Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (607)

Search Parameters:
Keywords = nanocrystalline materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2384 KiB  
Article
Effects of Grain Size on Mechanical Properties of Nanopolycrystalline Fe-Al Alloy
by Xiaoming Liu, Kun Gao, Long Huang, Peng Chen and Jing Yang
Processes 2025, 13(8), 2462; https://doi.org/10.3390/pr13082462 - 4 Aug 2025
Viewed by 130
Abstract
FeAl intermetallic compounds exhibit high application potential in high-voltage transmission lines to withstand external forces such as powerlines’ own gravity and wind force. The ordered crystal structure in FeAl intermetallic compounds endows materials with high strength, but the remarkable brittleness at room temperature [...] Read more.
FeAl intermetallic compounds exhibit high application potential in high-voltage transmission lines to withstand external forces such as powerlines’ own gravity and wind force. The ordered crystal structure in FeAl intermetallic compounds endows materials with high strength, but the remarkable brittleness at room temperature restricts engineering applications. This contradiction is essentially closely related to the deformation mechanism at the nanoscale. Here, we performed molecular dynamics simulations to reveal anomalous grain size effects and deformation mechanisms in nanocrystalline FeAl intermetallic material. Models with grain sizes ranging from 6.2 to 17.4 nm were systematically investigated under uniaxial tensile stress. The study uncovers a distinctive inverse Hall-Petch relationship governing flow stress within the nanoscale regime. This behavior stems from high-density grain boundaries promoting dislocation annihilation over pile-up. Crucially, the material exhibits anomalous ductility at ultra-high strain rates due to stress-induced phase transformation dominating the plastic deformation. The nascent FCC phase accommodates strain through enhanced slip systems and inherent low stacking fault energy with the increasing phase fraction paralleling the stress plateau. Nanoconfinement suppresses the propagation of macroscopic defects while simultaneously suppressing room-temperature brittle fracture and inhibiting the rapid phase transformation pathways at extreme strain rates. These findings provide new theoretical foundations for designing high-strength and high-toughness intermetallic nanocompounds. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

46 pages, 4006 KiB  
Review
Solvent-Driven Electroless Nickel Coatings on Polymers: Interface Engineering, Microstructure, and Applications
by Chenyao Wang, Heng Zhai, David Lewis, Hugh Gong, Xuqing Liu and Anura Fernando
Coatings 2025, 15(8), 898; https://doi.org/10.3390/coatings15080898 - 1 Aug 2025
Viewed by 339
Abstract
Electroless nickel deposition (ELD) is an autocatalytic technique extensively used to impart conductive, protective, and mechanical functionalities to inherently non-conductive synthetic substrates. This review systematically explores the fundamental mechanisms of electroless nickel deposition, emphasising recent advancements in surface activation methods, solvent systems, and [...] Read more.
Electroless nickel deposition (ELD) is an autocatalytic technique extensively used to impart conductive, protective, and mechanical functionalities to inherently non-conductive synthetic substrates. This review systematically explores the fundamental mechanisms of electroless nickel deposition, emphasising recent advancements in surface activation methods, solvent systems, and microstructural control. Critical analysis reveals that bio-inspired activation methods, such as polydopamine (PDA) and tannic acid (TA), significantly enhance coating adhesion and durability compared to traditional chemical etching and plasma treatments. Additionally, solvent engineering, particularly using polar aprotic solvents like dimethyl sulfoxide (DMSO) and ethanol-based systems, emerges as a key strategy for achieving uniform, dense, and flexible coatings, overcoming limitations associated with traditional aqueous baths. The review also highlights that microstructural tailoring, specifically the development of amorphous-nanocrystalline hybrid nickel coatings, effectively balances mechanical robustness (hardness exceeding 800 HV), flexibility, and corrosion resistance, making these coatings particularly suitable for wearable electronic textiles and smart materials. Furthermore, commercial examples demonstrate the real-world applicability and market readiness of nickel-coated synthetic fibres. Despite significant progress, persistent challenges remain, including reliable long-term adhesion, internal stress management, and environmental sustainability. Future research should prioritise environmentally benign plating baths, standardised surface activation protocols, and scalable deposition processes to fully realise the industrial potential of electroless nickel coatings. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Graphical abstract

25 pages, 5169 KiB  
Article
Natural Sunlight Driven Photocatalytic Degradation of Methylene Blue and Rhodamine B over Nanocrystalline Zn2SnO4/SnO2
by Maria Vesna Nikolic, Zorka Z. Vasiljevic, Milena Dimitrijevic, Nadezda Radmilovic, Jelena Vujancevic, Marija Tanovic and Nenad B. Tadic
Nanomaterials 2025, 15(14), 1138; https://doi.org/10.3390/nano15141138 - 21 Jul 2025
Viewed by 527
Abstract
The natural sunlight driven photocatalytic degradation of organic pollutants is a sustainable solution for water purification. The use of heterojunction nanocomposites in this process shows promise for improved photodegradation efficiency. In this work, nanocrystalline Zn2SnO4/SnO2 obtained by the [...] Read more.
The natural sunlight driven photocatalytic degradation of organic pollutants is a sustainable solution for water purification. The use of heterojunction nanocomposites in this process shows promise for improved photodegradation efficiency. In this work, nanocrystalline Zn2SnO4/SnO2 obtained by the solid-state synthesis method was tested as a heterojunction photocatalyst material for the degradation of methylene blue (MB) and Rhodamine B (RhB) dyes as single and multicomponent systems in natural sunlight. Characterization of the structure and morphology of the synthesized nanocomposite using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDS), and photoluminescence (PL) spectroscopy confirmed the formation of Zn2SnO4/SnO2 and heterojunctions between Zn2SnO4 and the SnO2 nanoparticles. A photodegradation efficiency of 99.1% was achieved in 120 min with 50 mg of the photocatalyst for the degradation of MB and 70.6% for the degradation of RhB under the same conditions. In the multicomponent system, the degradation efficiency of 97.9% for MB and 53.2% for RhB was obtained with only 15 mg of the photocatalyst. The degradation of MB occurred through N-demethylation and the formation of azure intermediates and degradation of RhB occurred through sequential deethylation and fragmentation of the xanthene ring, both in single and multicomponent systems. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Water Remediation (2nd Edition))
Show Figures

Graphical abstract

25 pages, 3459 KiB  
Article
Phase Composition, Structure, and Microwave Absorption of Magnetron-Sputtered Co–C–Cr Multilayer Films
by Nadezhda Prokhorenkova, Almira Zhilkashinova, Madi Abilev, Leszek Łatka, Igor Ocheredko and Assel Zhilkashinova
Compounds 2025, 5(3), 27; https://doi.org/10.3390/compounds5030027 - 20 Jul 2025
Viewed by 239
Abstract
Multilayer thin films composed of cobalt (Co), carbon (C), and chromium (Cr) possess promising electromagnetic properties, yet the combined Co–C–Cr system remains underexplored, particularly regarding its performance as a microwave absorber. Existing research has primarily focused on binary Co–C or Co–Cr compositions, leaving [...] Read more.
Multilayer thin films composed of cobalt (Co), carbon (C), and chromium (Cr) possess promising electromagnetic properties, yet the combined Co–C–Cr system remains underexplored, particularly regarding its performance as a microwave absorber. Existing research has primarily focused on binary Co–C or Co–Cr compositions, leaving a critical knowledge gap in understanding how ternary multilayer architectures influence electromagnetic behavior. This study addresses this gap by investigating the structure, phase composition, and microwave absorption performance of Co–C–Cr multilayer coatings fabricated via magnetron sputtering onto porous silicon substrates. This study compares four-layer and eight-layer configurations to assess how multilayer architecture affects impedance matching, reflection coefficients, and absorption characteristics within the 8.2–12.4 GHz frequency range. Structural analyses using X-ray diffraction and transmission electron microscopy confirm the coexistence of amorphous and nanocrystalline phases, which enhance absorption through dielectric and magnetic loss mechanisms. Both experimental and simulated results show that increasing the number of layers improves impedance gradients and broadens the operational bandwidth. The eight-layer coatings demonstrate a more uniform absorption response, while four-layer structures exhibit sharper resonant minima. These findings advance the understanding of ternary multilayer systems and contribute to the development of frequency-selective surfaces and broadband microwave shielding materials. Full article
Show Figures

Figure 1

21 pages, 7602 KiB  
Article
Visible-Light-Responsive Ag(Au)/MoS2-TiO2 Inverse Opals: Synergistic Plasmonic, Photonic, and Charge Transfer Effects for Photoelectrocatalytic Water Remediation
by Stelios Loukopoulos, Elias Sakellis, Polychronis Tsipas, Spiros Gardelis, Vassilis Psycharis, Marios G. Kostakis, Nikolaos S. Thomaidis and Vlassis Likodimos
Nanomaterials 2025, 15(14), 1076; https://doi.org/10.3390/nano15141076 - 11 Jul 2025
Viewed by 428
Abstract
Titanium dioxide (TiO2) is a benchmark photocatalyst for environmental applications, but its limited visible-light activity due to a wide band gap and fast charge recombination restricts its practical efficiency. This study presents the development of heterostructured Ag (Au)/MoS2-TiO2 [...] Read more.
Titanium dioxide (TiO2) is a benchmark photocatalyst for environmental applications, but its limited visible-light activity due to a wide band gap and fast charge recombination restricts its practical efficiency. This study presents the development of heterostructured Ag (Au)/MoS2-TiO2 inverse opal (IO) films that synergistically integrate photonic, plasmonic, and semiconducting functionalities to overcome these limitations. The materials were synthesized via a one-step evaporation-induced co-assembly approach, embedding MoS2 nanosheets and plasmonic nanoparticles (Ag or Au) within a nanocrystalline TiO2 photonic framework. The inverse opal architecture enhances light harvesting through slow-photon effects, while MoS2 and plasmonic nanoparticles improve visible-light absorption and charge separation. By tuning the template sphere size, the photonic band gap was aligned with the TiO2-MoS2 absorption edge and the localized surface plasmon resonance of Ag, enabling optimal spectral overlap. The corresponding Ag/MoS2-TiO2 photonic films exhibited superior photocatalytic and photoelectrocatalytic degradation of tetracycline under visible light. Ultraviolet photoelectron spectroscopy and Mott–Schottky analysis confirmed favorable band alignment and Fermi level shifts that facilitate interfacial charge transfer. These results highlight the potential of integrated photonic–plasmonic-semiconductor architectures for efficient solar-driven water treatment. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

18 pages, 5941 KiB  
Article
Non-Calcined Metal Tartrate Pore Formers for Lowering Sintering Temperature of Solid Oxide Fuel Cells
by Mehdi Choolaei, Mohsen Fallah Vostakola and Bahman Amini Horri
Crystals 2025, 15(7), 636; https://doi.org/10.3390/cryst15070636 - 10 Jul 2025
Viewed by 301
Abstract
This paper investigates the application of non-calcined metal tartrate as a novel alternative pore former to prepare functional ceramic composites to fabricate solid oxide fuel cells (SOFCs). Compared to carbonaceous pore formers, non-calcined pore formers offer high compatibility with various ceramic composites, providing [...] Read more.
This paper investigates the application of non-calcined metal tartrate as a novel alternative pore former to prepare functional ceramic composites to fabricate solid oxide fuel cells (SOFCs). Compared to carbonaceous pore formers, non-calcined pore formers offer high compatibility with various ceramic composites, providing better control over porosity and pore size distribution, which allows for enhanced gas diffusion, reactant transport and gaseous product release within the fuel cells’ functional layers. In this work, nanocrystalline gadolinium-doped ceria (GDC) and Ni-Gd-Ce-tartrate anode powders were prepared using a single-step co-precipitation synthesis method, based on the carboxylate route, utilising ammonium tartrate as a low-cost, environmentally friendly precipitant. The non-calcined Ni-Gd-Ce-tartrate was used to fabricate dense GDC electrolyte pellets (5–20 μm thick) integrated with a thin film of Ni-GDC anode with controlled porosity at 1300 °C. The dilatometry analysis showed the shrinkage anisotropy factor for the anode substrates prepared using 20 wt. The percentages of Ni-Gd-Ce-tartrate were 30 wt.% and 40 wt.%, with values of 0.98 and 1.01, respectively, showing a significant improvement in microstructural properties and pore size compared to those fabricated using a carbonaceous pore former. The results showed that the non-calcined pore formers can also lower the sintering temperature for GDC to below 1300 °C, saving energy and reducing thermal stresses on the materials. They can also help maintain optimal material properties during sintering, minimising the risk of unwanted chemical reactions or contamination. This flexibility enables the versatile designing and manufacturing of ceramic fuel cells with tailored compositions at a lower cost for large-scale applications. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Graphical abstract

15 pages, 4232 KiB  
Article
The Growth Kinetic and Ultra High Hardness of CoCrFeNiTi High–Entropy Alloy by Mechanical Alloying and Spark Plasma Sintering
by Tiejun Qu, Mingpu Liu, Chuanhua Yang, Xin Wang and Junfa Wang
Materials 2025, 18(14), 3242; https://doi.org/10.3390/ma18143242 - 9 Jul 2025
Viewed by 390
Abstract
In this paper, the impact of mechanical alloying (MA) and spark plasma sintering (SPS) on the phase evolution and mechanical properties development of CoCrFeNiTi high–entropy alloys (HEAs) was investigated. The microstructure and properties of the material were examined, using X-ray diffraction (XRD) for [...] Read more.
In this paper, the impact of mechanical alloying (MA) and spark plasma sintering (SPS) on the phase evolution and mechanical properties development of CoCrFeNiTi high–entropy alloys (HEAs) was investigated. The microstructure and properties of the material were examined, using X-ray diffraction (XRD) for phase identification, scanning electron microscopy (SEM) for surface morphology observation, transmission electron microscopy (TEM) for microstructural analysis, and hardness testing to evaluate mechanical performance. The milled powder exhibited nanocrystalline solid solution microstructure with grain sizes below 48 nm, composed of 83% face–centered cubic (FCC) and 17% body–centered cubic (BCC) phases. Mechanically, the bulk CoCrFeNiTi alloy exhibited exceptional strength attributes, as evidenced by a Vickers hardness value reaching 675 Hv, along with a compressive strength of 1894 MPa and a yield stress of 1238 MPa. These findings suggested that the synergistic effects of mechanical alloying and SPS processing can precisely control the phase stability, microstructure refinement, and property optimization in CoCrFeNiTi HEA, with particular promise for advanced structural applications. Full article
(This article belongs to the Special Issue Advances in Plasma and Laser Engineering (Second Edition))
Show Figures

Figure 1

20 pages, 3489 KiB  
Article
Exploring the Potential of Cellulose Nanocrystals Originated from Ramie (Boehmeria nivea L. Gaud) in Formation of Microspheres for Enhanced Solubility of Furosemide
by Anis Yohana Chaerunisaa, Yoga Windhu Wardhana, Mayang Kusuma Dewi, Margaretha Efa Putri and Fitriani Jati Rahmania
Polymers 2025, 17(13), 1879; https://doi.org/10.3390/polym17131879 - 5 Jul 2025
Viewed by 383
Abstract
Cellulose nanocrystals possess unique properties such as high surface area and excellent biocompatibility. They can disrupt strong hydrogen bonds and other intermolecular forces that hinder the solubility of certain molecules thus enhancing the solubility of poorly soluble materials. The main challenge in formulating [...] Read more.
Cellulose nanocrystals possess unique properties such as high surface area and excellent biocompatibility. They can disrupt strong hydrogen bonds and other intermolecular forces that hinder the solubility of certain molecules thus enhancing the solubility of poorly soluble materials. The main challenge in formulating poorly soluble drugs lies in their limited therapeutic efficacy due to inadequate solubility and bioavailability. Therefore, an innovative approach such as using cellulose nanocrystals to enhance the solubility is highly needed. The aim of this research is to study the potential of ramie (Boehmeria nivea L. Gaud) as a source of cellulose nanocrystals in the development of microspheres for the solubility enhancement of poorly soluble drugs. Nanocrystalline cellulose was isolated from the ramie (Boehmeria nivea L. Gaud) by optimizing hydrolysis conditions with varying acid concentrations and reaction times. Characterizations were performed by measuring particle size, pH, and sulfate content, followed by morphological study by SEM, functional group analysis, and thermal analysis. The use of sulfuric acid in the hydrolysis process of flax cellulose at 45 °C, as the type of acid that gives the best results, at 50% acid concentration for 60 min produces cellulose nanocrystallines with a particle size of 120 nm, sulfate concentration density of 133.09 mmol/kg, crystallinity of 96.2%, and a yield of 63.24 ± 8.72%. Furosemide was used as the poorly soluble drug model and its solubility enhancement in the form of furosemide/RNCC microspheres was evaluated through saturated solubility testing and in vitro dissolution. This study demonstrated that RNCC could improve the solubility of furosemide, which contributes to developing sustainable drug formulations and eco-friendly delivery systems for poorly soluble drugs. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

20 pages, 2331 KiB  
Article
Design of a Piezoelectrically Actuated Ultrananocrystalline Diamond (UNCD) Microcantilever Biosensor
by Villarreal Daniel, Orlando Auciello and Elida de Obaldia
Appl. Sci. 2025, 15(12), 6902; https://doi.org/10.3390/app15126902 - 19 Jun 2025
Viewed by 1919
Abstract
This work presents the theoretical design and finite element modeling of high-sensitivity microcantilevers for biosensing applications, integrating piezoelectric actuation with novel ultrananocrystalline diamond (UNCD) structures. Microcantilevers were designed based on projections to grow a multilayer metal/AlN/metal/UNCD stack on silicon substrates, optimized to detect [...] Read more.
This work presents the theoretical design and finite element modeling of high-sensitivity microcantilevers for biosensing applications, integrating piezoelectric actuation with novel ultrananocrystalline diamond (UNCD) structures. Microcantilevers were designed based on projections to grow a multilayer metal/AlN/metal/UNCD stack on silicon substrates, optimized to detect adsorption of biomolecules on the surface of exposed UNCD microcantilevers at the picogram scale. A central design criterion was to match the microcantilever’s eigenfrequency with the resonant frequency of the AlN-based piezoelectric actuator, enabling efficient dynamic excitation. The beam length was tuned to ensure a ≥2 kHz resonant frequency shift upon adsorption of 1 pg of mass distributed on the exposed surface of a UNCD-based microcantilever. Subsequently, a Gaussian distribution mass function with a variance of 5 µm was implemented to evaluate the resonant frequency shift upon mass addition at a certain point on the microcantilever where a variation from 600 Hz to 100 Hz was observed when the mass distribution center was located at the tip of the microcantilever and the piezoelectric borderline, respectively. Both frequency and time domain analyses were performed to predict the resonance behavior, oscillation amplitude, and quality factor. To ensure the reliability of the simulations, the model was first validated using experimental results reported in the literature for an AlN/nanocrystalline diamond (NCD) microcantilever. The results confirmed that the AlN/UNCD architecture exhibits higher resonant frequencies and enhanced sensitivity compared to equivalent AlN/Si structures. The findings demonstrate that using a UNCD-based microcantilever not only improves biocompatibility but also significantly enhances the mechanical performance of the biosensor, offering a robust foundation for the development of next-generation MEMS-based biochemical detection platforms. The research reported here introduces a novel design methodology that integrates piezoelectric actuation with UNCD microcantilevers through eigenfrequency matching, enabling efficient picogram-scale mass detection. Unlike previous approaches, it combines actuator and cantilever optimization within a unified finite element framework, validated against experimental data published in the literature for similar piezo-actuated sensors using materials with inferior biocompatibility compared with the novel UNCD. The dual-domain simulation strategy offers accurate prediction of key performance metrics, establishing a robust and scalable path for next-generation MEMS biosensors. Full article
Show Figures

Figure 1

37 pages, 9471 KiB  
Article
Engineering to Improve Mechanical Properties of Nanocellulose Hydrogels from Aloe Vera Bagasse and Banana Pseudostem for Biomedical Applications
by Rocío Hernández-Leal, Ángeles Iveth Licona-Aguilar, Miguel Antonio Domínguez-Crespo, Esther Ramírez-Meneses, Adela Eugenia Rodríguez-Salazar, Carlos Juárez-Balderas, Silvia Beatriz Brachetti-Sibaja and Aidé Minerva Torres-Huerta
Polymers 2025, 17(12), 1642; https://doi.org/10.3390/polym17121642 - 13 Jun 2025
Cited by 1 | Viewed by 693
Abstract
This work explores the synthesis of biomass-waste-derived cellulose nanocrystal hydrogel from aloe vera bagasse (AVB) and banana pseudostem (BPS). A wide variety of synthesis parameters such as acid concentration (45 wt.% and 55 wt.%), temperatures in the process of 25, 40, 45 and [...] Read more.
This work explores the synthesis of biomass-waste-derived cellulose nanocrystal hydrogel from aloe vera bagasse (AVB) and banana pseudostem (BPS). A wide variety of synthesis parameters such as acid concentration (45 wt.% and 55 wt.%), temperatures in the process of 25, 40, 45 and 50 °C, and reaction times of 30 and 60 min were analyzed during the acid hydrolysis to evaluate changes in the morphology, crystallinity, swelling, degradation temperature, and mechanical properties. The parameters that most influenced the crystallinity were the temperature and reaction time, showing good characteristics such as percentage crystallinity (89.66% for nanocellulose from C45t30T50 up to 97.58% for CNC-BPS C55t30T50), and crystal size (from 23.40 to 68.31 nm), which was worth considering for hydrogel synthesis. Cellulose nanocrystalline hydrogels from both biomass wastes can modify the crystallinity for tailored high-end engineering and biomedical applications, although using BPS obtained the best overall performance; also, properties such as swelling capability at pH = 4 of 225.39% for hydrogel C55t30T25 (H7), porosity (60.77 ± 2.60%) for C45t60T40 (H6), and gel % (86.60 ± 2.62%) for C55t60T50 (H8) were found. The mechanical test revealed a tensile strength at maximum load of 707.67 kPa (hydrogel H6) and 644.17 kPa (hydrogel H8), which are properties conferred by the CNC from BPS. Overall, CNC from BPS is recommended as a reinforcement for hydrogel synthesis due to its good mechanical properties and functionals, making it a promising material for biomedical applications. Full article
(This article belongs to the Special Issue Advanced Study on Polymer-Based Hydrogels)
Show Figures

Figure 1

17 pages, 2470 KiB  
Article
Modeling Pulsed Magnetic Core Behavior in LTspice
by Keegan Kelp, Dawson Wright, Jacob Stephens, James Dickens, John Mankowski, Zach Shaw and Andreas Neuber
Electronics 2025, 14(12), 2335; https://doi.org/10.3390/electronics14122335 - 7 Jun 2025
Viewed by 392
Abstract
This work demonstrates a modeling technique focused on reproducing the behavior of magnetic cores subject to high voltage pulses. The working principle of the model is based on a magnetic circuit with additional elements that influence the model’s behavior. The elements include a [...] Read more.
This work demonstrates a modeling technique focused on reproducing the behavior of magnetic cores subject to high voltage pulses. The working principle of the model is based on a magnetic circuit with additional elements that influence the model’s behavior. The elements include a function that defines the response of the model depending on the applied pulse voltage and a component that dominates the transient response. These elements are necessary to replicate the experimentally observed behavior of magnetic cores. The model was developed based on the measured behavior of three nanocrystalline magnetic materials subject to a range of pulse voltages. This modeling technique was created to address the limitations of other models in accurately capturing fast pulse responses. The key limitation of traditional modeling techniques that the proposed model addresses is their inability to capture variations in core response under different applied pulse voltages (magnetization rates). The proposed model has been shown to produce accurate results for magnetization rates between 1 T/μs and 8 T/μs, with potential for further expansion. Implemented in LTspice, this model is both fast and accurate, effectively replicating the behavior of the magnetic core while maintaining simplicity. This work outlines the foundation of this modeling technique, the trends in the parameters that influence its behavior, and its application within a simple pulsed power system. The most notable feature of this model is its ability to operate across a wide range of pulse voltages without requiring adjustments to the model parameters. Full article
(This article belongs to the Special Issue Advances in Pulsed-Power and High-Power Electronics)
Show Figures

Figure 1

14 pages, 4427 KiB  
Case Report
Horizontal Guided Bone Regeneration Using Titanium-Reinforced Dense PTFE Membrane and Synthetic Nanocrystalline Hydroxyapatite: A Case Study Reporting Clinical and Histological Outcomes with 5-Year Follow-Up
by Fabrizio Belleggia, Luca Signorini, Mirko Martelli and Marco Gargari
Int. J. Transl. Med. 2025, 5(2), 19; https://doi.org/10.3390/ijtm5020019 - 31 May 2025
Viewed by 769
Abstract
Background/Objectives: Guided bone regeneration (GBR) is a regenerative technique used to treat maxillary osseous defects to enable implant placement for prosthetic rehabilitation. It is generally performed with the use of barrier membranes and bone substitute materials of human or animal origin. Here, [...] Read more.
Background/Objectives: Guided bone regeneration (GBR) is a regenerative technique used to treat maxillary osseous defects to enable implant placement for prosthetic rehabilitation. It is generally performed with the use of barrier membranes and bone substitute materials of human or animal origin. Here, we report the clinical and histological outcomes of a horizontal GBR, treated using only synthetic biomaterials. Methods: A graft of nanocrystalline hydroxyapatite (NH) embedded in a silica gel matrix was used to fill a horizontal bone defect. The graft was covered with a titanium-reinforced dense polytetrafluoroethylene (TR-dPTFE) membrane, and primary closure was completed and maintained for 10 months. Then, the site was re-opened for membrane removal and implant insertion. During implant bed preparation, a bone biopsy was obtained for histological evaluation. A metal–ceramic crown was fitted, and the 5-year follow-up after prosthetic loading showed clinical and radiographically healthy tissues. Results: Histological examination revealed good integration of the biomaterial into the surrounding tissues, which were composed of lamellar bone trabeculae and connective tissue. New bone formation occurred not only around the NH granules but even inside the porous amorphous particles. Conclusions: The combination of NH and the TR-dPTFE membrane produced good clinical and histological results, which remained stable for 5 years. Full article
Show Figures

Figure 1

15 pages, 777 KiB  
Article
Kondo-like Behavior in Lightly Gd-Doped Manganite CaMnO3
by Tomislav Ivek, Matija Čulo, Nikolina Novosel, Maria Čebela, Bojana Laban, Uroš Čakar and Milena Rosić
Nanomaterials 2025, 15(11), 784; https://doi.org/10.3390/nano15110784 - 23 May 2025
Viewed by 528
Abstract
Manganese oxides (manganites) are among the most studied materials in condensed matter physics due to the famous colossal magnetoresistance and very rich phase diagrams characterized by strong competition between ferromagnetic (FM) metallic and antiferromagnetic (AFM) insulating phases. One of the key questions that [...] Read more.
Manganese oxides (manganites) are among the most studied materials in condensed matter physics due to the famous colossal magnetoresistance and very rich phase diagrams characterized by strong competition between ferromagnetic (FM) metallic and antiferromagnetic (AFM) insulating phases. One of the key questions that remains open even after more than thirty years of intensive research is the exact conductivity mechanism in insulating as well as in metallic phases and its relation to the corresponding magnetic structure. In order to shed more light on this problem, here, we report magnetotransport measurements on sintered nanocrystalline samples of the very poorly explored manganites Ca1xGdxMnO3 with x=0.05 and x=0.10, in the temperature range 2–300 K, and in magnetic fields up to 16 T. Our results indicate that both compounds at low temperatures exhibit metallic behavior with a peculiar resistivity upturn and a large negative magnetoresistance. We argue that such behavior is consistent with a Kondo-like scattering on Gd impurities coupled with the percolation of FM metallic regions within insulating AFM matrix. Full article
(This article belongs to the Topic Magnetic Nanoparticles and Thin Films)
Show Figures

Graphical abstract

24 pages, 5386 KiB  
Article
Study of the Electrical Conduction Mechanism in Low-Frequency Field for CuMnO2 Crednerite-Type Materials Obtained by Microwave-Assisted Hydrothermal Synthesis
by Catalin N. Marin, Maria Poienar, Antoanetta Lungu, Cristian Casut, Paula Sfirloaga and Iosif Malaescu
Crystals 2025, 15(6), 497; https://doi.org/10.3390/cryst15060497 - 23 May 2025
Viewed by 364
Abstract
The electrical conductivity of nanocrystalline CuMnO2 samples, obtained by microwave-assisted hydrothermal synthesis (MWH), is studied by impedance spectroscopy over a frequency range of 30 Hz to 2 MHz and a temperature range from 30 to 120 °C. Three samples are prepared to [...] Read more.
The electrical conductivity of nanocrystalline CuMnO2 samples, obtained by microwave-assisted hydrothermal synthesis (MWH), is studied by impedance spectroscopy over a frequency range of 30 Hz to 2 MHz and a temperature range from 30 to 120 °C. Three samples are prepared to start from a mixture of sulphate reactants, at two synthesis temperatures and different reaction times (of applying microwaves): sample S1 at 80 °C for 5 min; sample S2 at 120 °C for 5 min and sample S3 at 120 °C for one hour. The static conductivity values, σDC of samples S2 and S3, are approximately equal but larger than those of sample S1. This result suggests that using MWH synthesis at 120 °C, with different reaction times (samples S2 and S3), is sufficient for microwaves to be applied for at least 5 min to obtain samples with similar electrical properties. The experimental data were analysed based on three theoretical models, demonstrating that the most appropriate theoretical model to explain the electrical conduction mechanism in the samples is Mott’s variable range hopping (VRH) model. Using this model, the activation energy of conduction, (EA,cond), the density of localized states near the Fermi level, N(EF), the hopping distance, Rh(T), the hopping energy, Wh(T) and the charge carrier mobility (μ) were determined for the first time, for microwave-assisted hydrothermally synthesized crednerite. Additionally, the band gap energy (Wm) and hopping frequency (ωh) were evaluated at various temperatures T. Understanding the electrical conduction mechanism in the polycrystalline CuMnO2 materials is important for their use in photo-electrochemical and photocatalytic applications, photovoltaic devices, and, more recently, in environmental protection. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

16 pages, 3702 KiB  
Article
Operating Properties of the Inductive Current Transformer and Evaluation of Requirements for Its Compliance with the IEC 61869-1 WB2 Class Extension for Frequency up to 20 kHz
by Michal Kaczmarek
Energies 2025, 18(10), 2595; https://doi.org/10.3390/en18102595 - 16 May 2025
Viewed by 503
Abstract
Nanocrystalline material provides an opportunity to improve the wideband performance of inductive current transformers and enables the possibility of ensuring their transformation accuracy for distorted and sinusoidal current from 50 Hz up to 20 kHz. Introduced in the year 2023, the standard IEC [...] Read more.
Nanocrystalline material provides an opportunity to improve the wideband performance of inductive current transformers and enables the possibility of ensuring their transformation accuracy for distorted and sinusoidal current from 50 Hz up to 20 kHz. Introduced in the year 2023, the standard IEC 61869-1 defines optional wideband accuracy classes for inductive current transformers with the WB2 class extension for harmonic frequencies up to 20 kHz. In this paper, design requirements in order to develop high accuracy 0.1-WB2 class wideband inductive current transformers compliant with the standards IEC 61869-1/2 are presented. It is shown that the main emphasis and design difficulties in ensuring high transformation accuracy still concern the lowest frequency of wideband operation—the fundamental component. However, it is of high importance that in order to obtain the highest possible wideband transformation accuracy of inductive current transformer for the low order higher harmonics, we ensure the lowest possible self-distortion of secondary current by minimalization of the load of its secondary winding is achieved—it should operate close to the short circuit conditions. Therefore, the low-power inductive CT should be designed and used for measurements in the power grid, as they will ensure the highest wideband transformation accuracy. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

Back to TopTop