Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,690)

Search Parameters:
Keywords = nano-rods

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2634 KiB  
Article
Optimized SILAR Growth of Vertically Aligned ZnO Nanorods for Low-Temperature Acetone Detection
by Brahim Ydir, Amine Ajdour, Mouad Soumane, Iulia Antohe, Gabriel Socol, Luiza-Izabela Toderascu, Driss Saadaoui, Imade Choulli, Radouane Leghrib and Houda Lahlou
Chemosensors 2025, 13(8), 289; https://doi.org/10.3390/chemosensors13080289 - 5 Aug 2025
Viewed by 56
Abstract
Vertically oriented morphologies of the semiconducting metal oxide (SMO) surface provide a simple and effective means of enhancing gas sensor performance. We successfully synthesized explicitly aligned ZnO nanorods using a simple automated SILAR technique to improve acetone detection. In this work, we found [...] Read more.
Vertically oriented morphologies of the semiconducting metal oxide (SMO) surface provide a simple and effective means of enhancing gas sensor performance. We successfully synthesized explicitly aligned ZnO nanorods using a simple automated SILAR technique to improve acetone detection. In this work, we found that vertically oriented morphologies, such as well-aligned ZnO nanorods, can significantly enhance the sensor response due to an increase in specific active area and electron mobility, allowing a faster response to changes in the gas environment. The optimal operating temperature for our ZnO nanorod-based sensors in detecting acetone gas is 260 °C. At this temperature, the sensors exhibit a 96% response with a rapid response time of just 3 s. The improved sensing performance is attributed to both electronic and chemical sensitization mechanisms, which enhance the formation of active sites and shorten electron diffusion paths. Full article
(This article belongs to the Special Issue Functionalized Material-Based Gas Sensing)
Show Figures

Figure 1

17 pages, 2112 KiB  
Article
Direct Detection of Orthoflavivirus via Gold Nanorod Plasmon Resonance
by Erica Milena de Castro Ribeiro, Bruna de Paula Dias, Cyntia Silva Ferreira, Samara Mayra Soares Alves dos Santos, Rajiv Gandhi Gopalsamy, Estefânia Mara do Nascimento Martins, Cintia Lopes de Brito Magalhães, Flavio Guimarães da Fonseca, Luiz Felipe Leomil Coelho, Cristiano Fantini, Luiz Orlando Ladeira, Lysandro Pinto Borges and Breno de Mello Silva
Sensors 2025, 25(15), 4775; https://doi.org/10.3390/s25154775 - 3 Aug 2025
Viewed by 224
Abstract
Dengue, Zika, yellow fever, chikungunya, and Mayaro arboviruses represent an increasing threat to public health because of the serious infections they cause annually in many countries. Serological diagnosis of these viruses is challenging, making the development of new diagnostic strategies imperative. In this [...] Read more.
Dengue, Zika, yellow fever, chikungunya, and Mayaro arboviruses represent an increasing threat to public health because of the serious infections they cause annually in many countries. Serological diagnosis of these viruses is challenging, making the development of new diagnostic strategies imperative. In this study, we investigated the effectiveness of gold nanorods (GNRs) functionalized with specific anti-dengue and anti-orthoflavivirus antibodies in detecting viral particles. GNRs were created with a length-to-width ratio of up to 5.5, a size of 71.4 ± 6.5 nm, and a light absorption peak at 927 nm, and they were treated with 4 mM polyethyleneimine. These GNRs were attached to a small amount of monoclonal antibodies that target flaviviruses, and the viral particles were detected by measuring the localized surface plasmon resonance using an UV-Vis/NIR spectrometer. The tests found Orthoflavivirus dengue and Orthoflavivirus zikaense in diluted human serum and ground-up mosquitoes, with the lowest detectable amount being 100 PFU/mL. The GNRs described in this study can be used to enhance flavivirus diagnostic tests or to develop new, faster, and more accurate diagnostic techniques. Additionally, the functionalized GNRs presented here are promising for supporting virological surveillance studies in mosquitoes. Our findings highlight a fast and highly sensitive method for detecting Orthoflavivirus in both human and mosquito samples, with a detection limit as low as 100 PFU/mL. Full article
(This article belongs to the Section Biosensors)
Show Figures

Graphical abstract

29 pages, 5040 KiB  
Article
The Investigation of a Biocide-Free Antifouling Coating on Naval Steels Under Both Simulated and Actual Seawater Conditions
by Polyxeni Vourna, Pinelopi P. Falara and Nikolaos D. Papadopoulos
Processes 2025, 13(8), 2448; https://doi.org/10.3390/pr13082448 - 1 Aug 2025
Viewed by 385
Abstract
This study developed a water-soluble antifouling coating to protect ship hulls against corrosion and fouling without the usage of a primer. The coating retains its adhesion to the steel substrate and reduces corrosion rates compared to those for uncoated specimens. The coating’s protective [...] Read more.
This study developed a water-soluble antifouling coating to protect ship hulls against corrosion and fouling without the usage of a primer. The coating retains its adhesion to the steel substrate and reduces corrosion rates compared to those for uncoated specimens. The coating’s protective properties rely on the interaction of conductive polyaniline (PAni) nanorods, magnetite (Fe3O4) nanoparticles, and graphene oxide (GO) sheets modified with titanium dioxide (TiO2) nanoparticles. The PAni/Fe3O4 nanocomposite improves the antifouling layer’s out-of-plane conductivity, whereas GO increases its in-plane conductivity. The anisotropy in the conductivity distribution reduces the electrostatic attraction and limits primary bacterial and pathogen adsorption. TiO2 augments the conductivity of the PAni nanorods, enabling visible light to generate H2O2. The latter decomposes into H2O and O2, rendering the coating environmentally benign. The coating acts as an effective barrier with limited permeability to the steel surface, demonstrating outstanding durability for naval steel over extended periods. Full article
(This article belongs to the Special Issue Metal Material, Coating and Electrochemistry Technology)
Show Figures

Figure 1

16 pages, 4629 KiB  
Article
Development of a Reflective Electrochromic Zinc-Ion Battery Device for Infrared Emissivity Control Using Self-Doped Polyaniline Films
by Yi Wang, Ze Wang, Tong Feng, Jiandong Chen, Enkai Lin and An Xie
Polymers 2025, 17(15), 2110; https://doi.org/10.3390/polym17152110 - 31 Jul 2025
Viewed by 229
Abstract
Electrochromic devices (ECDs) capable of modulating both visible color and infrared (IR) emissivity are promising for applications in smart thermal camouflage and multifunctional displays. However, conventional transmissive ECDs suffer from limited IR modulation due to the low IR transmittance of transparent electrodes. Here, [...] Read more.
Electrochromic devices (ECDs) capable of modulating both visible color and infrared (IR) emissivity are promising for applications in smart thermal camouflage and multifunctional displays. However, conventional transmissive ECDs suffer from limited IR modulation due to the low IR transmittance of transparent electrodes. Here, we report a reflection-type electrochromic zinc-ion battery (HWEC-ZIB) using a self-doped polyaniline nanorod film (SP(ANI-MA)) as the active layer. By positioning the active material at the device surface, this structure avoids interference from transparent electrodes and enables broadband and efficient IR emissivity tuning. To prevent electrolyte-induced IR absorption, a thermal lamination encapsulation method is employed. The optimized device achieves emissivity modulation ranges of 0.28 (3–5 μm) and 0.19 (8–14 μm), delivering excellent thermal camouflage performance. It also exhibits a visible color change from earthy yellow to deep green, suitable for various natural environments. In addition, the HWEC-ZIB shows a high areal capacity of 72.15 mAh cm−2 at 0.1 mA cm−2 and maintains 80% capacity after 5000 cycles, demonstrating outstanding electrochemical stability. This work offers a versatile device platform integrating IR stealth, visual camouflage, and energy storage, providing a promising solution for next-generation adaptive camouflage and defense-oriented electronics. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

21 pages, 7973 KiB  
Article
Enhanced Response of ZnO Nanorod-Based Flexible MEAs for Recording Ischemia-Induced Neural Activity in Acute Brain Slices
by José Ignacio Del Río De Vicente, Valeria Marchetti, Ivano Lucarini, Elena Palmieri, Davide Polese, Luca Montaina, Francesco Maita, Jan Kriska, Jana Tureckova, Miroslava Anderova and Luca Maiolo
Nanomaterials 2025, 15(15), 1173; https://doi.org/10.3390/nano15151173 - 30 Jul 2025
Viewed by 340
Abstract
Brain ischemia is a severe condition caused by reduced cerebral blood flow, leading to the disruption of ion gradients in brain tissue. This imbalance triggers spreading depolarizations, which are waves of neuronal and glial depolarization propagating through the gray matter. Microelectrode arrays (MEAs) [...] Read more.
Brain ischemia is a severe condition caused by reduced cerebral blood flow, leading to the disruption of ion gradients in brain tissue. This imbalance triggers spreading depolarizations, which are waves of neuronal and glial depolarization propagating through the gray matter. Microelectrode arrays (MEAs) are essential for real-time monitoring of these electrophysiological processes both in vivo and in vitro, but their sensitivity and signal quality are critical for accurate detection of extracellular brain activity. In this study, we evaluate the performance of a flexible microelectrode array based on gold-coated zinc oxide nanorods (ZnO NRs), referred to as nano-fMEA, specifically for high-fidelity electrophysiological recording under pathological conditions. Acute mouse brain slices were tested under two ischemic models: oxygen–glucose deprivation (OGD) and hyperkalemia. The nano-fMEA demonstrated significant improvements in event detection rates and in capturing subtle fluctuations in neural signals compared to flat fMEAs. This enhanced performance is primarily attributed to an optimized electrode–tissue interface that reduces impedance and improves charge transfer. These features enabled the nano-fMEA to detect weak or transient electrophysiological events more effectively, making it a valuable platform for investigating neural dynamics during metabolic stress. Overall, the results underscore the promise of ZnO NRs in advancing electrophysiological tools for neuroscience research. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

16 pages, 9415 KiB  
Article
Growth and Characterization of Ga2O3 for Power Nanodevices Using Metal Nanoparticle Catalysts
by Badriyah Alhalaili, Antony Joseph, Latifa Al-Hajji, Naser M. Ali, Sowmya Dean and Ahmad A. Al-Duweesh
Nanomaterials 2025, 15(15), 1169; https://doi.org/10.3390/nano15151169 - 29 Jul 2025
Viewed by 288
Abstract
A simple and inexpensive thermal oxidation process is used to grow β-Ga2O3 oxide (β-Ga2O3) thin films/nanorods on a c-plane (0001) sapphire substrate using Ag/Au catalysts. The effect of these catalysts on the [...] Read more.
A simple and inexpensive thermal oxidation process is used to grow β-Ga2O3 oxide (β-Ga2O3) thin films/nanorods on a c-plane (0001) sapphire substrate using Ag/Au catalysts. The effect of these catalysts on the growth mechanism of Ga2O3 was studied by different characterization techniques, including X-ray diffraction analysis (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray analysis (EDX). The XRD results of the grown Ga2O3 on a sapphire substrate show three sharp diffraction peaks located at 19.31°, 38.70° and 59.38° corresponding to the 2¯01, 4¯02 and 6¯03 planes of β-Ga2O3. Field Emission Scanning Electron Microscope (FESEM) analysis showed the formation of longer and denser Ga2O3 nanowires at higher temperatures, especially in the presence of silver nanoparticles as catalysts. Full article
(This article belongs to the Special Issue Preparation and Characterization of Nanomaterials)
Show Figures

Figure 1

15 pages, 4461 KiB  
Review
Cocatalyst-Tipped One-Dimensional Nanorods for Enhanced Photocatalytic Hydrogen Production
by Longlu Wang, Kun Wang, Junkang Sun, Chen Gu, Yixiang Luo and Shiyan Wang
Catalysts 2025, 15(8), 711; https://doi.org/10.3390/catal15080711 - 26 Jul 2025
Viewed by 365
Abstract
The controllable loading of a cocatalyst on a semiconductor is the key to further improving the efficiency and stability of visible-light photocatalytic hydrogen production. It is of great practical significance to load a cocatalyst onto a semiconductor spatially separated to realize space charge [...] Read more.
The controllable loading of a cocatalyst on a semiconductor is the key to further improving the efficiency and stability of visible-light photocatalytic hydrogen production. It is of great practical significance to load a cocatalyst onto a semiconductor spatially separated to realize space charge separation for efficient photocatalytic hydrogen evolution. The inherent anisotropic morphology of one-dimensional nanorods can provide two spatially separated locations at the tip and side surfaces of the nanorods. In this review, we systematically summarize non-centrosymmetric and centrosymmetric cocatalyst-tipped one-dimensional (1D) photocatalysts, including their preparation method, catalytic hydrogen production performance, and catalytic mechanism. This review will bring new vitality to the design, preparation, and application of cocatalyst-tipped one-dimensional nanorods. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Figure 1

81 pages, 10454 KiB  
Review
Glancing Angle Deposition in Gas Sensing: Bridging Morphological Innovations and Sensor Performances
by Shivam Singh, Kenneth Christopher Stiwinter, Jitendra Pratap Singh and Yiping Zhao
Nanomaterials 2025, 15(14), 1136; https://doi.org/10.3390/nano15141136 - 21 Jul 2025
Viewed by 390
Abstract
Glancing Angle Deposition (GLAD) has emerged as a versatile and powerful nanofabrication technique for developing next-generation gas sensors by enabling precise control over nanostructure geometry, porosity, and material composition. Through dynamic substrate tilting and rotation, GLAD facilitates the fabrication of highly porous, anisotropic [...] Read more.
Glancing Angle Deposition (GLAD) has emerged as a versatile and powerful nanofabrication technique for developing next-generation gas sensors by enabling precise control over nanostructure geometry, porosity, and material composition. Through dynamic substrate tilting and rotation, GLAD facilitates the fabrication of highly porous, anisotropic nanostructures, such as aligned, tilted, zigzag, helical, and multilayered nanorods, with tunable surface area and diffusion pathways optimized for gas detection. This review provides a comprehensive synthesis of recent advances in GLAD-based gas sensor design, focusing on how structural engineering and material integration converge to enhance sensor performance. Key materials strategies include the construction of heterojunctions and core–shell architectures, controlled doping, and nanoparticle decoration using noble metals or metal oxides to amplify charge transfer, catalytic activity, and redox responsiveness. GLAD-fabricated nanostructures have been effectively deployed across multiple gas sensing modalities, including resistive, capacitive, piezoelectric, and optical platforms, where their high aspect ratios, tailored porosity, and defect-rich surfaces facilitate enhanced gas adsorption kinetics and efficient signal transduction. These devices exhibit high sensitivity and selectivity toward a range of analytes, including NO2, CO, H2S, and volatile organic compounds (VOCs), with detection limits often reaching the parts-per-billion level. Emerging innovations, such as photo-assisted sensing and integration with artificial intelligence for data analysis and pattern recognition, further extend the capabilities of GLAD-based systems for multifunctional, real-time, and adaptive sensing. Finally, current challenges and future research directions are discussed, emphasizing the promise of GLAD as a scalable platform for next-generation gas sensing technologies. Full article
Show Figures

Graphical abstract

14 pages, 1928 KiB  
Article
Ultraviolet Photocatalytic Performance of ZnO Nanorods Selectively Deposited with Bi2O3 Quantum Dots
by Baohui Lou, Chi Zhang, Xianhao Wu, Ying Liu, Xiangdong Feng, Feipeng Huang, Bowen Zhao and Zhengwang Zhu
Catalysts 2025, 15(7), 695; https://doi.org/10.3390/catal15070695 - 21 Jul 2025
Viewed by 341
Abstract
A strong interaction between Bi3+ and ZnO was used to successfully sensitize ZnO nanorods with quantum dots (QDs) of Bi2O3 through three different strategies. Although the Bi2O3 QDs had similar particle size distributions, their photocatalytic performance [...] Read more.
A strong interaction between Bi3+ and ZnO was used to successfully sensitize ZnO nanorods with quantum dots (QDs) of Bi2O3 through three different strategies. Although the Bi2O3 QDs had similar particle size distributions, their photocatalytic performance varied significantly, prompting the investigation of factors beyond particle size. The study revealed that the photochemical method selectively deposited Bi2O3 QDs onto electron-rich ZnO sites, providing a favorable pathway for efficient electron–hole separation and transfer. Consequently, abundant h+ and ·OH radicals were generated, which effectively degraded Rhodamine B (RhB). As demonstrated in the RhB degradation experiments, the Bi2O3/ZnO nanorod catalyst achieved an 89.3% degradation rate within 120 min, significantly outperforming catalysts with other morphologies. The photoluminescence (PL) and time-resolved photoluminescence (TRPL) results indicated that the Bi2O3/ZnO heterostructure constructed an effective interface to facilitate the spatial separation of photogenerated charge carriers, which effectively prolonged their lifetime. The electron paramagnetic resonance (EPR) results confirmed that the ·OH radicals played a key role in the degradation process. Full article
(This article belongs to the Special Issue Advanced Catalytic Processes for Wastewater Treatment)
Show Figures

Graphical abstract

11 pages, 1778 KiB  
Communication
Ultra-Sensitive Detection of Chloramphenicol by CdS@NiMoS Nanorods-Based Photoelectrochemical Aptasensor
by Hebin Sun, Yimeng Sun, Tong Qi, Zhenyu Wang, Jianlong Zhao and Lijuan Liang
Biosensors 2025, 15(7), 454; https://doi.org/10.3390/bios15070454 - 14 Jul 2025
Viewed by 383
Abstract
A novel nanomaterial photoelectrochemical aptamer sensor based on CdS@NiMoS heterojunction nanocomposites was constructed for highly sensitive detection of chloramphenicol (CAP) in antibiotic residues. Through optimization of the material synthesis process, the optimal doping ratio of MoS2 to Ni3+ (70% MoS2 [...] Read more.
A novel nanomaterial photoelectrochemical aptamer sensor based on CdS@NiMoS heterojunction nanocomposites was constructed for highly sensitive detection of chloramphenicol (CAP) in antibiotic residues. Through optimization of the material synthesis process, the optimal doping ratio of MoS2 to Ni3+ (70% MoS2 and 10% Ni3+) was identified, which significantly enhanced the photogenerated carrier separation efficiency. In thin-film preparation, comparative analysis of four film-forming methods led to the determination of an optimal process with stability. To achieve highly specific CAP detection, the nanocomposite chip was integrated with nucleic acid aptamer biorecognition elements within a standard three-electrode detection system. Experimental results demonstrated a linear response (R2 = 0.998) in the 0.1–2 μM concentration range, with a detection limit of 3.69 nM (3σ/S). Full article
(This article belongs to the Special Issue Nanotechnology Biosensing in Bioanalysis and Beyond)
Show Figures

Figure 1

29 pages, 7799 KiB  
Article
Substrate Flexibility and Metal Deposition Method Effects on Piezoelectric-Enhanced SERS in Metal–ZnO Nanorod Nanocomposites
by Nguyen Thi Quynh Nhu, Le Tran Thanh Thi, Le Vu Tuan Hung and Vincent K. S. Hsiao
Materials 2025, 18(14), 3299; https://doi.org/10.3390/ma18143299 - 13 Jul 2025
Viewed by 457
Abstract
This study investigates the effects of substrate flexibility and metal deposition methods on piezoelectric-enhanced Surface-Enhanced Raman Scattering (SERS) in metal-deposited ZnO nanorod (NR) nanocomposites (NCPs). ZnO NRs were grown on both rigid (ITO–glass) and flexible (ITO-PET) substrates, followed by gold (Au) deposition by [...] Read more.
This study investigates the effects of substrate flexibility and metal deposition methods on piezoelectric-enhanced Surface-Enhanced Raman Scattering (SERS) in metal-deposited ZnO nanorod (NR) nanocomposites (NCPs). ZnO NRs were grown on both rigid (ITO–glass) and flexible (ITO-PET) substrates, followed by gold (Au) deposition by pulsed-laser-induced photolysis (PLIP) or silver (Ag) deposition by thermal evaporation. Structural analysis revealed that ZnO NRs on flexible substrates exhibited smaller diameters (60–80 nm vs. 80–100 nm on glass), a higher density, and diverse orientations that enhanced piezoelectric responsiveness. Optical characterization showed distinct localized surface plasmon resonance (LSPR) peaks at 420 nm for Ag and 525 nm for Au systems. SERS measurements demonstrated that Ag-ZnO NCPs achieved superior detection limits (10−9 M R6G) with enhancement factors of 108–109, while Au-ZnO NCPs reached 10−8 M detection limits. Mechanical bending of flexible substrates induced dramatic signal enhancement (50–100-fold for Au-ZnO/PET and 2–3-fold for Ag-ZnO/PET), directly confirming piezoelectric enhancement mechanisms. This work establishes quantitative structure–property relationships in piezoelectric-enhanced SERS and provides design principles for high-performance flexible sensors. Full article
Show Figures

Figure 1

18 pages, 5167 KiB  
Article
Highly Efficient Photocatalytic Degradation of Tetracycline Antibiotics by BiPO4/g-C3N4: A Novel Heterojunction Nanocomposite with Nanorod/Stacked-like Nanosheets Structure
by Xin Zhu, Moye Luo, Cheng Sun, Jinlin Jiang and Yang Guo
Molecules 2025, 30(14), 2905; https://doi.org/10.3390/molecules30142905 - 9 Jul 2025
Viewed by 261
Abstract
The use of semiconductors for photocatalytic degradation of organic pollutants has garnered considerable attention as a promising solution to environmental challenges. Compared to TiO2, BiPO4 exhibits superior photocatalytic activity. However, its large band gap restricts its light absorption to the [...] Read more.
The use of semiconductors for photocatalytic degradation of organic pollutants has garnered considerable attention as a promising solution to environmental challenges. Compared to TiO2, BiPO4 exhibits superior photocatalytic activity. However, its large band gap restricts its light absorption to the UV region. One effective technique for extending BiPO4’s absorption wavelength into the visible spectrum is the construction of the heterostructure. This study aimed to synthesize monodisperse BiPO4 nanorods via a solvothermal approach and fabricate BiPO4/g-C3N4 heterojunctions with varying loadings through in situ deposition. Tetracyclines were employed as the target pollutant to evaluate the photocatalytic performance and stability of the prepared materials. The results indicated that 5 wt% of composite exhibited better photocatalytic performance than single catalysts, which showed the highest photodegradation efficiency of approximately 98% for tetracyclines. The prepared bi-photocatalyst presented favorable stability under sunlight irradiation, the photocatalytic activity of which remained almost unchanged after four cycles. The enhanced photocatalytic activity was attributed to the synergistic effect. Additionally, the possible degradation mechanism was elucidated utilizing the semiconductor energy band theory. Overall, this work presents new perspectives on synthesizing innovative and efficient visible-light-driven photocatalysts. It also offers a mechanistic analysis approach by integrating theoretical calculations with experimental observations. Full article
(This article belongs to the Special Issue Advances in Photocatalytic Degradation of Organic Pollutants)
Show Figures

Figure 1

16 pages, 9957 KiB  
Article
Analysis and Optimization of Rotationally Symmetric Au-Ag Alloy Nanoparticles for Refractive Index Sensing Properties Using T-Matrix Method
by Long Cheng, Shuhong Gong and Paerhatijiang Tuersun
Nanomaterials 2025, 15(13), 1052; https://doi.org/10.3390/nano15131052 - 6 Jul 2025
Viewed by 380
Abstract
Previous investigations devoted to non-spherical nanoparticles for biosensing have primarily addressed two hot topics, namely, finding nanoparticles with the best shape for refractive index sensing properties and the optimization of size parameters. In this study, based on these hot topics, Au-Ag alloy nanoparticles [...] Read more.
Previous investigations devoted to non-spherical nanoparticles for biosensing have primarily addressed two hot topics, namely, finding nanoparticles with the best shape for refractive index sensing properties and the optimization of size parameters. In this study, based on these hot topics, Au-Ag alloy nanoparticles with excellent optical properties were selected as the research object. Targeting rotationally symmetric Au-Ag alloy nanoparticles for biosensing applications, the complex media function correction model and T-matrix approach were used to systematically analyze the variation patterns of extinction properties, refractive index sensitivity, full width at half maximum, and figure of merit of three rotationally symmetric Au-Ag alloy nanoparticles with respect to the size of the particles and the Au molar fraction. In addition, we optimized the figure of merit to obtain the best size parameters and Au molar fractions for the three rotationally symmetric Au-Ag alloy nanoparticles. Finally, the range of dimensional parameters corresponding to a figure of merit greater than 98% of its maximum value was calculated. The results show that the optimized Au-Ag alloy nanorods exhibit a refractive index sensitivity of 395.2 nm/RIU, a figure of merit of 7.16, and a wide range of size parameters. Therefore, the optimized Au-Ag alloy nanorods can be used as high-performance biosensors. Furthermore, this study provides theoretical guidance for the application and preparation of rotationally symmetric Au-Ag alloy nanoparticles in biosensing. Full article
(This article belongs to the Special Issue Theoretical Calculation Study of Nanomaterials: 2nd Edition)
Show Figures

Figure 1

19 pages, 3961 KiB  
Article
Bernoulli Principle in Ferroelectrics
by Anna Razumnaya, Yuri Tikhonov, Dmitrii Naidenko, Ekaterina Linnik and Igor Lukyanchuk
Nanomaterials 2025, 15(13), 1049; https://doi.org/10.3390/nano15131049 - 6 Jul 2025
Viewed by 346
Abstract
Ferroelectric materials, characterized by spontaneous electric polarization, exhibit remarkable parallels with fluid dynamics, where polarization flux behaves similarly to fluid flow. Understanding polarization distribution in confined geometries at the nanoscale is crucial for both fundamental physics and technological applications. Here, we show that [...] Read more.
Ferroelectric materials, characterized by spontaneous electric polarization, exhibit remarkable parallels with fluid dynamics, where polarization flux behaves similarly to fluid flow. Understanding polarization distribution in confined geometries at the nanoscale is crucial for both fundamental physics and technological applications. Here, we show that the classical Bernoulli principle, which describes the conservation of the energy flux along velocity streamlines in a moving fluid, can be extended to the conservation of polarization flux in ferroelectric nanorods with varying cross-sectional areas. Geometric constrictions lead to an increase in polarization, resembling fluid acceleration in a narrowing pipe, while expansions cause a decrease. Beyond a critical expansion, phase separation occurs, giving rise to topological polarization structures such as polarization bubbles, curls and Hopfions. This effect extends to soft ferroelectrics, including ferroelectric nematic liquid crystals, where polarization flux conservation governs the formation of complex mesoscale states. Full article
(This article belongs to the Special Issue Research on Ferroelectric and Spintronic Nanoscale Materials)
Show Figures

Figure 1

22 pages, 4229 KiB  
Article
CO2 Methanation over Ni Catalysts Supported on Pr-Doped CeO2 Nanostructures Synthesized via Hydrothermal and Co-Precipitation Methods
by Anastasios I. Tsiotsias, Nikolaos D. Charisiou, Aasif A. Dabbawala, Aseel G. S. Hussien, Victor Sebastian, Steven J. Hinder, Mark A. Baker, Samuel Mao, Kyriaki Polychronopoulou and Maria A. Goula
Nanomaterials 2025, 15(13), 1022; https://doi.org/10.3390/nano15131022 - 1 Jul 2025
Viewed by 436
Abstract
The synthesis method of the Pr-doped CeO2 catalyst support in Ni/Pr-CeO2 CO2 methanation catalysts is varied by changing the type/basicity of the precipitating solution and the hydrothermal treatment temperature. The use of highly basic NaOH as the precipitating agent and [...] Read more.
The synthesis method of the Pr-doped CeO2 catalyst support in Ni/Pr-CeO2 CO2 methanation catalysts is varied by changing the type/basicity of the precipitating solution and the hydrothermal treatment temperature. The use of highly basic NaOH as the precipitating agent and elevated hydrothermal treatment temperature (100 or 180 °C) leads to the formation of structured Pr-doped CeO2 nanorods and nanocubes, respectively, whereas the use of a mildly basic NH3-based buffer in the absence of hydrothermal treatment (i.e., co-precipitation) leads to an unstructured mesoporous morphology with medium-sized supported Ni nanoparticles. The latter catalyst (Ni/CP_NH3) displays a high surface area, high population of moderately strong basic sites, high oxygen vacancy population, and favorable Ni dispersion. These properties lead to a higher catalytic activity for CO2 methanation (75% CO2 conversion and 99% CH4 selectivity at 350 °C) compared to the catalysts with structured nanorod and nanocube support morphologies, which are found to contain a significant amount of leftover Na from the synthesis procedure that can act as a catalyst inhibitor. In addition, the best-performing Ni/CP_NH3 catalyst is shown to be highly stable, with minimal deactivation during time-on-stream operation. Full article
Show Figures

Graphical abstract

Back to TopTop