high-dose ZnO nanoparticles (HZn, 5000 mg/kg/day) for 21 days. Mice were then fed rutin at doses of 300, 600, or 1200 mg/kg. Body weight, relative organ indexes, zinc concentrations, serum enzyme activities, and tissue-level indicators of apoptosis, autophagy, mitochondrial function, and antioxidant capacity were measured. Results: The results showed that rutin could not reverse HZn-induced body weight decline but improved relative organ indexes in liver and kidney. It alleviated HZn-induced cell damage and enhanced antioxidant capacity in jejunum and serum through Nrf2 activation, without inhibiting HZn-induced zinc elevation. Conclusions: Rutin, especially at 600 mg/kg, can partially restore hepatic function and organ index and mitigate HZn-induced hepatic and jejunal injuries. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

19 pages, 946 KiB  
Review
Nanotechnology-Based Delivery Systems for Enhanced Targeting of Tyrosine Kinase Inhibitors: Exploring Inorganic and Organic Nanoparticles as Targeted Carriers
by Yana Gvozdeva
Kinases Phosphatases 2025, 3(2), 9; https://doi.org/10.3390/kinasesphosphatases3020009 - 21 Apr 2025
Cited by 1 | Viewed by 1022
Abstract
Kinase inhibitors are small molecules that block kinase activity and have significant applications in both therapy and diagnostics. Recent studies suggest that these inhibitors hold great potential as targets for treating a range of diseases, including autoimmune disorders, cardiovascular conditions, cancer, and inflammatory [...] Read more.
Kinase inhibitors are small molecules that block kinase activity and have significant applications in both therapy and diagnostics. Recent studies suggest that these inhibitors hold great potential as targets for treating a range of diseases, including autoimmune disorders, cardiovascular conditions, cancer, and inflammatory diseases like ulcerative colitis. Ongoing research focuses on developing effective carriers for tyrosine kinase inhibitors (TKIs) to enhance treatment outcomes while reducing side effects. The nano-scale drug carriers have demonstrated the ability to encapsulate a wide range of imaging and therapeutic agents, enhancing tumor diagnosis and treatment. Notably, the incorporation of drugs with poor pharmacokinetics into nanocarriers enhances their solubility and stability, offering a renewed opportunity to assess their full therapeutic potential. The entrapped agents can be released in a controlled manner to maintain a specific drug concentration within a treatment framework or triggered by specific stimuli such as time or pH to target particular tissues or cells. The multifunctionality of nanosystems offers a promising avenue for developing innovative tyrosine kinase inhibitor (TKI) delivery strategies that serve as alternative treatment options for cancer and other inflammatory diseases. This review aims to provide a comprehensive overview of innovative nano-scale delivery systems for TKIs, both as standalone treatments and in combination with other therapeutic agents or drug delivery approaches. We discuss their comparative advantages and limitations for future small-molecule TKIs research. Full article
Show Figures

Figure 1

13 pages, 3781 KiB  
Article
Nanoparticulate Copper Cluster-Mediated Biosensing of Cardiac Biomolecular Markers
by Lakshmi V. Nair, Jarred Wheeler, Yaelyn Ha, Kimberly M. Jones, Jesse Jones and Vinoy Thomas
Biosensors 2025, 15(4), 237; https://doi.org/10.3390/bios15040237 - 8 Apr 2025
Viewed by 716
Abstract
Being a leading cause of death, heart diseases across the globe need special attention to enable early diagnosis. Metal nanoparticle-mediated biosensors are useful clinical tools for the early detection of bio-analytes. The size-dependent surface plasmon resonance (SPR) of metal nanoparticles can be effectively [...] Read more.
Being a leading cause of death, heart diseases across the globe need special attention to enable early diagnosis. Metal nanoparticle-mediated biosensors are useful clinical tools for the early detection of bio-analytes. The size-dependent surface plasmon resonance (SPR) of metal nanoparticles can be effectively utilized for the same purpose. The early detection of heart diseases can be evaluated by monitoring the troponin level. A copper nanoparticle-mediated troponin biosensor was developed through antibody conjugation for troponin I and troponin T. The copper nanosensor shows a concentration-dependent SPR change towards troponin T and troponin I. Full article
(This article belongs to the Special Issue Nanomaterial-Enhanced Biosensing for Point-of-Care Diagnostics)
Show Figures

Figure 1

23 pages, 2510 KiB  
Review
Targeting Breast and Gynecologic Cancers: The Role of Natural Products with Emphasis on Cinnamon and Its Derivatives—Advances in Nanoscale Therapeutics and Adjuvant Strategies
by Mary A. Biggs and Ipsita A. Banerjee
Macromol 2025, 5(1), 13; https://doi.org/10.3390/macromol5010013 - 18 Mar 2025
Viewed by 1844
Abstract
Members of the Cinnamomum genus have been utilized for medicinal treatment for millennia. In recent years, particular attention has been given to the bioactive metabolites involved in the medicinal properties of natural products and their extracts. Cinnamon is particularly interesting due to the [...] Read more.
Members of the Cinnamomum genus have been utilized for medicinal treatment for millennia. In recent years, particular attention has been given to the bioactive metabolites involved in the medicinal properties of natural products and their extracts. Cinnamon is particularly interesting due to the presence of both terpenoid and polyphenol moieties, both of which have been extensively studied for their medicinal applications in the treatment of a wide range of conditions, from bacterial infection, obesity and diabetes to cancer and cardiovascular pathologies. Here, we reviewed some of the properties of cinnamon and its derivatives cinnamic acid, trans-cinnamaldehyde and beta-caryophyllene. In addition, recent advancements in the application of cinnamon and its derivatives in cancer, particularly focusing on gynecological and breast cancers, which present unique challenges to treatment due to late diagnosis, have been discussed. Current advancements to further enhance the delivery of cinnamon and its derivatives through nanoencapsulation and nanoparticulate strategies as well as the development of novel conjugates and hybrids are also discussed. Additionally, the use of cinnamon and its derivatives as adjuvants with chemotherapeutics that can work synergistically was also touched upon. Overall, biotechnological innovations have enhanced the delivery of natural products such as cinnamon and its derivatives and may pave the path for novel therapeutic strategies with fewer side effects and higher potency. Cinnamon represents a valuable source of developing novel anticancer materials that warrant additional research for development as potential interventions or combination treatments. Full article
Show Figures

Graphical abstract

16 pages, 2467 KiB  
Article
Photosensitized Methylene Blue Nanoparticles: A Promising Approach for the Control of Oral Infections
by Magali Parizzi, Aline Rosa Almeida, Gabriel Salvador, Diogo Dominguini, Mylena Fernandes, Daniela Becker, Michael Ramos Nunes, Anelise Viapiana Masiero and Cleonice Gonçalves da Rosa
Biomedicines 2025, 13(3), 673; https://doi.org/10.3390/biomedicines13030673 - 10 Mar 2025
Viewed by 1803
Abstract
Introduction: Oral infections pose significant public health challenges, often exacerbating other comorbidities and increasing systemic health risks. Traditional treatments often fail to eliminate persistent micro-organisms and contribute to the rise of antimicrobial resistance. Nanoparticulate systems offer a promising solution by delivering active agents [...] Read more.
Introduction: Oral infections pose significant public health challenges, often exacerbating other comorbidities and increasing systemic health risks. Traditional treatments often fail to eliminate persistent micro-organisms and contribute to the rise of antimicrobial resistance. Nanoparticulate systems offer a promising solution by delivering active agents directly to targeted sites, providing more effective and localized treatment options. Objective: This study aimed to synthesize and characterize methylcellulose nanoparticles containing methylene blue at different concentrations using the nanoprecipitation method. We also evaluated their biocompatibility and antimicrobial activity against key micro-organisms commonly found in oral infections. Methods: The study involved physicochemical and morphological characterizations, including encapsulation efficiency, particle size, polydispersity index, zeta potential, and transmission electron microscopy (TEM). Additionally, controlled release profiles, antimicrobial efficacy against major oral pathogens, and biocompatibility in vitro assessments were performed. Results: The results revealed encapsulation efficiency between 99.1 and 98.8%, with particle sizes ranging from 186 to 274 nm and a zeta potential of 1.7 to 2.9 mV achieved at lower concentrations of methylene blue and methylcellulose. The nanoparticles demonstrated sustained drug release of 85% for the smaller particles and 45% for the larger particles for more than 10 h. The nanoparticles exhibited superior antimicrobial activity compared to pure methylene blue. Cell viability studies indicated that the nanoparticles were biocompatible with approximately 40% cell viability at lower concentrations of the nanoparticles. Conclusions: These findings suggest that methylene blue nanoparticles could serve as a promising adjunct in dental treatments. They offer targeted antimicrobial action while potentially reducing the development of antimicrobial resistance. Full article
Show Figures

Figure 1

8 pages, 203 KiB  
Perspective
Energy Recovery Ventilation: What Is Needed to Fill the Research Gaps Related to Its Effects on Exposure to Indoor Bio-Aerosols, Nanoparticulate, and Gaseous Indoor Air Pollution
by Yevgen Nazarenko and Chitra Narayanan
Atmosphere 2025, 16(3), 309; https://doi.org/10.3390/atmos16030309 - 7 Mar 2025
Viewed by 1205
Abstract
Indoor air quality (IAQ) impacts human health, productivity, and well-being. As buildings become more energy-efficient and tightly sealed, the need for effective ventilation systems that maintain adequate IAQ grows. Energy Recovery Ventilators (ERVs) ensure adequate IAQ by bringing fresh outdoor air indoors while [...] Read more.
Indoor air quality (IAQ) impacts human health, productivity, and well-being. As buildings become more energy-efficient and tightly sealed, the need for effective ventilation systems that maintain adequate IAQ grows. Energy Recovery Ventilators (ERVs) ensure adequate IAQ by bringing fresh outdoor air indoors while minimizing costly energy wastage. ERVs provide major economic, health, and well-being benefits and are a critical technology in the fight against climate change. However, little is known about the impact of ERV operation on the generation and fate of particulate and gaseous indoor air pollutants, including toxic, carcinogenic, allergenic, and infectious air pollutants. Specifically, the air pollutant crossover, aerosol deposition within ERVs, the chemical identity and composition of aerosols and volatile organic compounds emitted by ERVs themselves and by the accumulated pollutants within them, and the effects on bioaerosols must be investigated. To fill these research gaps, both field and laboratory-based experimental research that closely mimics real-life conditions within a controlled environment is needed to explore critical aspects of ERVs’ effects on indoor air pollution. Filling the research gaps identified herein is urgently needed to alert and inform the industry about how to optimize ERVs to help prevent air pollutant generation and recirculation from these systems and enhance their function of pollutant removal from residential and commercial buildings. Addressing these knowledge gaps related to ERV design and operation will enable evidence-based recommendations and generate valuable insights for engineers, policymakers, and heating, ventilation and air conditioning (HVAC) professionals to create healthier indoor environments. Full article
(This article belongs to the Topic Indoor Air Quality and Built Environment)
Back to TopTop