Enhanced Sensitivity of NO2 Gas Sensor Utilizing Fe2O3-Embedded ZnO Nanostructures
Abstract
1. Introduction
2. Experiment
2.1. Preparation of Fe2O3 NPs
2.2. Preparation of Fe2O3-Embedded Porous ZnO NFs
2.3. Characterization
2.4. Fabrication and Measurement of Gas Sensor
3. Results
3.1. Characterization
3.2. Gas-Sensing Properties
3.3. Gas-Sensing Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agrawal, A.; Kumar, N.; Kumar, M. Strategy and future prospects to develop room-temperature-recoverable NO2 gas sensor based on two-dimensional molybdenum disulfide. Nano-Micro Lett. 2021, 13, 38. [Google Scholar] [CrossRef]
- Li, Q.; Zeng, W.; Li, Y. Metal oxide gas sensors for detecting NO2 in industrial exhaust gas: Recent developments. Sens. Actuators B Chem. 2022, 359, 131579. [Google Scholar] [CrossRef]
- Bai, X.; Lv, H.; Liu, Z.; Chen, J.; Wang, J.; Sun, B.; Zhang, Y.; Wang, R.; Shi, K. Thin-layered MoS2 nanoflakes vertically grown on SnO2 nanotubes as highly effective room-temperature NO2 gas sensor. J. Hazard. Mater. 2021, 416, 125830. [Google Scholar] [CrossRef]
- Li, G.; Zhang, H.; Meng, L.; Sun, Z.; Chen, Z.; Huang, X.; Qin, Y. Adjustment of oxygen vacancy states in ZnO and its application in ppb-level NO2 gas sensor. Sci. Bull. 2020, 65, 1650–1658. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Luo, Y.; Xu, J.; Debliquy, M. Room temperature conductive type metal oxide semiconductor gas sensors for NO2 detection. Sens. Actuator A-Phys. 2019, 289, 118–133. [Google Scholar] [CrossRef]
- Zhang, B.; Bao, N.; Wang, T.; Xu, Y.; Dong, Y.; Ni, Y.; Yu, P.; Wei, Q.; Wang, J.; Guo, L.; et al. High-performance room temperature NO2 gas sensor based on visible light irradiated In2O3 nanowires. J. Alloys Compd. 2021, 867, 159076. [Google Scholar] [CrossRef]
- Kim, M.Y.; Park, C.O.; Choa, H.; To, D.T.H.; Mendoza, E.R.; Lee, S.Y.; Myung, N.V.; Lee, K.H. Gold nanoparticles-driven sensing performance enhancement of porous ZnO nanosheet toward NH3, acetone, and NO2. Chem. Eng. J. 2025, 521, 167090. [Google Scholar] [CrossRef]
- Pham, T.; Li, G.; Bekyarova, E.; Itkis, M.E.; Mulchandani, A. MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 2019, 13, 3196–3205. [Google Scholar] [CrossRef]
- Wang, N.; Tao, W.; Gong, X.; Zhao, L.; Wang, T.; Zhao, L.; Liu, F.; Liu, X.; Sun, P.; Lu, G. Highly sensitive and selective NO2 gas sensor fabricated from Cu2O-CuO microflowers. Sens. Actuator B-Chem. 2022, 362, 131803. [Google Scholar] [CrossRef]
- Ou, L.; Liu, M.; Zhu, L.; Zhang, D.; Lu, H. Recent progress on flexible room-temperature gas sensors based on metal oxide semiconductor. Nano-Micro Lett. 2022, 14, 206. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Shi, X.; Yuan, Z.; Ji, H.; Qin, W.; Shen, Y.; Xing, C. Detection of four alcohol homologue gases by ZnO gas sensor in dynamic interval temperature modulation mode. Sens. Actuator B-Chem. 2022, 350, 130867. [Google Scholar] [CrossRef]
- Zhou, Q.; Zeng, W.; Chen, W.; Xu, L.; Kumar, R.; Umar, A. High sensitive and low-concentration sulfur dioxide (SO2) gas sensor application of heterostructure NiO-ZnO nanodisks. Sens. Actuator B-Chem. 2019, 298, 126870. [Google Scholar] [CrossRef]
- Qin, W.; Yuan, Z.; Gao, H.; Zhang, R.; Meng, F. Perovskite-structured LaCoO3 modified ZnO gas sensor and investigation on its gas sensing mechanism by first principle. Sens. Actuator B-Chem. 2021, 341, 130015. [Google Scholar] [CrossRef]
- Xuan, J.; Zhao, G.; Sun, M.; Jia, F.; Wang, X.; Zhou, T.; Yin, G.; Liu, B. Low-temperature operating ZnO-based NO2 sensors: A review. RSC Adv. 2020, 10, 39786–39807. [Google Scholar] [CrossRef]
- Hussain, S.; Wang, S.; Amu-Darko, J.N.; Begi, A.N.; Yusuf, K.; Ibrahim, T.K.; Manavalan, R.K.; Zhang, X.; Qiao, G. MOF-derived La-doped ZnO dodecahedron nanostructures for efficient detection of NO2 gas. Sens. Actuators B 2025, 425, 136954. [Google Scholar] [CrossRef]
- Xiao, R.; Pang, L.; Lai, X.; Fan, W.; Lu, Z.; Gao, J. Antimony Doping in SnO2 Nanoparticles for Sensitive NO2 Sensors. ACS Sens. 2025, 10, 3539–3550. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Yu, F.; Zhang, L.; Wang, W.; Chen, L.; Li, Y. Review of ZnO-based nanomaterials in gas sensors. Solid State Ion. 2021, 360, 115544. [Google Scholar] [CrossRef]
- Bhati, V.; Hojamberdiev, M.; Kumar, M. Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review. Energy Rep. 2020, 6, 46–62. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Gong, F.; Zhang, Y.; Fang, S.; Zhang, H. Advances in doped ZnO nanostructures for gas sensor. Chem. Rec. 2020, 20, 1553–1567. [Google Scholar] [CrossRef]
- Kumar, S.; Pavelyev, V.; Mishra, P.; Tripathi, N.; Sharma, P.; Calle, F. A review on 2D transition metal di-chalcogenides and metal oxide nanostructures based NO2 gas sensors. Mater. Sci. Semicond. Process. 2020, 107, 104865. [Google Scholar] [CrossRef]
- Zheng, T.; Zhou, H.; Yang, K.; Li, Y.; Wang, Y.; Zhang, M.; Liu, Z.; Sui, C.; Liu, Y.; Liu, F.; et al. Enhanced surface basicity of spongy ZnO nanosheets by rare earth yttrium for room temperature NO2 detection. Sens. Actuators B 2025, 440, 137920. [Google Scholar] [CrossRef]
- Wu, M.-J.; Yan, T.-Z.; Hung, Y.-H.; Lin, C.-H.; Lee, H.-Y.; Lee, C.-T. Investigation of In2O3: Zn NO2 gas sensors with nanoimprinted nanorod array and gold-black nanoparticles. Appl. Surf. Sci. 2025, 29, 100833. [Google Scholar] [CrossRef]
- Sun, Y.-Y.; Cao, M.-Y.; Yang, M.; Lei, H.-N.; Li, Y.-N.; Xu, Y.-M.; Deng, Z.-P.; Huo, L.-H.; Gao, S. Pine needle-templated synthesis of graphitic carbon/ZnO tubules for highly enhanced response to NO2 gas at low temperature. Sens. Actuators B 2025, 428, 137230. [Google Scholar] [CrossRef]
- Hsu, K.; Fang, T.; Hsiao, Y.; Li, Z. Rapid detection of low concentrations of H2S using CuO-doped ZnO nanofibers. J. Alloys Compd. 2021, 852, 157014. [Google Scholar] [CrossRef]
- Fan, S.; Tang, W. Synthesis, characterization and mechanism of electrospun carbon nanofibers decorated with ZnO nanoparticles for flexible ammonia gas sensors at room temperature. Sens. Actuator B-Chem. 2022, 362, 131789. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Kim, J.; Mirzaei, A.; Kim, H.; Kim, S. Co3O4-loaded ZnO nanofibers for excellent hydrogen sensing. Int. J. Hydrogen Energy 2019, 44, 27499–27510. [Google Scholar] [CrossRef]
- Naderi, H.; Hajati, S.; Ghaedi, M.; Espinos, J. Highly selective few-ppm NO gas-sensing based on necklace-like nanofibers of ZnO/CdO n-n type I heterojunction. Sens. Actuator B-Chem. 2019, 297, 126774. [Google Scholar] [CrossRef]
- Zhang, Q.; Pang, Z.; Hu, W.; Li, J.; Liu, Y.; Liu, Y.; Yu, F.; Zhang, C.; Xu, M. Performance degradation mechanism of the light-activated room temperature NO2 gas sensor based on Ag-ZnO nanoparticles. Appl. Surf. Sci. 2021, 541, 148418. [Google Scholar] [CrossRef]
- Zhuang, Z.; Zhang, L.; Huang, C.; Wang, X.; Guo, H.; Thomas, T.; Qu, F.; Wang, P.; Yang, M. A dimethyl disulfide gas sensor based on nanosized Pt-loaded tetrakaidecahedral α-Fe2O3 nanocrystals. Nanotechnology 2022, 33, 405502. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Guan, K.; Liu, Y.; Li, Y.; Sun, F.; Wang, X.; Zhang, C.; Feng, S.; Zhang, T. Influence of oxygen vacancies on the performance of SnO2 gas sensing by near-ambient pressure XPS studies. Sens. Actuator B-Chem. 2023, 393, 134252. [Google Scholar] [CrossRef]
- Das, S.; Roy, S.; Bhattacharya, T.; Sarkar, C. Efficient room temperature hydrogen gas sensor using ZnO nanoparticles-reduced graphene oxide nanohybrid. IEEE Sens. J. 2021, 21, 1264–1272. [Google Scholar] [CrossRef]
- Cai, Z.; Park, J.; Park, S. Synergistic effect of Pd and Fe2O3 nanoparticles embedded in porous NiO nanofibers on hydrogen gas detection: Fabrication, characterization, and sensing mechanism exploration. Sens. Actuator B-Chem. 2023, 388, 133836. [Google Scholar] [CrossRef]
- Sharma, B.; Sharma, A.; Myung, J.H. Selective ppb-level NO2 gas sensor based on SnO2-boron nitride nanotubes. Sens. Actuator B-Chem. 2021, 331, 129464. [Google Scholar] [CrossRef]
- Liu, W.; Gu, D.; Li, X. Ultrasensitive NO2 detection utilizing mesoporous ZnSe/ZnO heterojunction-based chemiresistive-type sensors. ACS Appl. Mater. Interfaces 2019, 11, 29029–29040. [Google Scholar] [CrossRef]
- Chen, X.; Shen, Y.; Zhong, X.; Li, T.; Zhao, S.; Zhou, P.; Han, C.; Wei, D.; Shen, Y. Synthesis of ZnO nanowires/Au nanoparticles hybrid by a facile one-pot method and their enhanced NO2 sensing properties. J. Alloys Compd. 2019, 783, 503–512. [Google Scholar] [CrossRef]
- Mane, S.; Nimbalkar, A.; Go, J.; Patil, N.; Dhasade, S.; Thombare, J.; Burungale, A.; Shin, J. NO2 sensing properties of 3D flower-like ZnO nanostructure decorated with thin porous petals synthesized using a simple sol–gel drop-casting method. Appl. Phys. A-Mater. Sci. Process. 2021, 127, 13. [Google Scholar] [CrossRef]
- Sinju, K.; Ramgir, N.; Pathak, A.; Debnath, A.; Muthe, K. Multiple sensor array based on ZnO nanowires for electronic nose applications towards toxic gases. AIP Conf. Proc. 2020, 2265, 030282. [Google Scholar] [CrossRef]
- Li, C.; Yu, L.; Fan, X.; Yin, M.; Nan, N.; Cui, L.; Ma, S.; Li, Y.; Zhang, B. Nucleation density and pore size tunable growth of ZnO nanowalls by a facile solution approach: Growth mechanism and NO2 gas sensing properties. RSC Adv. 2020, 10, 3319–3328. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Porte, Y.; Ko, K.; Kim, H.; Myoung, J. Micropatternable double-faced ZnO nanoflowers for flexible gas sensor. ACS Appl. Mater. Interfaces 2017, 9, 32876–32886. [Google Scholar] [CrossRef]
- Gonzalez-Chavarri, J.; Parellada-Monreal, L.; Castro-Hurtado, I.; Castaño, E.; Mandayo, G. ZnO nanoneedles grown on chip for selective NO2 detection indoors. Sens. Actuator B-Chem. 2018, 255, 1244–1253. [Google Scholar] [CrossRef]
- Chen, X.; Shen, Y.; Zhang, W.; Zhang, J.; Wei, D.; Lu, R.; Zhu, L.; Li, H.; Shen, Y. In-situ growth of ZnO nanowire arrays on the sensing electrode via a facile hydrothermal route for high-performance NO2 sensor. Appl. Surf. Sci. 2018, 435, 1096–1104. [Google Scholar] [CrossRef]
- Chougule, M.; Sen, S.; Patil, V. Fabrication of nanostructured ZnO thin film sensor for NO2 monitoring. Ceram. Int. 2012, 38, 2685–2692. [Google Scholar] [CrossRef]
- Choi, M.; Kim, M.; Mirzaei, A.; Kim, H.; Kim, S.; Baek, S.; Chun, D.; Jin, C.; Lee, K. Selective, sensitive, and stable NO2 gas sensor based on porous ZnO nanosheets. Appl. Surf. Sci. 2021, 568, 150910. [Google Scholar] [CrossRef]
- Zhao, P.; Tang, Y.; Mao, J.; Chen, Y.; Song, H.; Wang, J.; Song, Y.; Liang, Y.; Zhang, X. One-Dimensional MoS2-Decorated TiO2 nanotube gas sensors for efficient alcohol sensing. J. Alloys Compd. 2016, 674, 252–258. [Google Scholar] [CrossRef]
- Kooti, M.; Keshtkar, S.; Askarieh, M.; Rashidi, A. Progress toward a novel methane gas sensor based on SnO2 nanorods-nanoporous graphene hybrid. Sens. Actuator B-Chem. 2019, 281, 96–106. [Google Scholar] [CrossRef]
- Liu, B.; Liu, X.; Yuan, Z.; Jiang, Y.; Su, Y.; Ma, J.; Tai, H. A flexible NO2 gas sensor based on polypyrrole/nitrogen-doped multiwall carbon nanotube operating at room temperature. Sens. Actuator B-Chem. 2019, 295, 86–92. [Google Scholar] [CrossRef]
- Tomić, M.; Claros, M.; Gràcia, I.; Figueras, E.; Cané, C.; Vallejos, S. ZnO structures with surface nanoscale interfaces formed by Au, Fe2O3, or Cu2O modifier nanoparticles: Characterization and gas sensing properties. Sensors 2021, 21, 4509. [Google Scholar] [CrossRef]
- Yang, J.; Yuan, K.; Zhu, L.; Hang, C.; Li, X.; Tao, J.; Ma, H.; Jiang, A.; Lu, H. Facile synthesis of α-Fe2O3/ZnO core-shell nanowires for enhanced H2S sensing. Sens. Actuator B-Chem. 2020, 307, 127617. [Google Scholar] [CrossRef]
- Touba, S.; Kimiagar, S. Enhancement of sensitivity and selectivity of α-Fe2O3 nanorod gas sensors by ZnO nanoparticles decoration. Mater. Sci. Semicond. Process. 2019, 102, 104603. [Google Scholar] [CrossRef]
- Liang, Y.; Hsu, Y. Enhanced sensing ability of brush-like Fe2O3-ZnO nanostructures towards NO2 gas via manipulating material synergistic effect. Int. J. Mol. Sci. 2021, 22, 6884. [Google Scholar] [CrossRef]
- Li, Z.; Guo, L.; Feng, Z.; Gao, S.; Zhang, H.; Yang, X.; Liu, H.; Shao, J.; Sun, C.; Cheng, Y.; et al. Metal-organic framework-derived ZnO decorated with CuO for ultra-high response and selectivity H2S gas sensor. Sens. Actuator B-Chem. 2022, 366, 131995. [Google Scholar] [CrossRef]
- Cai, Z.; Park, S. Improved SnO2 nanowire acetone sensor with uniform Co3O4 nanoparticle decoration. J. Environ. Chem. Eng. 2023, 11, 111504. [Google Scholar] [CrossRef]
- Frankcombe, T.J.; Liu, Y. Interpretation of Oxygen 1s X-ray Photoelectron Spectroscopy of ZnO. Chem. Mater. 2023, 35, 5468–5474. [Google Scholar] [CrossRef]
- Idriss, H. On the wrong assignment of the XPS O1s signal at 531–532 eV attributed to oxygen vacancies in photo- and electro-catalysts for water splitting and other materials applications. Surf. Sci. 2021, 712, 121894. [Google Scholar] [CrossRef]
- Cai, Z.; Park, S. Highly selective acetone sensor based on Co3O4-decorated porous TiO2 nanofibers. J. Alloys Compd. 2022, 919, 165875. [Google Scholar] [CrossRef]











| Sensing Materials | Con. (ppm) | Tem. (°C) | Res. (Rg/Ra) | Ref. |
|---|---|---|---|---|
| ZnO/ZnSe | 8 | 200 | 10.42 | [34] |
| Au-ZnO | 1 | 150 | 31.4 | [35] |
| ZnO | 100 | 180 | 23.3 | [36] |
| ZnO | 2 | 200 | 1.29 | [37] |
| ZnO | 50 | 220 | 36.64 | [38] |
| ZnO | 50 | 270 | 29 | [39] |
| ZnO | 5 | 195 | 1.04 | [40] |
| ZnO | 5 | 250 | 3.3 | [41] |
| ZnO | 10 | 200 | 74.68 | [42] |
| ZnO | 100 | 200 | 37.2 | [43] |
| Fe2O3/ZnO | 5 | 225 | 78 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lee, J.; Park, S. Enhanced Sensitivity of NO2 Gas Sensor Utilizing Fe2O3-Embedded ZnO Nanostructures. Chemosensors 2026, 14, 18. https://doi.org/10.3390/chemosensors14010018
Lee J, Park S. Enhanced Sensitivity of NO2 Gas Sensor Utilizing Fe2O3-Embedded ZnO Nanostructures. Chemosensors. 2026; 14(1):18. https://doi.org/10.3390/chemosensors14010018
Chicago/Turabian StyleLee, Jiyeon, and Sunghoon Park. 2026. "Enhanced Sensitivity of NO2 Gas Sensor Utilizing Fe2O3-Embedded ZnO Nanostructures" Chemosensors 14, no. 1: 18. https://doi.org/10.3390/chemosensors14010018
APA StyleLee, J., & Park, S. (2026). Enhanced Sensitivity of NO2 Gas Sensor Utilizing Fe2O3-Embedded ZnO Nanostructures. Chemosensors, 14(1), 18. https://doi.org/10.3390/chemosensors14010018

