Bernoulli Principle in Ferroelectrics
Abstract
1. Introduction
2. Materials and Methods
2.1. Ginzburg–Landau Approach
2.2. Phase-Field Simulations
3. Results
3.1. Bernoulli Effect in Fluids
3.2. Bernoulli Effect in Ferroelectrics
3.3. Modeling of the Bernoulli Effect in Ferroelectrics
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GLD | Ginzburg–Landau–Devonshire |
GL | Ginzburg–Landau |
Appendix A. Phase-Field Modeling
Appendix A.1. Functional
Appendix A.2. Material Coefficients
Appendix A.3. Phase-Field Modeling
References
- Bernoulli, D. Hydrodynamica, Sive, De Viribus et Motibus Fluidorum Commentarii; Sumptibus Johannis Reinholdi Dulseckeri, Typis Joh. Henr. Deckeri: Strasbourg, France, 1738. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Fluid Mechanics; Elsevier: Amsterdam, The Netherlands, 1987; Volume 6. [Google Scholar]
- Batchelor, G.K. An Introduction to Fluid Dynamics; Cambridge University Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Das, S.; Hong, Z.; McCarter, M.; Shafer, P.; Shao, Y.T.; Muller, D.; Martin, L.; Ramesh, R. A new era in ferroelectrics. APL Mater. 2020, 8, 120902. [Google Scholar] [CrossRef]
- Stephanovich, V.; Luk’yanchuk, I.; Karkut, M. Domain proximity and ferroelectric transition in ferro-paraelectric superlattices. Ferroelectrics 2003, 291, 169–175. [Google Scholar] [CrossRef]
- Kornev, I.; Fu, H.; Bellaiche, L. Ultrathin films of ferroelectric solid solutions under a residual depolarizing field. Phys. Rev. Lett. 2004, 93, 196104. [Google Scholar] [CrossRef] [PubMed]
- Zubko, P.; Jecklin, N.; Torres-Pardo, A.; Aguado-Puente, P.; Gloter, A.; Lichtensteiger, C.; Junquera, J.; Stéphan, O.; Triscone, J.M. Electrostatic coupling and local structural distortions at interfaces in ferroelectric/paraelectric superlattices. Nano Lett. 2012, 12, 2846–2851. [Google Scholar] [CrossRef]
- Yadav, A.; Nelson, C.; Hsu, S.; Hong, Z.; Clarkson, J.; Schlepütz, C.; Damodaran, A.; Shafer, P.; Arenholz, E.; Dedon, L.; et al. Observation of polar vortices in oxide superlattices. Nature 2016, 530, 198. [Google Scholar] [CrossRef]
- Das, S.; Tang, Y.; Hong, Z.; Gonçalves, M.; McCarter, M.; Klewe, C.; Nguyen, K.; Gómez-Ortiz, F.; Shafer, P.; Arenholz, E.; et al. Observation of room-temperature polar skyrmions. Nature 2019, 568, 368–372. [Google Scholar] [CrossRef]
- Stachiotti, M.; Sepliarsky, M. Toroidal ferroelectricity in PbTiO3 nanoparticles. Phys. Rev. Lett. 2011, 106, 137601. [Google Scholar] [CrossRef]
- Guo, X.; Zhou, L.; Roul, B.; Wu, Y.; Huang, Y.; Das, S.; Hong, Z. Theoretical understanding of polar topological phase transitions in functional oxide heterostructures: A review. Small Methods 2022, 6, 2200486. [Google Scholar] [CrossRef]
- Junquera, J.; Nahas, Y.; Prokhorenko, S.; Bellaiche, L.; Íñiguez, J.; Schlom, D.G.; Chen, L.Q.; Salahuddin, S.; Muller, D.A.; Martin, L.W.; et al. Topological phases in polar oxide nanostructures. Rev. Mod. Phys. 2023, 95, 025001. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, Y.; Zhu, Y.; Ma, X. Entangled polarizations in ferroelectrics: A focused review of polar topologies. Acta Mater. 2023, 243, 118485. [Google Scholar] [CrossRef]
- Luk’yanchuk, I.; Razumnaya, A.; Kondovych, S.; Tikhonov, Y.; Vinokur, V.M. Topological ferroelectric chirality. arXiv 2024, arXiv:2406.19728. [Google Scholar]
- Han, H.; Ma, J.; Wang, J.; Xu, E.; Xu, Z.; Huang, H.; Shen, Y.; Nan, C.W.; Ma, J. Polar topological materials and devices: Prospects and challenges. Prog. Mater. Sci. 2025, 153, 101489. [Google Scholar] [CrossRef]
- Gruverman, A.; Alexe, M.; Meier, D. Piezoresponse force microscopy and nanoferroic phenomena. Nat. Commun. 2019, 10, 1661. [Google Scholar] [CrossRef] [PubMed]
- Cabral, M.J.; Chen, Z.; Liao, X. Scanning transmission electron microscopy for advanced characterization of ferroic materials. Microstructure 2023, 3, 2023040. [Google Scholar] [CrossRef]
- Karpov, D.; Liu, Z.; dos Santos Rolo, T.; Harder, R.; Balachandran, P.; Xue, D.; Lookman, T.; Fohtung, E. Three-dimensional imaging of vortex structure in a ferroelectric nanoparticle driven by an electric field. Nat. Commun. 2017, 8, 280. [Google Scholar] [CrossRef]
- Naumov, I.I.; Bellaiche, L.; Fu, H. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 2004, 432, 737. [Google Scholar] [CrossRef]
- Prosandeev, S.; Bellaiche, L. Order parameter in complex dipolar structures: Microscopic modeling. Phys. Rev. B 2008, 77, 060101. [Google Scholar] [CrossRef]
- Lahoche, L.; Luk’yanchuk, I.; Pascoli, G. Stability of vortex phases in ferroelectric easy-plane nano-cylinders. Integr. Ferroelectr. 2008, 99, 60–66. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, B.; Cao, W.; Fohtung, E.; Lookman, T. Enhanced energy storage with polar vortices in ferroelectric nanocomposites. Phys. Rev. Appl. 2017, 8, 034014. [Google Scholar] [CrossRef]
- Lich, L.V.; Nguyen, T.G.; Dinh, V.H.; Phan, M.H. Theoretical studies on controlling the chirality of helical polarization vortices in ferroelectric nanowires: Implications for reconfigurable electronic devices. ACS Appl. Nano Mater. 2022, 5, 16509–16518. [Google Scholar] [CrossRef]
- Kondovych, S.; Pavlenko, M.; Tikhonov, Y.; Razumnaya, A.; Lukyanchuk, I. Vortex states in a PbTiO3 ferroelectric cylinder. SciPost Phys. 2023, 14, 056. [Google Scholar] [CrossRef]
- Moffatt, H.K.; Zaslavsky, G.; Comte, P.; Tabor, M. Topological Aspects of the Dynamics of Fluids and Plasmas; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1992; Volume 218. [Google Scholar]
- Arnold, V.I.; Khesin, B.A. Topological Methods in Hydrodynamics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2021; Volume 125. [Google Scholar]
- Varghese, J.; Whatmore, R.W.; Holmes, J.D. Ferroelectric nanoparticles, wires and tubes: Synthesis, characterisation and applications. J. Mater. Chem. C 2013, 1, 2618–2638. [Google Scholar] [CrossRef]
- Nishikawa, H.; Shiroshita, K.; Higuchi, H.; Okumura, Y.; Haseba, Y.; Yamamoto, S.i.; Sago, K.; Kikuchi, H. A fluid liquid-crystal material with highly polar order. Adv. Mater. 2017, 29, 1702354. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Korblova, E.; Dong, D.; Wei, X.; Shao, R.; Radzihovsky, L.; Glaser, M.A.; Maclennan, J.E.; Bedrov, D.; Walba, D.M.; et al. First-principles experimental demonstration of ferroelectricity in a thermotropic nematic liquid crystal: Polar domains and striking electro-optics. Proc. Natl. Acad. Sci. USA 2020, 117, 14021–14031. [Google Scholar] [CrossRef] [PubMed]
- Kumari, P.; Basnet, B.; Lavrentovich, M.O.; Lavrentovich, O.D. Chiral ground states of ferroelectric liquid crystals. Science 2024, 383, 1364–1368. [Google Scholar] [CrossRef]
- Lines, M.E.; Glass, A.M. Principles and Applications of Ferroelectrics and Related Materials; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Rabe, K.M.; Ahn, C.H.; Triscone, J.M. Physics of Ferroelectrics: A Modern Perspective; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Strukov, B.A.; Levanyuk, A.P. Ferroelectric Phenomena in Crystals: Physical Foundations; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Mokrỳ, P.; Sluka, T. Identification of defect distribution at ferroelectric domain walls from evolution of nonlinear dielectric response during the aging process. Phys. Rev. B 2016, 93, 064114. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjetunion 1935, 8, 101–114. [Google Scholar]
- Kittel, C. Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev. 1946, 70, 965. [Google Scholar] [CrossRef]
- Bratkovsky, A.; Levanyuk, A. Abrupt appearance of the domain pattern and fatigue of thin ferroelectric films. Phys. Rev. Lett. 2000, 84, 3177–3180. [Google Scholar] [CrossRef]
- De Guerville, F.; Luk’yanchuk, I.; Lahoche, L.; El Marssi, M. Modeling of ferroelectric domains in thin films and superlattices. Mater. Sci. Eng. B 2005, 120, 16–20. [Google Scholar] [CrossRef]
- Pavlenko, M.A.; Tikhonov, Y.A.; Razumnaya, A.G.; Vinokur, V.M.; Lukyanchuk, I.A. Temperature dependence of dielectric properties of ferroelectric heterostructures with domain-provided negative capacitance. Nanomaterials 2022, 12, 75. [Google Scholar] [CrossRef] [PubMed]
- Sakharov, A.D. Magnetoimplosive generators. Soviet Phys. Uspekhi 1966, 9, 294. [Google Scholar] [CrossRef]
- Luk’yanchuk, I.; Tikhonov, Y.; Razumnaya, A.; Vinokur, V. Hopfions emerge in ferroelectrics. Nat. Commun. 2020, 11, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Meier, Q.N.; Lilienblum, M.; Griffin, S.M.; Conder, K.; Pomjakushina, E.; Yan, Z.; Bourret, E.; Meier, D.; Lichtenberg, F.; Salje, E.K.; et al. Global formation of topological defects in the multiferroic hexagonal manganites. Phys. Rev. X 2017, 7, 041014. [Google Scholar] [CrossRef]
- Dawber, M.; Rabe, K.; Scott, J. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 2005, 77, 1083–1130. [Google Scholar] [CrossRef]
- Scott, J. Applications of modern ferroelectrics. Science 2007, 315, 954–959. [Google Scholar] [CrossRef]
- Li, Y.L.; Hu, S.Y.; Liu, Z.K.; Chen, L.Q. Effect of electrical boundary conditions on ferroelectric domain Structures in thin films. Appl. Phys. Lett. 2002, 81, 427–429. [Google Scholar] [CrossRef]
- Wang, J.; Shi, S.Q.; Chen, L.Q.; Li, Y.; Zhang, T.Y. Phase-field simulations of ferroelectric/ferroelastic polarization switching. Acta Mater. 2004, 52, 749–764. [Google Scholar] [CrossRef]
- Hlinka, J.; Márton, P. Phenomenological model of a 90° domain wall in BaTiO3-type ferroelectrics. Phys. Rev. B 2006, 74, 104104. [Google Scholar] [CrossRef]
- Logg, A.; Mardal, K.A.; Wells, G.N. Automated Solution of Differential Equations by the Finite Element Method; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Geuzaine, C.; Remacle, J.F. Gmsh: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 2009, 79, 1039–1331. [Google Scholar] [CrossRef]
- Janelli, A.; Fazio, R. Adaptive stiff solvers at low accuracy and complexity. J. Comput. Appl. Math. 2006, 191, 246. [Google Scholar] [CrossRef]
- Balay, S.; Abhyankar, S.; Adams, M.F.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Dener, A.; Eijkhout, V.; Gropp, W.D.; et al. PETSc Users Manual; Technical Report ANL-95/11—Revision 3.15; Argonne National Laboratory: Lemont, IL, USA, 2021.
- Balay, S.; Abhyankar, S.; Adams, M.F.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Dener, A.; Eijkhout, V.; Gropp, W.D.; et al. PETSc Web Page. 2021. Available online: https://www.mcs.anl.gov/petsc (accessed on 21 May 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razumnaya, A.; Tikhonov, Y.; Naidenko, D.; Linnik, E.; Lukyanchuk, I. Bernoulli Principle in Ferroelectrics. Nanomaterials 2025, 15, 1049. https://doi.org/10.3390/nano15131049
Razumnaya A, Tikhonov Y, Naidenko D, Linnik E, Lukyanchuk I. Bernoulli Principle in Ferroelectrics. Nanomaterials. 2025; 15(13):1049. https://doi.org/10.3390/nano15131049
Chicago/Turabian StyleRazumnaya, Anna, Yuri Tikhonov, Dmitrii Naidenko, Ekaterina Linnik, and Igor Lukyanchuk. 2025. "Bernoulli Principle in Ferroelectrics" Nanomaterials 15, no. 13: 1049. https://doi.org/10.3390/nano15131049
APA StyleRazumnaya, A., Tikhonov, Y., Naidenko, D., Linnik, E., & Lukyanchuk, I. (2025). Bernoulli Principle in Ferroelectrics. Nanomaterials, 15(13), 1049. https://doi.org/10.3390/nano15131049