Energy Recovery Ventilation: What Is Needed to Fill the Research Gaps Related to Its Effects on Exposure to Indoor Bio-Aerosols, Nanoparticulate, and Gaseous Indoor Air Pollution
Abstract
1. Introduction
2. Research Gaps
3. Health Implications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prüss-Ustün, A.; Wolf, J.; Corvalán, C.; Bos, R.; Neira, M. Preventing Disease Through Healthy Environments: A Global Assessment of the Burden of Disease from Environmental Risks; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- World Health Organization (WHO). Ambient (Outdoor) Air Pollution. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 13 January 2025).
- Pryor, J.T.; Cowley, L.O.; Simonds, S.E. The physiological effects of air pollution: Particulate matter, physiology and disease. Front. Public Health 2022, 10, 882569. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-H.; Ezzati, M.; Murray, M. Tobacco smoke, indoor air pollution and tuberculosis: A systematic review and meta-analysis. PLoS Med. 2007, 4, e20. [Google Scholar] [CrossRef]
- Weichenthal, S.; Mallach, G.; Kulka, R.; Black, A.; Wheeler, A.; You, H.; St-Jean, M.; Kwiatkowski, R.; Sharp, D. A randomized double-blind crossover study of indoor air filtration and acute changes in cardiorespiratory health in a First Nations community. Indoor Air 2013, 23, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Cometto-Muñiz, J.E.; Abraham, M.H. Compilation and analysis of types and concentrations of airborne chemicals measured in various indoor and outdoor human environments. Chemosphere 2015, 127, 70–86. [Google Scholar] [CrossRef]
- Vance, M.E.; Marr, L.C. Exposure to airborne engineered nanoparticles in the indoor environment. Atmos. Environ. 2014, 106, 503–509. [Google Scholar] [CrossRef]
- Soppa, V.; Schins, R.; Hennig, F.; Hellack, B.; Quass, U.; Kaminski, H.; Kuhlbusch, T.; Hoffmann, B.; Weinmayr, G. Respiratory Effects of Fine and Ultrafine Particles from Indoor Sources—A Randomized Sham-Controlled Exposure Study of Healthy Volunteers. Int. J. Environ. Res. Public Health 2014, 11, 6871. [Google Scholar] [CrossRef]
- Younes, C.; Shdid, C.A.; Bitsuamlak, G. Air infiltration through building envelopes: A review. J. Build. Phys. 2011, 35, 267–302. [Google Scholar] [CrossRef]
- Pluschke, P.; Schleibinger, H. Indoor Air Pollution, 2 ed.; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Hansen, S.J.; Burroughs, H.E. Managing Indoor Air Quality, 5th ed.; Taylor & Francis: Philadelphia, PA, USA, 2011. [Google Scholar]
- Morey, P.R.; Shaughnessy, R. Indoor Air Quality in Nonindustrial Occupational Environments. In Handbook of Occupational Safety and Health; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 231–260. [Google Scholar]
- Xiong, Y.; Du, K.; Huang, Y. One-third of global population at cancer risk due to elevated volatile organic compounds levels. NPJ Clim. Atmos. Sci. 2024, 7, 54. [Google Scholar] [CrossRef]
- Khan, A.; Kanwal, H.; Bibi, S.; Mushtaq, S.; Khan, A.; Khan, Y.H.; Mallhi, T.H. Volatile organic compounds and neurological disorders: From exposure to preventive interventions. In Environmental Contaminants and Neurological Disorders; Springer: Berlin/Heidelberg, Germany, 2021; pp. 201–230. [Google Scholar]
- Mujan, I.; Anđelković, A.S.; Munćan, V.; Kljajić, M.; Ružić, D. Influence of indoor environmental quality on human health and productivity—A review. J. Clean. Prod. 2019, 217, 646–657. [Google Scholar] [CrossRef]
- Allen, J.G.; MacNaughton, P.; Satish, U.; Santanam, S.; Vallarino, J.; Spengler, J.D. Associations of cognitive function scores with carbon dioxide, ventilation, and volatile organic compound exposures in office workers: A controlled exposure study of green and conventional office environments. Environ. Health Perspect. 2015, 124, 805–812. [Google Scholar] [CrossRef]
- Satish, U.; Mendell, M.J.; Shekhar, K.; Hotchi, T.; Sullivan, D.; Streufert, S.; Fisk, W.J. Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environ. Health Perspect. 2012, 120, 1671–1677. [Google Scholar] [CrossRef]
- Azuma, K.; Kagi, N.; Yanagi, U.; Osawa, H. Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance. Environ. Int. 2018, 121, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Ghoshdastidar, A.J.; Hu, Z.; Nazarenko, Y.; Ariya, P.A. Exposure to nanoscale and microscale particulate air pollution prior to mining development near a northern indigenous community in Québec, Canada. Environ. Sci. Pollut. Res. 2018, 25, 8976–8988. [Google Scholar] [CrossRef]
- Patra, S.S.; Jiang, J.; Ding, X.; Huang, C.; Reidy, E.K.; Kumar, V.; Price, P.; Keech, C.; Steiner, G.; Stevens, P.; et al. Dynamics of nanocluster aerosol in the indoor atmosphere during gas cooking. PNAS Nexus 2024, 3, pgae044. [Google Scholar] [CrossRef] [PubMed]
- Vaupotič, J. Radon and Its Short-Lived Products in Indoor Air: Present Status and Perspectives. Sustainability 2024, 16, 2424. [Google Scholar] [CrossRef]
- Niza, I.L.; de Souza, M.P.; da Luz, I.M.; Broday, E.E. Sick building syndrome and its impacts on health, well-being and productivity: A systematic literature review. Indoor Built Environ. 2024, 33, 218–236. [Google Scholar] [CrossRef]
- Vallero, D. Fundamentals of Air Pollution; Elsevier Science: Waltham, MA, USA, 2014. [Google Scholar]
- Strøm-Tejsen, P.; Zukowska, D.; Wargocki, P.; Wyon, D.P. The effects of bedroom air quality on sleep and next-day performance. Indoor Air 2016, 26, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Gottschal, T.; de Waal Malefijt, M. Migraines and Headaches: Causes and Solutions; Gottswaal VOF: Zuid-Scharwoude, The Netherlands, 2019. [Google Scholar]
- Wolkoff, P. Indoor air humidity, air quality, and health—An overview. Int. J. Hyg. Environ. Health 2018, 221, 376–390. [Google Scholar] [CrossRef]
- Allen, J.G.; Macomber, J.D. Healthy Buildings: How Indoor Spaces Drive Performance and Productivity; Harvard University Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Wyon, D.P. The effects of indoor air quality on performance and productivity. Indoor Air 2004, 14. [Google Scholar] [CrossRef]
- Gislason, S. Air and Breathing; Environmed Research Inc.: Vancouver, BC, Canada, 2018. [Google Scholar]
- Mendell, M.J.; Heath, G.A. Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature. Indoor Air 2005, 15, 27–52. [Google Scholar] [CrossRef]
- Bardana, E.J.; Montanaro, A.; O’Hoilaren, M.T. Building-Related Illness. Clin. Rev. Allergy 1988, 6, 61–89. [Google Scholar] [CrossRef] [PubMed]
- Kraus, M. Airtightness as a key factor of sick building syndrome (SBS). Int. Multidiscip. Sci. GeoConference SGEM 2016, 2, 439–445. [Google Scholar]
- Justo Alonso, M.; Liu, P.; Mathisen, H.M.; Ge, G.; Simonson, C. Review of heat/energy recovery exchangers for use in ZEBs in cold climate countries. Build. Environ. 2015, 84, 228–237. [Google Scholar] [CrossRef]
- Ahmad, M.I.; Riffat, S. Energy Recovery Technology for Building Applications: Green Innovation Towards a Sustainable Future; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- ASHRAE. Air-to-air Energy Recovery Equipment. In 2020 ASHRAE Handbook—HVAC Systems and Equipment; ASHRAE: Atlanta, GA, USA, 2020. [Google Scholar]
- Baccarini, D.; Melville, T. Risk management of research projects in a University context—An exploratory study. In Proceedings of the 36th Australasian University Building Educators Association (AUBEA) Conference, Gold Coast, Australia, 27–29 April 2011. [Google Scholar]
- Annadurai, G.; Joseph Mathews, A.; Krishnan, E.N.; Simonson, C.J. A review of experimental methods to determine bioaerosol transfer in energy recovery ventilators. Appl. Therm. Eng. 2024, 240, 122322. [Google Scholar] [CrossRef]
- Abadi, I.R.; Aminian, B.; Nasr, M.R.; Huizing, R.; Green, S.; Rogak, S. Experimental investigation of condensation in energy recovery ventilators. Energy Build. 2022, 256, 111732. [Google Scholar] [CrossRef]
- Kovesi, T.; Gilbert, N.L.; Stocco, C.; Fugler, D.; Dales, R.E.; Guay, M.; Miller, J.D. Indoor air quality and the risk of lower respiratory tract infections in young Canadian Inuit children. Can. Med. Assoc. J. 2007, 177, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Kovesi, T.; Creery, D.; Gilbert, N.L.; Dales, R.; Fugler, D.; Thompson, B.; Randhawa, N.; Miller, J.D. Indoor air quality risk factors for severe lower respiratory tract infections in Inuit infants in Baffin Region, Nunavut: A pilot study. Indoor Air 2006, 16, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Handy, R.G.; Rodgers, K.; Wang, J.; Tumey, M.; Rodriguez, D.; Hutzel, W. The characterisation of aerosol particle contamination as the result of carry-over and cross-over in enthalpy wheels. Int. J. Nanopart. 2010, 3, 378–389. Available online: https://www.inderscienceonline.com/doi/abs/10.1504/IJNP.2010.03714?journalCode=ijnp (accessed on 21 February 2025). [CrossRef]
- Weerasekera, N.; Martil, R.; Shingdan, D.R.; Weerasekera, N.; Biswas, A.; Cao, S. Contaminant Crossover in Residential Energy Recovery Ventilators: Mass Spectrometric Analysis and Introducing Remediation Measures. RA J. Appl. Res. 2022, 8, 422–430. [Google Scholar] [CrossRef]
- Hult, E.L.; Willem, H.; Sherman, M.H. Formaldehyde transfer in residential energy recovery ventilators. Build. Environ. 2014, 75, 92–97. [Google Scholar] [CrossRef]
- Laumbach, R.J.; Kipen, H.M. Bioaerosols and sick building syndrome: Particles, inflammation, and allergy. Curr. Opin. Allergy Clin. Immunol. 2005, 5, 135–139. [Google Scholar] [CrossRef]
- Soppa, V.J.; Schins, R.P.F.; Hennig, F.; Nieuwenhuijsen, M.J.; Hellack, B.; Quass, U.; Kaminski, H.; Sasse, B.; Shinnawi, S.; Kuhlbusch, T.A.J.; et al. Arterial blood pressure responses to short-term exposure to fine and ultrafine particles from indoor sources—A randomized sham-controlled exposure study of healthy volunteers. Environ. Res. 2017, 158, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Hu, B.; Liu, Y.; Xu, J.; Yang, G.; Xu, D.; Chen, C. Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution. Biochim. Biophys. Acta Gen. Subj. 2016, 1860, 2844–2855. [Google Scholar] [CrossRef]
- Schaumann, F.; Frömke, C.; Dijkstra, D.; Alessandrini, F.; Windt, H.; Karg, E.; Müller, M.; Winkler, C.; Braun, A.; Koch, A.; et al. Effects of ultrafine particles on the allergic inflammation in the lung of asthmatics: Results of a double-blinded randomized cross-over clinical pilot study. Part. Fibre Toxicol. 2014, 11, 39. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Qiu, X.; Jiang, X.; Shi, X.; Liu, J.; Cheng, Z.; Chai, Q.; Zhu, T. Alteration of the health effects of bioaerosols by chemical modification in the atmosphere: A review. Fundam. Res. 2024, 4, 463–470. [Google Scholar] [CrossRef] [PubMed]
- American Society of Heating. 2017 ASHRAE Handbook; American Society of Heating: Peachtree Corners, GA, USA, 2017. [Google Scholar]
- Bernstein, J.A.; Alexis, N.; Bacchus, H.; Bernstein, I.L.; Fritz, P.; Horner, E.; Li, N.; Mason, S.; Nel, A.; Oullette, J.; et al. The health effects of nonindustrial indoor air pollution. J. Allergy Clin. Immunol. 2008, 121, 585–591. [Google Scholar] [CrossRef]
- Brook, R.D.; Franklin, B.; Cascio, W.; Hong, Y.; Howard, G.; Lipsett, M.; Luepker, R.; Mittleman, M.; Samet, J.; Smith, S.C. Air pollution and cardiovascular disease. Circulation 2004, 109, 2655–2671. [Google Scholar] [CrossRef]
- Hetland, R.; Cassee, F.; Refsnes, M.; Schwarze, P.; Låg, M.; Boere, A.; Dybing, E. Release of inflammatory cytokines, cell toxicity and apoptosis in epithelial lung cells after exposure to ambient air particles of different size fractions. Toxicol. Vitr. 2004, 18, 203–212. [Google Scholar] [CrossRef]
- Guo, Y.; Zeng, H.; Zheng, R.; Li, S.; Barnett, A.G.; Zhang, S.; Zou, X.; Huxley, R.; Chen, W.; Williams, G. The association between lung cancer incidence and ambient air pollution in China: A spatiotemporal analysis. Environ. Res. 2016, 144, 60–65. [Google Scholar] [CrossRef]
- Wallace, L.; Ott, W. Personal exposure to ultrafine particles. J. Expo. Sci. Environ. Epidemiol. 2010, 21, 20. [Google Scholar] [CrossRef]
- Kalogerakis, N.; Paschali, D.; Lekaditis, V.; Pantidou, A.; Eleftheriadis, K.; Lazaridis, M. Indoor air quality—Bioaerosol measurements in domestic and office premises. J. Aerosol Sci. 2005, 36, 751–761. [Google Scholar] [CrossRef]
- Lee, T.; Grinshpun, S.A.; Martuzevicius, D.; Adhikari, A.; Crawford, C.M.; Luo, J.; Reponen, T. Relationship between indoor and outdoor bioaerosols collected with a button inhalable aerosol sampler in urban homes. Indoor Air 2006, 16, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Mathews, A.J.; Annadurai, G.; Krishnan, E.N.; Simonson, C.J. A Comprehensive Review on Contaminant Transfer in Membrane Energy Recovery Ventilators. In International Conference on Building Energy and Environment; Springer: Singapore, 2023; pp. 2193–2200. [Google Scholar]
- Leech, J.A.; Wilby, K.; McMullen, E.; Laporte, K. The Canadian Human Activity Pattern Survey: Report of methods and population surveyed. Chronic Dis. Can. 1996, 17, 118–123. [Google Scholar]
- Santamouris, M.; Wouters, P. Building Ventilation: The State of the Art; Taylor & Francis: Abingdon, UK, 2006. [Google Scholar]
- Emmerich, S.J.; Teichman, K.Y.; Persily, A.K. Literature review on field study of ventilation and indoor air quality performance verification in high-performance commercial buildings in North America. Sci. Technol. Built Environ. 2017, 23, 1159–1166. [Google Scholar] [CrossRef]
- Kim, W.-J.; Li, S.; Jo, M.-s.; Choi, E.-j.; Jeong, J.-W. Preventing condensation and frosting in an energy recovery ventilator using a preheat coil. In Proceedings of the 38th AIVC Conference “Ventilating Healthy Low-Energy Buildings”, Nottingham, UK, 13–14 September 2017. [Google Scholar]
- Rafati Nasr, M.; Fauchoux, M.; Besant, R.W.; Simonson, C.J. A review of frosting in air-to-air energy exchangers. Renew. Sustain. Energy Rev. 2014, 30, 538–554. [Google Scholar] [CrossRef]
- Roulet, C.-A.; Pibiri, M.-C.; Knutti, R.; Pfeiffer, A.; Weber, A. Effect of chemical composition on VOC transfer through rotating heat exchangers. Energy Build. 2002, 34, 799–807. [Google Scholar] [CrossRef]
- MacNaughton, P.; Pegues, J.; Satish, U.; Santanam, S.; Spengler, J.; Allen, J. Economic, Environmental and Health Implications of Enhanced Ventilation in Office Buildings. Int. J. Environ. Res. Public Health 2015, 12, 14709–14722. [Google Scholar] [CrossRef]
Location | Date | 10–100 nm | 10–237.1 nm |
---|---|---|---|
Kitchen (indoors) | 6–12 | (6.6 ± 4.1) × 105 | (8.2 ± 5.0) × 105 |
Inside Home (indoors) | 6–12 | (1.68 ± 0.28) × 104 | (2.28 ± 0.41) × 104 |
Inside Home (indoors) | 6–13 | (1.43 ± 0.21) × 104 | (1.62 ± 0.19) × 104 |
Outdoor (Day) | 6–13 | (0.60 ± 1.1) × 103 | (0.69 ± 1.2) × 103 |
Outdoor (Night) | 6–13 | (1.2 ± 2.4) × 103 | (1.7 ± 3.0) × 103 |
Outdoor | 6–14 | (8.4 ± 1.1) × 102 | (9.0 ± 1.2) × 102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazarenko, Y.; Narayanan, C. Energy Recovery Ventilation: What Is Needed to Fill the Research Gaps Related to Its Effects on Exposure to Indoor Bio-Aerosols, Nanoparticulate, and Gaseous Indoor Air Pollution. Atmosphere 2025, 16, 309. https://doi.org/10.3390/atmos16030309
Nazarenko Y, Narayanan C. Energy Recovery Ventilation: What Is Needed to Fill the Research Gaps Related to Its Effects on Exposure to Indoor Bio-Aerosols, Nanoparticulate, and Gaseous Indoor Air Pollution. Atmosphere. 2025; 16(3):309. https://doi.org/10.3390/atmos16030309
Chicago/Turabian StyleNazarenko, Yevgen, and Chitra Narayanan. 2025. "Energy Recovery Ventilation: What Is Needed to Fill the Research Gaps Related to Its Effects on Exposure to Indoor Bio-Aerosols, Nanoparticulate, and Gaseous Indoor Air Pollution" Atmosphere 16, no. 3: 309. https://doi.org/10.3390/atmos16030309
APA StyleNazarenko, Y., & Narayanan, C. (2025). Energy Recovery Ventilation: What Is Needed to Fill the Research Gaps Related to Its Effects on Exposure to Indoor Bio-Aerosols, Nanoparticulate, and Gaseous Indoor Air Pollution. Atmosphere, 16(3), 309. https://doi.org/10.3390/atmos16030309