Co-Formulation of Iron Oxide and PLGA Nanoparticles to Deliver Curcumin and IFNα for Synergistic Anticancer Activity in A375 Melanoma Skin Cancer Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of the Co-Nanoparticle Systems
2.2.1. Cur-FeONPs
2.2.2. IFNα-PLGANPs
2.3. Characterization of the Synthesized Nanosystems
2.3.1. Chemical Structure Validation
2.3.2. Particle Size, Zeta Potential, and Surface Morphology
2.3.3. Determination of Nanoparticle Thermal Phase Stability
2.3.4. Crystallographic Analysis of the Nanosystem Archetypes
2.3.5. Determination of the Bioactive Loading Within the Nanosystems
2.3.6. In Vitro Release of Bioactives from the Nanosystems
2.4. Nanosystem Cytocompatibility and Antiproliferation Studies
Statistical Analysis
3. Results and Discussion
3.1. In Vitro Characterization of the Cur-FeONPs and IFNα-PLGANPs
3.1.1. Assessment of Chemical Stability and Functional Transformation
3.1.2. Colloidal Stability and Morphological Analysis
Zeta Potential and Particle Size Analysis
Nanosystem Surface Morphology
3.2. Thermal Phase Analysis
3.3. Polymorphic Evaluation of the Nanosystems
3.4. Bioactive-Loading Capacity and Adsorption Efficiency
3.5. In Vitro Cur and IFNα Release in Biorelevant Media
3.6. Cytotoxicity Assessment
3.6.1. Cytocompatibility
3.6.2. Antiproliferation Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2D | Two-dimensional |
3D | Three-dimensional |
Cur | Curcumin |
Cur-FeONP | Curcumin-functionalized Iron Oxide Nanoparticle |
DCM | Dichloromethane |
DMEM | Dulbecco’s Modified Eagle Medium |
DMSO | Dimethyl Sulfoxide |
FeONP | Iron Oxide Nanoparticle |
FTIR | Fourier Transform Infrared |
IFNα | Interferon alpha |
IFNα-PLGANP | Interferon alpha-loaded Poly(lactic-co-glycolic) acid Nanoparticle |
MM | Malignant Melanoma |
MTT | 3-(4,5-Dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide |
NMSC | Non-melanoma Skin Cancer |
NP | Nanoparticle |
PBS | Phosphate Buffered Saline |
PDI | Polydispersity Index |
SD | Standard Deviation |
SEM | Scanning Electron Microscopy |
XRD | X-Ray Diffraction |
References
- Kapałczyńska, M.; Kolenda, T.; Przybyła, W.; Zajączkowska, M.; Teresiak, A.; Filas, V.; Ibbs, M.; Bliźniak, R.; Łuczewski, L.; Lamperska, K. 2D and 3D cell cultures—A comparison of different types of cancer cell cultures. Arch. Med. Sci. 2018, 14, 910–919. [Google Scholar] [CrossRef]
- Abobaker, M.; Govender, M.; Choonara, Y.E. Non-surgical Synergistic Interventions for the Treatment of Skin Cancer. Curr. Pharm. Des. 2024, 30, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Jha, S.K.; Hasan, N.; Insaf, A.; Shrestha, J.; Shrestha, J.; Devkota, H.P.; Khan, S.; Panth, N.; Warkiani, M.E.; et al. Overcoming multidrug resistance of antibiotics via nanodelivery systems. Pharmaceutics 2022, 14, 586. [Google Scholar] [CrossRef]
- Hasan, N.; Imran, M.; Sheikh, A.; Tiwari, N.; Jaimini, A.; Kesharwani, P.; Jain, G.K.; Ahmad, F.J. Advanced multifunctional nano-lipid carrier loaded gel for targeted delivery of 5-flurouracil and cannabidiol against non-melanoma skin cancer. Environ. Res. 2023, 233, 116454. [Google Scholar] [CrossRef]
- Pandey, M.; Choudhury, H.; Gorain, B.; Tiong, S.Q.; Wong, G.Y.S.; Chan, K.X.; They, X.; Chieu, W.S. Site-specific vesicular drug delivery system for skin cancer: A novel approach for targeting. Gels 2021, 7, 218. [Google Scholar] [CrossRef]
- Yen, S.K.; Varma, D.P.; Guo, W.M.; Ho, V.H.; Vijayaragavan, V.; Padmanabhan, P.; Bhakoo, K.; Selvan, S.T. Synthesis of Small-Sized, Porous, and Low-Toxic Magnetite Nanoparticles by Thin POSS Silica Coating. Chem.–Chem. Eur. J. 2015, 21, 3914–3918. [Google Scholar] [CrossRef]
- Bhandari, R.; Gupta, P.; Dziubla, T.; Hilt, J.Z. Single step synthesis, characterization and applications of curcumin functionalized iron oxide magnetic nanoparticles. Mater. Sci. Eng. C 2016, 67, 59–64. [Google Scholar] [CrossRef]
- Hatamie, S.; Akhavan, O.; Sadrnezhaad, S.K.; Ahadian, M.M.; Shirolkar, M.M.; Wang, H.Q. Curcumin-reduced graphene oxide sheets and their effects on human breast cancer cells. Mater. Sci. Eng. C 2015, 55, 482–489. [Google Scholar] [CrossRef]
- McNab, F.; Mayer-Barber, K.; Sher, A.; Wack, A.; O’garra, A. Type I interferons in infectious disease. Nat. Rev. Immunol. 2015, 15, 87–103. [Google Scholar] [PubMed]
- Fleitas-Salazar, N.; Lamazares, E.; Pedroso-Santana, S.; Kappes, T.; Pérez-Alonso, A.; Hidalgo, Á.; Altamirano, C.; Sánchez, O.; Fernández, K.; Toledo, J.R. Long-term release of bioactive interferon-alpha from PLGA-chitosan microparticles: In vitro and in vivo studies. Biomater. Adv. 2022, 143, 213167. [Google Scholar] [CrossRef] [PubMed]
- Xiong, F.; Wang, Q.; Wu, G.-H.; Liu, W.-Z.; Wang, B.; Chen, Y.-J. Direct and indirect effects of IFN-α2b in malignancy treatment: Not only an archer but also an arrow. Biomark. Res. 2022, 10, 69. [Google Scholar] [CrossRef]
- Weir, S.A.; Kc, K.; Shoaib, S.; Yusuf, N. The Immunotherapeutic Role of Type I and III Interferons in Melanoma and Non-Melanoma Skin Cancers. Life 2023, 13, 1310. [Google Scholar] [CrossRef]
- Conte, C.; Mastrotto, F.; Taresco, V.; Tchoryk, A.; Quaglia, F.; Stolnik, S.; Alexander, C. Enhanced uptake in 2D- and 3D- lung cancer cell models of redox responsive PEGylated nanoparticles with sensitivity to reducing extra- and intracellular environments. J. Control. Release 2018, 277, 126–141. [Google Scholar] [CrossRef]
- Gupta, R.; Sharma, D. Therapeutic response differences between 2D and 3D tumor models of magnetic hyperthermia. Nanoscale Adv. 2021, 3, 3663–3680. [Google Scholar] [CrossRef]
- Borodina, T.; Gileva, A.; Akasov, R.; Trushina, D.; Burov, S.; Klyachko, N.; González-Alfaro, Y.; Bukreeva, T.; Markvicheva, E. Fabrication and evaluation of nanocontainers for lipophilic anticancer drug delivery in 3D in vitro model. Appl. Biomater. 2021, 109, 527–537. [Google Scholar] [CrossRef]
- Gileva, A.; Trushina, D.; Yagolovich, A.; Gasparian, M.; Kurbanova, L.; Smirnov, I.; Burov, S.; Markvicheva, E. Doxorubicin-Loaded Polyelectrolyte Multilayer Capsules Modified with Antitumor DR5-Specific TRAIL Variant for Targeted Drug Delivery to Tumor Cells. Nanomaterials 2023, 13, 902. [Google Scholar] [CrossRef]
- Hibbins, A.R.; Govender, M.; Indermun, S.; Kumar, P.; du Toit, L.C.; Choonara, Y.E.; Pillay, V. In Vitro–In Vivo Evaluation of an Oral Ghost Drug Delivery Device for the Delivery of Salmon Calcitonin. J. Pharm. Sci. 2018, 107, 1605–1614. [Google Scholar] [CrossRef]
- Mazibuko, Z.; Indermun, S.; Govender, M.; Kumar, P.; Du Toit, L.C.; E Choonara, Y.; Modi, G.; Naidoo, D.; Pillay, V. Targeted delivery of amantadine-loaded methacrylate nanosphere-ligands for the potential treatment of amyotrophic lateral sclerosis. J. Pharm. Pharm. Sci. 2018, 21, 94–109. [Google Scholar] [CrossRef] [PubMed]
- Saez, V.; Ramón, J.; Aldana, R.; Pérez, D.; Hardy, E. Microencapsulation of recombinant interferon α2 b into poly (D, L-lactide-co-glycolide) microspheres. Biotecnol. Apl. 2008, 25, 31–41. [Google Scholar]
- Chircov, C.; Ștefan, R.-E.; Dolete, G.; Andrei, A.; Holban, A.M.; Oprea, O.-C.; Vasile, B.S.; Neacșu, I.A.; Tihăuan, B. Dextran-Coated Iron Oxide Nanoparticles Loaded with Curcumin for Antimicrobial Therapies. Pharmaceutics 2022, 14, 1057. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, M.; Bigdeli, B.; Jalili-Baleh, L.; Baharifar, H.; Akrami, M.; Dehghani, S.; Goliaei, B.; Amani, A.; Lotfabadi, A.; Rashedi, H.; et al. Curcumin-lipoic acid conjugate as a promising anticancer agent on the surface of gold-iron oxide nanocomposites: A pH-sensitive targeted drug delivery system for brain cancer theranostics. Eur. J. Pharm. Sci. 2018, 114, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Yin, X.; Languino, L.R.; Altieri, D.C. Evaluation of drug combination effect using a Bliss independence dose-response surface model. Stat. Biopharm. Res. 2018, 10, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Han, B.; Hu, X.; Lin, Y.; Wang, X.; Deng, X. Synthesis of Fe3O4 Nanoparticles and their Magnetic Properties. Procedia Eng. 2012, 27, 632–637. [Google Scholar] [CrossRef]
- Mohan, P.R.K.; Sreelakshmi, G.; Muraleedharan, C.; Joseph, R. Water soluble complexes of curcumin with cyclodextrins: Characterization by FT-Raman spectroscopy. Vib. Spectrosc. 2012, 62, 77–84. [Google Scholar] [CrossRef]
- Paragkumar, N.T.; Edith, D.; Six, J.-L. Surface characteristics of PLA and PLGA films. Appl. Surf. Sci. 2006, 253, 2758–2764. [Google Scholar] [CrossRef]
- Hanini, A.; Schmitt, A.; Kacem, K.; Chau, F.; Ammar, S.; Gavard, J. Evaluation of iron oxide nanoparticle biocompatibility. Int. J. Nanomed. 2011, 6, 787–794. [Google Scholar]
- Darwesh, R.; Elbialy, N.S. Iron oxide nanoparticles conjugated curcumin to promote high therapeutic efficacy of curcumin against hepatocellular carcinoma. Inorg. Chem. Commun. 2021, 126, 108482. [Google Scholar] [CrossRef]
- Larese Filon, F.; Mauro, M.; Adami, G.; Bovenzi, M.; Crosera, M. Nanoparticles skin absorption: New aspects for a safety profile evaluation. Regul. Toxicol. Pharmacol. 2015, 72, 310–322. [Google Scholar] [CrossRef] [PubMed]
- Slimani, S.; Meneghini, C.; Abdolrahimi, M.; Talone, A.; Murillo, J.P.M.; Barucca, G.; Yaacoub, N.; Imperatori, P.; Illés, E.; Smari, M.; et al. Spinel iron oxide by the co-precipitation method: Effect of the reaction atmosphere. Appl. Sci. 2021, 11, 5433. [Google Scholar] [CrossRef]
- Hu, L.; Kong, D.; Hu, Q.; Gao, N.; Pang, S. Evaluation of High-Performance Curcumin Nanocrystals for Pulmonary Drug Delivery Both In Vitro and In Vivo. Nanoscale Res. Lett. 2015, 10, 381. [Google Scholar] [CrossRef]
- Chircov, C.; Matei, M.-F.; Neacșu, I.A.; Vasile, B.S.; Oprea, O.-C.; Croitoru, A.-M.; Trușcă, R.-D.; Andronescu, E.; Sorescu, I.; Bărbuceanu, F. Iron oxide–silica core–shell nanoparticles functionalized with essential oils for antimicrobial therapies. Antibiotics 2021, 10, 1138. [Google Scholar] [CrossRef]
- Mohammed, H.B.; Rayyif, S.M.I.; Curutiu, C.; Birca, A.C.; Oprea, O.-C.; Grumezescu, A.M.; Ditu, L.-M.; Gheorghe, I.; Chifiriuc, M.C.; Mihaescu, G.; et al. Eugenol-functionalized magnetite nanoparticles modulate virulence and persistence in pseudomonas aeruginosa clinical strains. Molecules 2021, 26, 2189. [Google Scholar] [CrossRef] [PubMed]
- Mukerjee, A.; Vishwanatha, J.K. Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Res. 2009, 29, 3867–3875. [Google Scholar] [PubMed]
- Kanwal, Q.; Ahmed, M.; Hamza, M.; Ahmad, M.; Rehman, A.U.; Yousaf, N.; Javaid, A.; Anwar, A.; Khan, I.H.; Muddassar, M. Curcumin nanoparticles: Physicochemical fabrication, characterization, antioxidant, enzyme inhibition, molecular docking and simulation studies. RSC Adv. 2023, 13, 22268–22280. [Google Scholar] [CrossRef]
- Peng, S.; Li, Z.; Zou, L.; Liu, W.; Liu, C.; McClements, D.J. Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH-driven loading method. Food Funct. 2018, 9, 1829–1839. [Google Scholar] [CrossRef] [PubMed]
- Taghavifar, S.; Afroughi, F.; Saadati Keyvan, M. Curcumin nanoparticles improved diabetic wounds infected with methicillin-resistant Staphylococcus aureus sensitized with HAMLET. Int. J. Low. Extrem. Wounds 2022, 21, 141–153. [Google Scholar] [CrossRef]
- Singh, R.; Kesharwani, P.; Mehra, N.K.; Singh, S.; Banerjee, S.; Jain, N.K. Development and characterization of folate anchored Saquinavir entrapped PLGA nanoparticles for anti-tumor activity. Drug Dev. Ind. Pharm. 2015, 41, 1888–1901. [Google Scholar] [CrossRef]
- Cleland, J.L. Solvent evaporation processes for the production of controlled release biodegradable microsphere formulations for therapeutics and vaccines. Biotechnol. Prog. 1998, 14, 102–107. [Google Scholar] [CrossRef]
- Feczkó, T.; Fodor-Kardos, A.; Sivakumaran, M.; Haque Shubhra, Q.T. In vitro IFN-α release from IFN-α- and pegylated IFN-α-loaded poly(lactic-co-glycolic acid) and pegylated poly(lactic-co-glycolic acid) nanoparticles. Nanomedicine 2016, 11, 2029–2034. [Google Scholar] [CrossRef]
- Kaur, M.; Gupta, K.M.; Poursaid, A.E.; Karra, P.; Mahalingam, A.; Aliyar, H.A.; Kiser, P.F. Engineering a degradable polyurethane intravaginal ring for sustained delivery of dapivirine. Drug Deliv. Transl. Res. 2011, 1, 223–237. [Google Scholar] [CrossRef]
- Cianfruglia, L.; Minnelli, C.; Laudadio, E.; Scirè, A.; Armeni, T. Side Effects of Curcumin: Epigenetic and Antiproliferative Implications for Normal Dermal Fibroblast and Breast Cancer Cells. Antioxidants 2019, 8, 382. [Google Scholar] [CrossRef] [PubMed]
- Tarighi, S.; Marjaninia, M.; Khaleghi, S.; Sadeghizadeh, M.; Montazeri, M. The Evaluation of Wound Healing Potential of Curcumin Dendrosomes on Fibroblast Cell Line-Focus on Anti-Bacterial and Anti-Inflammatory Properties. J. Hum. Genet. Genom. 2023, 7, A-10-370-2. [Google Scholar] [CrossRef]
- Farag, A.F.; Yassin, H.H.; Gamal, A.Y.; El Badawi, N.; Abdalwahab, M.M. Effects of different curcumin concentrations on human periodontal ligament fibroblast adhesion and proliferation on periodontally involved root surfaces: In-vitro study. J. Oral Biol. Craniofacial Res. 2025, 15, 729–736. [Google Scholar] [CrossRef]
- Fadeyev, F.A.; Blyakhman, F.A.; Safronov, A.P.; Melnikov, G.Y.; Nikanorova, A.D.; Novoselova, I.P.; Kurlyandskaya, G.V. Biological Impact of γ-Fe2O3 Magnetic Nanoparticles Obtained by Laser Target Evaporation: Focus on Magnetic Biosensor Applications. Biosensors 2022, 12, 627. [Google Scholar] [CrossRef] [PubMed]
- Alili, L.; Chapiro, S.; Marten, G.U.; Schmidt, A.M.; Zanger, K.; Brenneisen, P. Effect of Fe3O4 nanoparticles on skin tumor cells and dermal fibroblasts. BioMed Res. Int. 2015, 2015, 530957. [Google Scholar] [CrossRef]
- Kimlin, L.C.; Casagrande, G.; Virador, V. In vitro three-dimensional (3D) models in cancer research: An update. Mol. Carcinog. 2013, 52, 167–182. [Google Scholar] [CrossRef]
Concentration (µg/µL) | Expected Viability (%) | Excess Viability (%) | Interaction |
---|---|---|---|
10 | 3.63 ± 0.15 | −3.35 ± 0.17 | Independent |
5 | 8.42 ± 0.21 | −8.10 ± 0.24 | Synergistic |
2.5 | 81.70 ± 1.75 | −81.29 ± 1.79 | Synergistic |
1.25 | 91.86 ± 2.10 | −91.32 ± 2.15 | Synergistic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abobaker, M.; Govender, M.; Choonara, Y.E. Co-Formulation of Iron Oxide and PLGA Nanoparticles to Deliver Curcumin and IFNα for Synergistic Anticancer Activity in A375 Melanoma Skin Cancer Cells. Pharmaceutics 2025, 17, 860. https://doi.org/10.3390/pharmaceutics17070860
Abobaker M, Govender M, Choonara YE. Co-Formulation of Iron Oxide and PLGA Nanoparticles to Deliver Curcumin and IFNα for Synergistic Anticancer Activity in A375 Melanoma Skin Cancer Cells. Pharmaceutics. 2025; 17(7):860. https://doi.org/10.3390/pharmaceutics17070860
Chicago/Turabian StyleAbobaker, Magdi, Mershen Govender, and Yahya E. Choonara. 2025. "Co-Formulation of Iron Oxide and PLGA Nanoparticles to Deliver Curcumin and IFNα for Synergistic Anticancer Activity in A375 Melanoma Skin Cancer Cells" Pharmaceutics 17, no. 7: 860. https://doi.org/10.3390/pharmaceutics17070860
APA StyleAbobaker, M., Govender, M., & Choonara, Y. E. (2025). Co-Formulation of Iron Oxide and PLGA Nanoparticles to Deliver Curcumin and IFNα for Synergistic Anticancer Activity in A375 Melanoma Skin Cancer Cells. Pharmaceutics, 17(7), 860. https://doi.org/10.3390/pharmaceutics17070860