Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,190)

Search Parameters:
Keywords = nanofiber fabrics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4325 KB  
Article
Pentamidine-Functionalized Polycaprolactone Nanofibers Produced by Solution Blow Spinning for Controlled Release in Cutaneous Leishmaniasis Treatment
by Nerea Guembe-Michel, Paul Nguewa and Gustavo González-Gaitano
Polymers 2026, 18(2), 170; https://doi.org/10.3390/polym18020170 - 8 Jan 2026
Abstract
Leishmaniasis, a widespread, neglected infectious disease with limited effective treatments and increasing drug resistance, demands innovative therapeutic approaches. In this study, we report the fabrication of pentamidine (PTM)-loaded polycaprolactone (PCL) nanofibers using solution blow spinning (SBS) as a potential topical delivery system for [...] Read more.
Leishmaniasis, a widespread, neglected infectious disease with limited effective treatments and increasing drug resistance, demands innovative therapeutic approaches. In this study, we report the fabrication of pentamidine (PTM)-loaded polycaprolactone (PCL) nanofibers using solution blow spinning (SBS) as a potential topical delivery system for cutaneous leishmaniasis (CL). Homogeneous PCL fiber mats were produced using a simple SBS set-up with a commercial airbrush after optimizing several working parameters. Drug release studies demonstrated sustained PTM release profile over time, which was mechanistically modeled by utilizing the complete nanofiber diameter distribution, obtained from SEM analysis of the blow-spun material. FTIR and XRD analyses were performed to investigate the drug–polymer interactions, revealing molecularly dispersed PTM at low-proportion drug/polymers and partial crystallinity at high loadings. The released PTM exhibited significant leishmanicidal activity against Leishmania major promastigotes. Biological investigations showed that SBS-formulated PTM treatment was consistent with the downregulation of parasite genes involved in cell division and DNA replication (cycA, cyc6, pcna, top2, mcm4) and upregulation of the drug response gene (prp1). The controlled delivery of PTM within SBS-fabricated PCL nanofibers provides an effective therapeutic approach to tackle CL and, through the incorporation of additional drugs, could be extended to address a broader range of cutaneous infections. Full article
(This article belongs to the Special Issue Fiber Spinning Technologies and Functional Polymer Fiber Development)
Show Figures

Graphical abstract

14 pages, 5202 KB  
Article
Flexible Electrospun PVDF/PAN/Graphene Nanofiber Piezoelectric Sensors for Passive Human Motion Monitoring
by Hasan Cirik, Yasemin Gündoğdu Kabakci, M. A. Basyooni-M. Kabatas and Hamdi Şükür Kiliç
Sensors 2026, 26(2), 391; https://doi.org/10.3390/s26020391 - 7 Jan 2026
Abstract
Flexible piezoelectric sensors based on electrospun poly(vinylidene fluoride) (PVDF)/polyacrylonitrile (PAN)/graphene nanofibers were fabricated and evaluated for passive human body motion detection. Optimized electrospinning yielded smooth, continuous fibers with diameters of 200–250 nm and uniform films with thicknesses of 20–25 µm. Fourier transform infrared [...] Read more.
Flexible piezoelectric sensors based on electrospun poly(vinylidene fluoride) (PVDF)/polyacrylonitrile (PAN)/graphene nanofibers were fabricated and evaluated for passive human body motion detection. Optimized electrospinning yielded smooth, continuous fibers with diameters of 200–250 nm and uniform films with thicknesses of 20–25 µm. Fourier transform infrared (FTIR) spectroscopy confirmed a high fraction of the piezoelectrically active β-phase in PVDF, which was further enhanced by post-deposition thermal treatment. Graphene and lithium phosphate were incorporated to improve electrical conductivity, β-phase nucleation, and piezoelectric response, while PAN provided mechanical reinforcement and flexibility. Custom test platforms were developed to simulate low-amplitude mechanical stimuli, including finger bending and pulsatile pressure. Under applied pressures of 40, 80, and 120 mmHg, the sensors generated stable millivolt-level outputs with average peak voltages of 25–30 mV, 53–60 mV, and 80–90 mV, respectively, with good repeatability and an adequate signal-to-noise ratio. These results demonstrate that PVDF/PAN/graphene nanofiber films are promising candidates for flexible, wearable piezoelectric sensors capable of detecting subtle physiological signals, and highlight the critical roles of electrospinning conditions, functional additives, and post-processing treatments in tuning their electromechanical performance. Full article
(This article belongs to the Special Issue Advanced Flexible Electronics for Sensing Application)
Show Figures

Graphical abstract

20 pages, 4984 KB  
Article
Enhanced Sensitivity of NO2 Gas Sensor Utilizing Fe2O3-Embedded ZnO Nanostructures
by Jiyeon Lee and Sunghoon Park
Chemosensors 2026, 14(1), 18; https://doi.org/10.3390/chemosensors14010018 - 5 Jan 2026
Viewed by 116
Abstract
This paper introduces a streamlined three-step synthesis method for crafting porous Fe2O3/ZnO nanofibers (NFs). Initially, Fe2O3 nanoparticles (NPs) were synthesized using the hydrothermal method. Subsequently, PVP NFs laden with Fe2O3 NPs and zinc [...] Read more.
This paper introduces a streamlined three-step synthesis method for crafting porous Fe2O3/ZnO nanofibers (NFs). Initially, Fe2O3 nanoparticles (NPs) were synthesized using the hydrothermal method. Subsequently, PVP NFs laden with Fe2O3 NPs and zinc salt were synthesized via an electrospinning method. Finally, porous Fe2O3/ZnO NFs were fabricated through calcination, resulting in an average diameter of approximately 100 nm. Gas-sensing experiments illuminate that the porous Fe2O3/ZnO NFs exhibit outstanding sensitivity, selectivity, and robust long-term stability. Although the response magnitude decreased under high relative humidity (RH) due to competitive adsorption, the sensor maintained distinct detectable responses towards NO2 vapor at an optimum temperature of 225 °C. Particularly noteworthy is the substantial enhancement in NO2 sensing properties observed in the Fe2O3/ZnO composite compared to pure ZnO NFs. This enhancement can be ascribed to the distinctive microstructure and heterojunction formed between Fe2O3 and ZnO. Full article
(This article belongs to the Special Issue Innovative Gas Sensors: Development and Application)
Show Figures

Figure 1

12 pages, 2236 KB  
Article
Phase-Engineered Electrospun Poly(vinylidene fluoride) Nanofibers with Enhanced Piezoelectricity
by Seung Kwan Hong, Jae-Jin Lee and Suk-Won Choi
Crystals 2026, 16(1), 30; https://doi.org/10.3390/cryst16010030 - 30 Dec 2025
Viewed by 151
Abstract
Poly(vinylidene fluoride) (PVDF) nanofibers have emerged as promising materials for flexible piezoelectric sensors, yet their performance is fundamentally constrained by the limited formation and alignment of the electroactive β-phase. In this study, we report a phase-engineering strategy that integrates ionic functionalization, inorganic nanofiller [...] Read more.
Poly(vinylidene fluoride) (PVDF) nanofibers have emerged as promising materials for flexible piezoelectric sensors, yet their performance is fundamentally constrained by the limited formation and alignment of the electroactive β-phase. In this study, we report a phase-engineering strategy that integrates ionic functionalization, inorganic nanofiller incorporation, and post-fabrication corona poling to achieve enhanced crystalline ordering and electromechanical coupling in electrospun PVDF nanofibers. Tetrabutylammonium perchlorate increases solution conductivity, enabling uniform, bead-free fiber formation, while barium titanate nanoparticles act as nucleation centers that promote β-phase crystallization at the expense of the non-polar α-phase. Subsequent corona poling further aligns molecular dipoles and strengthens remnant polarization within both the PVDF matrix and embedded nanoparticles. Structural analyses confirm the synergistic evolution of crystalline phases, and piezoelectric measurements demonstrate a substantial increase in peak-to-peak output voltage under dynamic loading conditions. This combined phase-engineering approach provides a simple and scalable route to high-performance PVDF-based piezoelectric sensors and highlights the importance of coupling crystallization control with dipole alignment in designing next-generation wearable electromechanical materials. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

17 pages, 4725 KB  
Article
A Green Binary Solvent System for the PLA Nanofiber Electrospinning Process: Optimization of Parameters
by Tommaso Pini, Gianluca Ciarleglio, Elisa Toto, Maria Gabriella Santonicola and Marco Valente
Fibers 2026, 14(1), 6; https://doi.org/10.3390/fib14010006 - 29 Dec 2025
Viewed by 237
Abstract
Electrospinning of poly(lactic acid) (PLA) commonly relies on toxic organic solvents, which limit its sustainability and biomedical applicability. In this work, a green electrospinning process was developed using dimethyl carbonate (DMC), a biodegradable and low-toxicity solvent, combined with acetone as a volatile co-solvent [...] Read more.
Electrospinning of poly(lactic acid) (PLA) commonly relies on toxic organic solvents, which limit its sustainability and biomedical applicability. In this work, a green electrospinning process was developed using dimethyl carbonate (DMC), a biodegradable and low-toxicity solvent, combined with acetone as a volatile co-solvent to promote efficient jet solidification. Three commercial PLA grades were evaluated for solubility and spinnability, and PLA 4043D was identified as the most suitable for DMC and acetone systems. The electrospinning parameters, including solvent ratio, flow rate, and applied voltage, were systematically optimized to achieve stable jet formation and uniform fiber morphology. Under optimized conditions, the process produced continuous, bead-free nanofibers with a mean diameter of ~1 µm and uniform nanoscale surface porosity resulting from differential solvent evaporation. The resulting fibers were characterized in terms of morphology, structure, thermal behavior, and mechanical performance, confirming increased amorphous content, high porosity (about 78%), and tensile strength of ~3 MPa for the selected electrospinning condition. This study demonstrates that DMC-based solvent systems enable a sustainable and potentially biocompatible route, considering the lower toxicity of the solvents employed, offering a green alternative to conventional toxic processes for the fabrication of medical scaffolds. Full article
Show Figures

Figure 1

24 pages, 7551 KB  
Article
Scalable Fabrication of Non-Toxic Polyamide 6 Hybrid Nanofiber Membranes Using CuO for Antimicrobial and Aerosol Filtration Protection
by Radmila Žižková, Baturalp Yalcinkaya, Eva Filová, Fatma Yalcinkaya and Matej Buzgo
Textiles 2026, 6(1), 2; https://doi.org/10.3390/textiles6010002 - 29 Dec 2025
Viewed by 168
Abstract
Electrospinning has advanced from a lab technique to an industrial method, enabling modern filters that are high-performing, sustainable, recyclable, and non-toxic. This study produced recycled PA6 nanofibers using green solvents and incorporated non-toxic CuO nanoparticles via industrial free-surface electrospinning. Polymer solutions with concentrations [...] Read more.
Electrospinning has advanced from a lab technique to an industrial method, enabling modern filters that are high-performing, sustainable, recyclable, and non-toxic. This study produced recycled PA6 nanofibers using green solvents and incorporated non-toxic CuO nanoparticles via industrial free-surface electrospinning. Polymer solutions with concentrations of 12.5, 15.0 and 17.5 (w/v)% were electrospun directly onto recyclable polypropylene spunbond/meltblown nonwoven substrates to produce nanofibers with average fiber sizes of 80–250 nm. Electrospinning parameter optimization revealed that the 12.5 wt.% PA6 solution and the 2–3 mm·s−1 winding speed had the optimal performance, attaining 98.06% filtering efficiency and a 142 Pa pressure drop. The addition of 5 wt.% CuO nanoparticles increased the membrane density and reduced the pressure drop to 162 Pa, thereby improving the filtration efficiency to 98.23%. Bacterial and viral filtration studies have demonstrated pathogen retention above 99%. Moreover, antibacterial and antiviral testing has demonstrated that membranes trap and inactivate microorganisms, resulting in a 2.0 log (≈approximately 99%) reduction in viral titer. This study shows that recycled PA6 can be converted into high-performance membranes using green, industrial electrospinning, introducing innovations such as non-toxic CuO functionalization and ultra-fine fibers on recyclable substrates, yielding sustainable filters with strong antimicrobial and filtration performance, which are suitable for personal protective equipment and medical filtration. Full article
(This article belongs to the Special Issue Advances in Technical Textiles)
Show Figures

Graphical abstract

14 pages, 2030 KB  
Article
Polyacrylonitrile Nanofiber Mats Produced by Solution Blow Spinning: Influence of Process Parameters on Fiber Diameter and Residual Solvent Content
by Natalia Menshutina, Danil Kunaev, Andrey Abramov and Alekseev Aleksandr
Polymers 2026, 18(1), 100; https://doi.org/10.3390/polym18010100 - 29 Dec 2025
Viewed by 229
Abstract
This study reports on the fabrication of polyacrylonitrile (PAN) nanofiber mats by solution blow spinning. A fabrication protocol is presented together with a comprehensive investigation of how key process parameters (polymer solution concentration, air pressure, and solution flow rate) affect the residual solvent [...] Read more.
This study reports on the fabrication of polyacrylonitrile (PAN) nanofiber mats by solution blow spinning. A fabrication protocol is presented together with a comprehensive investigation of how key process parameters (polymer solution concentration, air pressure, and solution flow rate) affect the residual solvent content and the diameter of the resulting nanofibers. The following dependencies were identified: increasing solution concentration leads to larger fiber diameters, whereas increasing air pressure and decreasing solution flow rate both result in smaller diameters. The residual solvent content exhibits a non-linear dependence on the process parameters with an expressed minimum. The number-average diameter of the nanofibers ranges from 428 to 221 nm. Regression analysis confirmed the statistical significance of the effects of the studied factors on fiber diameter, and the fact that the calculated value of the Fisher criterion is lower than the critical tabulated value indicates that the proposed model is adequate. The determination coefficient of 0.85 demonstrates a high degree of consistency between the model and the experimental data. Full article
Show Figures

Graphical abstract

19 pages, 3662 KB  
Article
Poly(Vinyl Alcohol)/Hyaluronic Acid Nanofibers for Biomedical Use Under Physiological Conditions: Electrospinning Fabrication and Stabilization via Solvent-Free Citric Acid Crosslinking
by Gianluca Ciarleglio, Nicholas Capuccilli, Elisa Toto and Maria Gabriella Santonicola
Polymers 2026, 18(1), 79; https://doi.org/10.3390/polym18010079 - 27 Dec 2025
Viewed by 320
Abstract
Electrospun polymeric nanofibers have emerged as promising materials for wound management owing to their high surface area, efficient exudate absorption and gas exchange, and extracellular-matrix-like architecture. This study investigates the fabrication of nanofiber dressings from poly(vinyl alcohol) (PVA) and hyaluronic acid (HA), prepared [...] Read more.
Electrospun polymeric nanofibers have emerged as promising materials for wound management owing to their high surface area, efficient exudate absorption and gas exchange, and extracellular-matrix-like architecture. This study investigates the fabrication of nanofiber dressings from poly(vinyl alcohol) (PVA) and hyaluronic acid (HA), prepared by fully aqueous electrospinning (without organic solvents) for potential wound-care applications. HA incorporation is expected to influence hydration and matrix interactions, properties that have been associated with modulation of wound healing in previous studies. However, the high solubility of PVA-based NFs in aqueous environments limits their use in biological applications. To address this issue, PVA/HA nanofibers were chemically crosslinked through a solid-state esterification process at 150 °C using biocompatible citric acid (CA). The electrospinning parameters were optimized to obtain PVA/HA fibers with diameters ranging from 130 to 200 nm, which were assembled to form mats with different porosity and intersection density. FTIR confirmed the formation of ester bonds, while DSC analysis showed an increase in Tg from 41 °C to about 55 °C and a slight decrease in Tm after crosslinking. Swelling and degradation analyses demonstrated a significant enhancement in hydrolytic stability, as the weight loss of the nanofiber mats decreased from ~90% in the non-crosslinked samples to less than 10% after 2 h of crosslinking. Dynamic mechanical analysis (DMA) showed an increase in Young’s modulus from ~70 MPa to 230 MPa after crosslinking. Overall, the results demonstrate the stabilizing effect of citric-acid crosslinking on PVA/HA nanofibers and support their potential use in wound dressings under physiological conditions. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

24 pages, 3135 KB  
Article
Layer-by-Layer Integration of Electrospun Nanofibers in FDM 3D Printing for Hierarchical Composite Fabrication
by Jaymin Vrajlal Sanchaniya, Hilary Smogor, Valters Gobins, Vincent Noël, Inga Lasenko and Simas Rackauskas
Polymers 2026, 18(1), 78; https://doi.org/10.3390/polym18010078 - 27 Dec 2025
Viewed by 322
Abstract
This study presents a novel integrated manufacturing approach that combines fused deposition modeling (FDM) 3D printing with in situ electrospinning to fabricate hierarchical composite structures composed of polylactic acid (PLA) reinforced with polyacrylonitrile (PAN) nanofibers. A mounting fixture was employed to enable layer-by-layer [...] Read more.
This study presents a novel integrated manufacturing approach that combines fused deposition modeling (FDM) 3D printing with in situ electrospinning to fabricate hierarchical composite structures composed of polylactic acid (PLA) reinforced with polyacrylonitrile (PAN) nanofibers. A mounting fixture was employed to enable layer-by-layer nanofiber deposition directly onto printed PLA layers in a continuous automated process, eliminating the need for prefabricated electrospun nanofiber mats. The influences of nozzle temperature (210–230 °C) and electrospinning time (5–15 min per layer) on mechanical, thermal, and morphological properties were systematically investigated. Optimal performance was achieved at an FDM nozzle temperature of 220 °C with 5 min of electrospinning time (sample E1), showing a 36.5% increase in tensile strength (71 MPa), a 33.3% increase in Young’s modulus (2.8 GPa), and a 62.0% increase in flexural strength (128 MPa) compared with the neat PLA. This enhancement resulted from the complete infiltration of molten PLA into the thin nanofiber mats, creating true fiber–matrix integration. Excessive nanofiber content (15 min ES) caused a 36.5% reduction in strength due to delamination and incomplete infiltration. Thermal analysis revealed a decrease in glass transition temperature (1.2 °C) and onset of thermal degradation (5.3–15.2 °C) with nanofiber integration. Fracture morphology confirmed that to achieve optimal properties, it was critical to balance the nanofiber reinforcement content with the depth of infiltration, as excessive content created poorly bonded interleaved layers. This integrated fabrication platform enables the production of lightweight hierarchical composites with multiscale, custom-made reinforcement for applications in biomedical scaffolds, protective equipment, and structural components. Full article
(This article belongs to the Special Issue Advanced Electrospinning Technology for Polymer Materials)
Show Figures

Graphical abstract

36 pages, 3935 KB  
Review
Application of Electrospun Nanofiber Membranes in Outdoor Sportswear: From Preparation Technologies to Multifunctional Integration
by Guobao Yan, Yangxian Hu, Mingxing Liu, Fawei Huang, Jinghua Miu and Guoyuan Huang
Coatings 2026, 16(1), 29; https://doi.org/10.3390/coatings16010029 - 26 Dec 2025
Viewed by 312
Abstract
Outdoor sportswear increasingly demands multifunctional performance, including waterproofness, breathability, and intelligent thermal regulation. Nanofiber membranes, especially those prepared via electrospinning, offer a promising platform due to their tunable pore structures, high specific surface area, and ease of functionalization. This review outlines progress from [...] Read more.
Outdoor sportswear increasingly demands multifunctional performance, including waterproofness, breathability, and intelligent thermal regulation. Nanofiber membranes, especially those prepared via electrospinning, offer a promising platform due to their tunable pore structures, high specific surface area, and ease of functionalization. This review outlines progress from fabrication to multifunctional integration, highlighting key quantitative advances: electrospun membranes achieve water vapor transmission rates >10,000 g·m−2·day−1 with hydrostatic pressure resistance of 80–150 kPa, and thermal conductivity as low as 0.033–0.040 W·m−1·K−1. We analyze how structural designs enable tailored functionalities for diverse outdoor scenarios. The review’s key contributions include establishing a clear “process-structure-function” framework, critically comparing nanofiber membranes with conventional materials, and identifying industrialization challenges—scalability, durability, cost—while pointing toward smart, sustainable, and customizable future directions. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

25 pages, 10271 KB  
Article
Botanical Nanofiber Wound Dressing Loaded with Psidium guajava Leaf Extract: Preparation, Characterization, and In Vivo Evaluation
by Menna M. Abdellatif, Hesham A. Eliwa, Mohamed Aly Abd El Aziz El Degwy, Samah Shabana, Rafik M. Nassif, Hamada Sadki Mohamed and Rehab Abdelmonem
Pharmaceutics 2026, 18(1), 31; https://doi.org/10.3390/pharmaceutics18010031 - 25 Dec 2025
Viewed by 392
Abstract
Background/Objectives: This study aimed to develop botanical nanofibers loaded with Psidium guajava leaf extract to heal wounds effectively. Methods: A 23 factorial design was conducted to study the impact of freeze-drying parameters—freezing time, vacuum, and lyophilization time—on the total phenolic [...] Read more.
Background/Objectives: This study aimed to develop botanical nanofibers loaded with Psidium guajava leaf extract to heal wounds effectively. Methods: A 23 factorial design was conducted to study the impact of freeze-drying parameters—freezing time, vacuum, and lyophilization time—on the total phenolic and flavonoid content in the lyophilized extract. Then, a polyurethane-based nanofiber dressing loaded with Psidium guajava leaf extract was fabricated using a one-step electrospinning technique. The nanofiber was evaluated considering total polyphenol and flavonoid content, surface roughness, and morphological assessment by scanning electron microscopy. Finally, the nanofiber was evaluated using in vivo wound-healing studies, histopathological analyses, and assessments of tissue levels of tumor necrosis factor-alpha, interleukin-6, matrix metalloproteinase, and growth factors. Results: The optimal conditions for freeze-drying the aqueous extract of Psidium guajava leaves were a freezing time of 24 h, a vacuum adjusted to 0.02 bar, and a lyophilization time of 48 h. The total polyphenol and flavonoid content within the nanofiber was 96 ± 1.2% and 91.83 ± 2.4%, respectively. Incorporating lyophilized extract in the nanofiber led to a decreased roughness average and root mean square roughness of the nanofiber. The nanofiber was continuous and had a smooth, uniform surface. The in vivo wound-healing assay showed superior wound-healing compared to the commercial Panthenol cream. These results were confirmed with histopathological studies. Conclusions: The extraction technique and lyophilization parameters significantly affect the bioactive content of Psidium guajava leaf extract. The botanical-loaded nanofiber showed greater wound-healing potential than a commercial cream, confirming its potential in regenerative medicine and wound repair applications. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

14 pages, 2545 KB  
Article
Study on the Core-Shell Structure of Gas-Assisted Coaxial Electrospinning Fibers: Implications for Semiconductor Material Design
by Rongguang Zhang, Xuanzhi Zhang, Jianfeng Sun, Shize Huang, Xuan Zhang, Guohuai Lin, Xun Chen, Zhifeng Wang, Jiecai Long and Weiming Shu
Micromachines 2026, 17(1), 20; https://doi.org/10.3390/mi17010020 - 24 Dec 2025
Viewed by 234
Abstract
Gas-assisted coaxial electrospinning (GACES), a simple and versatile technique for the large-scale fabrication of coaxial nanofiber membranes, possesses significant industrial potential across advanced manufacturing sectors including semiconductors—particularly for fabricating high-precision dielectric layers, high-uniformity encapsulation materials, and flexible semiconductor substrates requiring tailored core-shell architectures. [...] Read more.
Gas-assisted coaxial electrospinning (GACES), a simple and versatile technique for the large-scale fabrication of coaxial nanofiber membranes, possesses significant industrial potential across advanced manufacturing sectors including semiconductors—particularly for fabricating high-precision dielectric layers, high-uniformity encapsulation materials, and flexible semiconductor substrates requiring tailored core-shell architectures. However, there is still a lack of relevant studies on the effective regulation of the core-shell structures of coaxial fibers based on GACES, which greatly limits the batch preparation and wide application of coaxial fibers. Finite element simulation analysis of the flow field and development of the coaxial jet mechanics model with a gas-driven flow field—two key methodologies in this study—successfully uncovered the influence mechanism of gas-assisted flow fields on the core-shell structures of coaxial nanofibers. By adjusting the gas-assisted flow fields parameters, we reduced the total diameter of coaxial fibers by 47.33% (average fiber diameter: 334.12 ± 16.29 nm → 175.98 ± 1.18 nm), decreased the shell thickness by 72.98%, increased the core-shell ratio by 289% (core-shell ratio: 0.49 → 1.91), and improved the uniformity of the total diameter distribution of coaxial fibers by 30.64%. This study delivers a practical conceptual framework and robust experimental underpinnings for the scalable fabrication of coaxial nanofiber membranes with controllable core-shell structures, thereby promoting their practical application in semiconductor devices such as ultra-thin dielectric layers, precisely structured encapsulation materials, and high-uniformity templates for nanoscale circuit patterning. Full article
(This article belongs to the Special Issue Emerging Technologies and Applications for Semiconductor Industry)
Show Figures

Figure 1

12 pages, 5636 KB  
Article
Enhancement of Piezoelectric Properties in Electrospun PVDF Nanofiber Membranes via In Situ Doping with ZnO or BaTiO3
by Zhizhao Ouyang, Jinghua Lin, Renhao Rao, Guoqin Huang, Gaofeng Zheng and Changcai Cui
Micromachines 2026, 17(1), 12; https://doi.org/10.3390/mi17010012 - 23 Dec 2025
Viewed by 293
Abstract
High-performance piezoelectric poly(vinylidene fluoride) (PVDF) has great application potential in the field of microsensors, but achieving efficient polarization remains a challenge. Here, the in situ doping electrospinning technique is employed to enhance the piezoelectric properties by introducing a single dose of zinc oxide [...] Read more.
High-performance piezoelectric poly(vinylidene fluoride) (PVDF) has great application potential in the field of microsensors, but achieving efficient polarization remains a challenge. Here, the in situ doping electrospinning technique is employed to enhance the piezoelectric properties by introducing a single dose of zinc oxide (ZnO) or barium titanate (BaTiO3,BTO) dopants. The effects of key processing parameters on the morphology of nanofiber membranes were systematically investigated. In addition, the influence of zinc oxide (ZnO) or barium titanate (BTO) dopant concentrations on the piezoelectric properties of PVDF was examined. The microstructure, electrical performance, and β-phase content of the composite membranes were characterized. Results indicate that the composite film with a doping formulation of 16 wt% PVDF and 10 wt% ZnO exhibits optimal overall performance: the β-phase content of PVDF reaches 52.8%, and the output voltage reaches 1.5 V, which is 2.5 times higher than that of the undoped PVDF nanofiber membranes. This study provides an effective doping strategy for the fabrication of high-performance piezoelectric nanofiber membranes. Full article
(This article belongs to the Special Issue Emerging Technologies and Applications for Semiconductor Industry)
Show Figures

Figure 1

15 pages, 5378 KB  
Article
Centrifugal Fiber-Spinning Device Using Two Pairs of Counter-Facing Syringes for Fabricating Composite Micro/Nanofibers and Three-Dimensional Cell Culture
by Asuka Shinagawa and Shogo Miyata
Polymers 2026, 18(1), 16; https://doi.org/10.3390/polym18010016 - 21 Dec 2025
Viewed by 248
Abstract
Biomimetic scaffolds are required in tissue engineering to provide structural support as well as promote cell adhesion, proliferation, and differentiation. Fibrous scaffolds composed of micro- and nanofibers replicate the architecture of the native extracellular matrix. Electrospinning is widely used for fabricating nanofibers; however, [...] Read more.
Biomimetic scaffolds are required in tissue engineering to provide structural support as well as promote cell adhesion, proliferation, and differentiation. Fibrous scaffolds composed of micro- and nanofibers replicate the architecture of the native extracellular matrix. Electrospinning is widely used for fabricating nanofibers; however, constructing fibrous scaffolds that integrate multiple fiber scales into a single structure is difficult. We addressed this issue by developing a fiber-spinning device using two pairs of counter-facing syringes that simultaneously produce micro- and nanofibers under different processing conditions. Poly(ε-caprolactone) solutions are ejected through needle-type nozzles via centrifugal force, and fiber diameter is controlled by adjusting the polymer concentration and nozzle diameter. We fabricated scaffolds with the proposed device, which exhibited a random three-dimensional fibrous network in which microfibers and nanofibers were homogeneously integrated. C2C12 myoblasts cultured on the composite scaffolds strongly adhered to the fibrous network, remained viable, and extended along the fibers to form multinucleated cells within the structure. The developed system produced composite micro/nanofiber scaffolds with tunable morphology and biocompatibility, providing a platform for fibrous tissue engineering applications. Full article
(This article belongs to the Special Issue Polymer Microfabrication and 3D/4D Printing)
Show Figures

Graphical abstract

12 pages, 1899 KB  
Article
A Highly Hydrophobic and Flame-Retardant Melamine Sponge for Emergency Oil Spill Response
by Chengyong Zheng, Bo Wang, Wei Xie and Shuilai Qiu
Nanomaterials 2025, 15(24), 1897; https://doi.org/10.3390/nano15241897 - 17 Dec 2025
Viewed by 262
Abstract
Frequent crude oil spills during offshore oil and gas production and transportation have inflicted irreversible detrimental effects on both human activities and marine ecosystems; with particular risks of secondary disasters such as combustion and explosions. To address these challenges; advanced oil sorption technologies [...] Read more.
Frequent crude oil spills during offshore oil and gas production and transportation have inflicted irreversible detrimental effects on both human activities and marine ecosystems; with particular risks of secondary disasters such as combustion and explosions. To address these challenges; advanced oil sorption technologies have been developed to overcome the inherent limitations of conventional remediation methods. In this study, a flame-retardant protective coating was fabricated on melamine sponge (MS) through precipitation polymerization of octa-aminopropyl polyhedral oligomeric silsesquioxane (POSS) and hexachlorocyclotriphosphazene (HCCP), endowing the MS@PPOS-PDMS-Si composite with exceptional char-forming capability. Secondary functional layer: By coupling the complementary physicochemical properties of polydimethylsiloxane (PDMS) and SiO2 nanofibers, we enabled them to function jointly, achieving superior performance in the material systems; this conferred enhanced hydrophobicity and structural stability to the MS matrix. Characterization results demonstrated a progressive reduction in peak heat release rate (PHRR) from 137.66 kW/m2 to118.35 kW/m2, 91.92 kW/m2, and ultimately 46.23 kW/m2, accompanied by a decrease in total smoke production (TSP) from 1.62 m2 to 0.76 m2, indicating significant smoke suppression. Furthermore, the water contact angle (WCA) exhibited substantial improvement from 0° (superhydrophilic) to 140.7° (highly hydrophobic). Cyclic sorption–desorption testing revealed maintained oil–water separation efficiency exceeding 95% after 10 operational cycles. These findings position the MS@PPOS-PDMS-Si composite as a promising candidate for emergency oil spill response and marine pollution remediation applications, demonstrating superior performance in fire safety, environmental durability, and operational reusability. Full article
Show Figures

Graphical abstract

Back to TopTop