polymers-logo

Journal Browser

Journal Browser

Advanced Study on Polymer-Based Hydrogels

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Applications".

Deadline for manuscript submissions: 15 September 2025 | Viewed by 2410

Special Issue Editor


E-Mail Website
Guest Editor
College of Materials and Energy, South China Agricultural University, Guangzhou 510642,China
Interests: biobased polymer; regenerated cellulose materials; cellulose derivative materials

Special Issue Information

Dear Colleagues,

This Special Issue of Polymers aims to highlight some of the most innovative findings in the construction, characterization, performance optimization, and functional application of advanced polymer hydrogel materials with considerations of their impact on human health, energy, and the sustainability of the environment.

As a new type of soft material, the application range of hydrogel had rapidly increased due to its highly controllable structure and function. New applications, such as in the medical field, flexible electronic components, energy devices, and so on, means that more stringent requirements have been put forward for the basic performance and functionality of hydrogels. At the same time, the directional design of hydrogels with special properties and functions requires researchers to have a deeper understanding of hydrogel network construction, the interaction mechanism in hydrogels, and related characterization methods. We invite the research community to contribute to this Special Issue by submitting comprehensive reviews or original research articles. Topics of interest include, but are not limited to, the following:

  • Design, characterization method, and structure–activity relationship of hydrogel network structure and interaction;
  • Hydrogels with special properties, such as anti-freezing, anti-drying, self-healing, shape memory, etc.;
  • Improvement in the performance and exploration of the functional application of hydrogels, including high-performance hydrogel materials, hydrogel biomedical materials, hydrogel flexible electronic and wearable materials, hydrogel new energy materials, hydrogel bionic devices, and hydrogel flexible robots.

Dr. Yang Wang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • hydrogel network structure
  • hydrogel network interaction
  • hydrogel processing and construction
  • hydrogel biomedical material
  • hydrogel flexible electronic and wearable materials
  • hydrogel bionic devices

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

37 pages, 9471 KiB  
Article
Engineering to Improve Mechanical Properties of Nanocellulose Hydrogels from Aloe Vera Bagasse and Banana Pseudostem for Biomedical Applications
by Rocío Hernández-Leal, Ángeles Iveth Licona-Aguilar, Miguel Antonio Domínguez-Crespo, Esther Ramírez-Meneses, Adela Eugenia Rodríguez-Salazar, Carlos Juárez-Balderas, Silvia Beatriz Brachetti-Sibaja and Aidé Minerva Torres-Huerta
Polymers 2025, 17(12), 1642; https://doi.org/10.3390/polym17121642 - 13 Jun 2025
Viewed by 399
Abstract
This work explores the synthesis of biomass-waste-derived cellulose nanocrystal hydrogel from aloe vera bagasse (AVB) and banana pseudostem (BPS). A wide variety of synthesis parameters such as acid concentration (45 wt.% and 55 wt.%), temperatures in the process of 25, 40, 45 and [...] Read more.
This work explores the synthesis of biomass-waste-derived cellulose nanocrystal hydrogel from aloe vera bagasse (AVB) and banana pseudostem (BPS). A wide variety of synthesis parameters such as acid concentration (45 wt.% and 55 wt.%), temperatures in the process of 25, 40, 45 and 50 °C, and reaction times of 30 and 60 min were analyzed during the acid hydrolysis to evaluate changes in the morphology, crystallinity, swelling, degradation temperature, and mechanical properties. The parameters that most influenced the crystallinity were the temperature and reaction time, showing good characteristics such as percentage crystallinity (89.66% for nanocellulose from C45t30T50 up to 97.58% for CNC-BPS C55t30T50), and crystal size (from 23.40 to 68.31 nm), which was worth considering for hydrogel synthesis. Cellulose nanocrystalline hydrogels from both biomass wastes can modify the crystallinity for tailored high-end engineering and biomedical applications, although using BPS obtained the best overall performance; also, properties such as swelling capability at pH = 4 of 225.39% for hydrogel C55t30T25 (H7), porosity (60.77 ± 2.60%) for C45t60T40 (H6), and gel % (86.60 ± 2.62%) for C55t60T50 (H8) were found. The mechanical test revealed a tensile strength at maximum load of 707.67 kPa (hydrogel H6) and 644.17 kPa (hydrogel H8), which are properties conferred by the CNC from BPS. Overall, CNC from BPS is recommended as a reinforcement for hydrogel synthesis due to its good mechanical properties and functionals, making it a promising material for biomedical applications. Full article
(This article belongs to the Special Issue Advanced Study on Polymer-Based Hydrogels)
Show Figures

Figure 1

11 pages, 3746 KiB  
Article
Cellulose/Sodium Polyacrylate Interpenetrating Network Hydrogel with Intrinsic Anti-Freezing Property
by Qianyun Deng and Yang Wang
Polymers 2025, 17(7), 908; https://doi.org/10.3390/polym17070908 - 27 Mar 2025
Viewed by 538
Abstract
Generally, small molecule alcohols and concentrated electrolyte ions can be introduced into the medium of hydrogels as anti-freezing agents to achieve significant anti-freezing properties. However, due to the exchange effect with the external environment, the anti-freezing agents may leak or change in composition [...] Read more.
Generally, small molecule alcohols and concentrated electrolyte ions can be introduced into the medium of hydrogels as anti-freezing agents to achieve significant anti-freezing properties. However, due to the exchange effect with the external environment, the anti-freezing agents may leak or change in composition causing contamination and unstable material performance during use. Here, cellulose and sodium polyacrylate (PAAS) were used to construct interpenetrating network hydrogels, with cellulose comprising up to 63% of the system. Sodium ions and carboxylic acid groups ionized from the polyacrylate network restricting the formation of water clusters through strong hydration and significantly reduced the ice crystal formation temperature. The rigid cellulose networks provided mechanical strength for the hydrogels. The new interpenetrating network hydrogels exhibited a low anti-freezing temperature (lowest at −56.12 °C), a high water content (over 82.5 wt%), and considerable toughness (up to 2.53 MJ m−3). The intrinsic anti-freezing hydrogel constructed in this work provides a new reference strategy for expanding the practicability of anti-freezing hydrogels. Full article
(This article belongs to the Special Issue Advanced Study on Polymer-Based Hydrogels)
Show Figures

Figure 1

15 pages, 3747 KiB  
Article
Alginate Heterografted Copolymer Thermo-Induced Hydrogel Reinforced by PAA-g-P(boc-L-Lysine): Effects on Hydrogel Thermoresponsiveness
by Aikaterini-Ariadni Moschidi and Constantinos Tsitsilianis
Polymers 2024, 16(24), 3555; https://doi.org/10.3390/polym16243555 - 20 Dec 2024
Viewed by 886
Abstract
In this article, we report on the alginate heterografted by Poly(N-isopropyl acrylamide-co-N-tert-butyl acrylamide) and Poly(N-isopropyl acrylamide) (ALG-g-P(NIPAM86-co-NtBAM14)-g-PNIPAM) copolymer thermoresponsive hydrogel, reinforced by substituting part of the 5 wt% aqueous formulation by small amounts of Poly(acrylic acid)-g-P(boc-L-Lysine) (PAA-g-P(b-LL)) graft copolymer (up to 1 wt%). [...] Read more.
In this article, we report on the alginate heterografted by Poly(N-isopropyl acrylamide-co-N-tert-butyl acrylamide) and Poly(N-isopropyl acrylamide) (ALG-g-P(NIPAM86-co-NtBAM14)-g-PNIPAM) copolymer thermoresponsive hydrogel, reinforced by substituting part of the 5 wt% aqueous formulation by small amounts of Poly(acrylic acid)-g-P(boc-L-Lysine) (PAA-g-P(b-LL)) graft copolymer (up to 1 wt%). The resulting complex hydrogels were explored by oscillatory and steady-state shear rheology. The thermoresponsive profile of the formulations were affected remarkably by increasing the PAA-g-P(b-LL) component of the polymer blend. Especially, the sol-gel behavior altered to soft gel–strong gel behavior due to the formation of a semi-interpenetrating network based on the hydrophobic self-organization of the PAA-g-P(b-LL). In addition, the critical characteristics, namely Tc,thermothickening (temperature above which the viscosity increases steeply) and ΔT (transition temperature window), shifted and broadened to lower temperatures, respectively, due to the influence of the hydrophobic side chains P(b-LL) on the LCST of the PNIPAM-based grafted chains of the alginate. The effect of ionic strength was also examined, showing that this is another important factor affecting the thermoresponsiveness of the hydrogel. Again, the thermoresponsive profile of the hydrogel was changed significantly by the presence of salt. All the formulations showed self-healing capability and tolerance injectability, suitable for potential bioapplications in living bodies. Full article
(This article belongs to the Special Issue Advanced Study on Polymer-Based Hydrogels)
Show Figures

Figure 1

Back to TopTop