Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,720)

Search Parameters:
Keywords = muscle contributions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3914 KiB  
Article
Biomechanical Analysis of Different Pacifiers and Their Effects on the Upper Jaw and Tongue
by Luca Levrini, Luigi Paracchini, Luigia Ricci, Maria Sparaco, Stefano Saran and Giulia Mulè
Appl. Sci. 2025, 15(15), 8624; https://doi.org/10.3390/app15158624 (registering DOI) - 4 Aug 2025
Abstract
Aim: Pacifiers play a critical role in the early stages of craniofacial and palate development during infancy. While they provide comfort and aid in soothing, their use can also have significant impacts on the growth and function of the oral cavity. This study [...] Read more.
Aim: Pacifiers play a critical role in the early stages of craniofacial and palate development during infancy. While they provide comfort and aid in soothing, their use can also have significant impacts on the growth and function of the oral cavity. This study aimed to simulate and predict the behavior of six different types of pacifiers and their functional interaction with the tongue and palate, with the goal of understanding their potential effects on orofacial growth and development. Materials and Methods: Biomechanical analysis using Finite Element Analysis (FEA) mathematical models was employed to evaluate the behavior of six different commercial pacifiers in contact with the palate and tongue. Three-dimensional solid models of the palate and tongue were based on the mathematical framework from a 2007 publication. This allowed for a detailed investigation into how various pacifier designs interact with soft and hard oral tissues, particularly the implications on dental and skeletal development. Results: The findings of this study demonstrate that pacifiers exhibit different interactions with the oral cavity depending on their geometry. Anatomical–functional pacifiers, for instance, tend to exert lateral compressions near the palatine vault, which can influence the hard palate and contribute to changes in craniofacial growth. In contrast, other pacifiers apply compressive forces primarily in the anterior region of the palate, particularly in the premaxilla area. Furthermore, the deformation of the tongue varied significantly across different pacifier types: while some pacifiers caused the tongue to flatten, others allowed it to adapt more favorably by assuming a concave shape. These variations highlight the importance of selecting a pacifier that aligns with the natural development of both soft and hard oral tissues. Conclusions: The results of this study underscore the crucial role of pacifier geometry in shaping both the palate and the tongue. These findings suggest that pacifiers have a significant influence not only on facial bone growth but also on the stimulation of oral functions such as suction and feeding. The geometry of the pacifier affects the soft tissues (tongue and muscles) and hard tissues (palate and jaw) differently, which emphasizes the need for careful selection of pacifiers during infancy. Choosing the right pacifier is essential to avoid potential negative effects on craniofacial development and to ensure that the benefits of proper oral function are maintained. Therefore, healthcare professionals and parents should consider these biomechanical factors when introducing pacifiers to newborns. Full article
Show Figures

Figure 1

19 pages, 2574 KiB  
Article
The Neuroregenerative Effects of IncobotulinumtoxinA (Inco/A) in a Nerve Lesion Model of the Rat
by Oscar Sánchez-Carranza, Wojciech Danysz, Klaus Fink, Maarten Ruitenberg, Andreas Gravius and Jens Nagel
Int. J. Mol. Sci. 2025, 26(15), 7482; https://doi.org/10.3390/ijms26157482 (registering DOI) - 2 Aug 2025
Viewed by 198
Abstract
The use of Botulinum Neurotoxin A (BoNT/A) to treat peripheral neuropathic pain from nerve injury has garnered interest for its long-lasting effects and safety. This study examined the effects of IncobotulinumtoxinA (Inco/A), a BoNT/A variant without accessory proteins, on nerve regeneration in rats [...] Read more.
The use of Botulinum Neurotoxin A (BoNT/A) to treat peripheral neuropathic pain from nerve injury has garnered interest for its long-lasting effects and safety. This study examined the effects of IncobotulinumtoxinA (Inco/A), a BoNT/A variant without accessory proteins, on nerve regeneration in rats using the chronic constriction injury (CCI) model. Inco/A was administered perineurally at two time points: on days 0 and 21 post CCI. Functional and histological assessments were conducted to evaluate the effect of Inco/A on nerve regeneration. Sciatic Functional Index (SFI) measurements and Compound Muscle Action Potential (CMAP) recordings were conducted at different time points following CCI. Inco/A-treated animals exhibited a 65% improved SFI and 22% reduction in CMAP onset latencies compared to the vehicle-treated group, suggesting accelerated functional nerve recovery. Tissue analysis revealed enhanced remyelination in Inco/A-treated animals and 60% reduction in CGRP and double S100β signal expression compared to controls. Strikingly, 30% reduced immune cell influx into the injury site was observed following Inco/A treatment, suggesting that its anti-inflammatory effect contributes to nerve regeneration. These findings show that two injections of Inco/A promote functional recovery by enhancing neuroregeneration and modulating inflammatory processes, supporting the hypothesis that Inco/A has a neuroprotective and restorative role in nerve injury conditions. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

19 pages, 397 KiB  
Review
Effects of Blood-Glucose Lowering Therapies on Body Composition and Muscle Outcomes in Type 2 Diabetes: A Narrative Review
by Ioana Bujdei-Tebeică, Doina Andrada Mihai, Anca Mihaela Pantea-Stoian, Simona Diana Ștefan, Claudiu Stoicescu and Cristian Serafinceanu
Medicina 2025, 61(8), 1399; https://doi.org/10.3390/medicina61081399 - 1 Aug 2025
Viewed by 170
Abstract
Background and Objectives: The management of type 2 diabetes (T2D) extends beyond glycemic control, requiring a more global strategy that includes optimization of body composition, even more so in the context of sarcopenia and visceral adiposity, as they contribute to poor outcomes. [...] Read more.
Background and Objectives: The management of type 2 diabetes (T2D) extends beyond glycemic control, requiring a more global strategy that includes optimization of body composition, even more so in the context of sarcopenia and visceral adiposity, as they contribute to poor outcomes. Past reviews have typically been focused on weight reduction or glycemic effectiveness, with limited inclusion of new therapies’ effects on muscle and fat distribution. In addition, the emergence of incretin-based therapies and dual agonists such as tirzepatide requires an updated synthesis of their impacts on body composition. This review attempts to bridge the gap by taking a systematic approach to how current blood-glucose lowering therapies affect lean body mass, fat mass, and the risk of sarcopenia in T2D patients. Materials and Methods: Between January 2015 and March 2025, we conducted a narrative review by searching the PubMed, Scopus, and Web of Science databases for English-language articles. The keywords were combinations of the following: “type 2 diabetes,” “lean body mass,” “fat mass,” “body composition,” “sarcopenia,” “GLP-1 receptor agonists,” “SGLT2 inhibitors,” “tirzepatide,” and “antidiabetic pharmacotherapy.” Reference lists were searched manually as well. The highest precedence was assigned to studies that aimed at adult type 2 diabetic subjects and reported body composition results. Inclusion criteria for studies were: (1) type 2 diabetic mellitus adult patients and (2) reporting measures of body composition (e.g., lean body mass, fat mass, or muscle function). We prioritized randomized controlled trials and large observational studies and excluded mixed diabetic populations, non-pharmacological interventions only, and poor reporting of body composition. Results: Metformin was widely found to be weight-neutral with minimal effects on muscle mass. Insulin therapy, being an anabolic hormone, often leads to fat mass accumulation and increases the risk of sarcopenic obesity. Incretin-based therapies induced substantial weight loss, mostly from fat mass. Notable results were observed in studies with tirzepatide, demonstrating superior reduction not only in fat mass, but also in visceral fat. Sodium-glucose cotransporter 2 inhibitors (SGLT2 inhibitors) promote fat loss but are associated with a small yet significant decrease in lean muscle mass. Conclusions: Blood-glucose lowering therapies demonstrated clinically relevant effects on body composition. Treatment should be personalized, balancing glycemic control, cardiovascular, and renal benefits, together with optimal impact on muscle mass along with glycemic, cardiovascular, and renal benefits. Full article
(This article belongs to the Section Endocrinology)
22 pages, 1289 KiB  
Article
Assessment of Heavy Metal Contamination and Human Health Risk in Parapenaeus longirostris from Coastal Tunisian Aquatic Ecosystems
by Walid Ben Ameur, Ali Annabi, Kaddachi Rania and Mauro Marini
Pollutants 2025, 5(3), 23; https://doi.org/10.3390/pollutants5030023 - 1 Aug 2025
Viewed by 215
Abstract
Seafood contamination by heavy metals is a growing public health concern, particularly in regions like Tunisia where seafood is a major dietary component. This study assessed concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in the muscle tissue of the [...] Read more.
Seafood contamination by heavy metals is a growing public health concern, particularly in regions like Tunisia where seafood is a major dietary component. This study assessed concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in the muscle tissue of the red shrimp Parapenaeus longirostris, collected in 2023 from four coastal regions: Bizerte, Monastir, Kerkennah, and Gabes. Metal analysis was conducted using flame atomic absorption spectroscopy. This species was chosen due to its ecological and economic importance. The study sites were chosen based on their differing levels of industrial, urban, and agricultural influence, providing a representative overview of regional contamination patterns. Mean concentrations were 1.04 µg/g for Zn, 0.59 µg/g for Cu, 1.56 µg/g for Pb, and 0.21 µg/g for Cd (dry weight). Pb was the most prevalent metal across sites. Statistically significant variation was observed only for Cu (p = 0.0334). All metal concentrations were below international safety limits set by FAO/WHO and the European Union. Compared to similar studies, the levels reported were similar or slightly lower. Human health risk was evaluated using target hazard quotient (THQ), hazard index (HI), and cancer risk (CR) values. For adults, THQ ranged from 5.44 × 10−6 to 8.43 × 10−4, while for children it ranged from 2.40 × 10−5 to 3.72 × 10−3. HI values were also well below 1, indicating negligible non-carcinogenic risk. CR values for Cd and Pb in both adults and children fell within the acceptable risk range (10−6 to <10−4), suggesting no significant carcinogenic concern. This study provides the first field-based dataset on metal contamination in P. longirostris from Tunisia, contributing valuable insights for seafood safety monitoring and public health protection. Full article
(This article belongs to the Special Issue Marine Pollutants: 3rd Edition)
Show Figures

Figure 1

24 pages, 5018 KiB  
Article
Machine Learning for the Photonic Evaluation of Cranial and Extracranial Sites in Healthy Individuals and in Patients with Multiple Sclerosis
by Antonio Currà, Riccardo Gasbarrone, Davide Gattabria, Nicola Luigi Bragazzi, Giuseppe Bonifazi, Silvia Serranti, Paolo Missori, Francesco Fattapposta, Carlotta Manfredi, Andrea Maffucci, Luca Puce, Lucio Marinelli and Carlo Trompetto
Appl. Sci. 2025, 15(15), 8534; https://doi.org/10.3390/app15158534 (registering DOI) - 31 Jul 2025
Viewed by 167
Abstract
This study aims to characterize short-wave infrared (SWIR) reflectance spectra at cranial (at the scalp overlying the frontal cortex and the temporal bone window) and extracranial (biceps and triceps) sites in patients with multiple sclerosis (MS) and age-/sex-matched controls. We sought to identify [...] Read more.
This study aims to characterize short-wave infrared (SWIR) reflectance spectra at cranial (at the scalp overlying the frontal cortex and the temporal bone window) and extracranial (biceps and triceps) sites in patients with multiple sclerosis (MS) and age-/sex-matched controls. We sought to identify the diagnostic accuracy of wavelength-specific patterns in distinguishing MS from normal controls and spectral markers associated with disability (e.g., Expanded Disability Status Scale scores). To achieve these objectives, we employed a multi-site SWIR spectroscopy acquisition protocol that included measurements from traditional cranial locations as well as extracranial reference sites. Advanced spectral analysis techniques, including wavelength-dependent absorption modeling and machine learning-based classification, were applied to differentiate MS-related hemodynamic changes from normal physiological variability. Classification models achieved perfect performance (accuracy = 1.00), and cortical site regression models showed strong predictive power (EDSS: R2CV = 0.980; FSS: R2CV = 0.939). Variable Importance in Projection (VIP) analysis highlighted key wavelengths as potential spectral biomarkers. This approach allowed us to explore novel biomarkers of neural and systemic impairment in MS, paving the way for potential clinical applications of SWIR spectroscopy in disease monitoring and management. In conclusion, spectral analysis revealed distinct wavelength-specific patterns collected from cranial and extracranial sites reflecting biochemical and structural differences between patients with MS and normal subjects. These differences are driven by underlying physiological changes, including myelin integrity, neuronal density, oxidative stress, and water content fluctuations in the brain or muscles. This study shows that portable spectral devices may contribute to bedside individuation and monitoring of neural diseases, offering a cost-effective alternative to repeated imaging. Full article
(This article belongs to the Special Issue Artificial Intelligence in Medical Diagnostics: Second Edition)
Show Figures

Figure 1

21 pages, 1118 KiB  
Review
Vitamin D and Sarcopenia: Implications for Muscle Health
by Héctor Fuentes-Barría, Raúl Aguilera-Eguía, Lissé Angarita-Davila, Diana Rojas-Gómez, Miguel Alarcón-Rivera, Olga López-Soto, Juan Maureira-Sánchez, Valmore Bermúdez, Diego Rivera-Porras and Julio Cesar Contreras-Velázquez
Biomedicines 2025, 13(8), 1863; https://doi.org/10.3390/biomedicines13081863 - 31 Jul 2025
Viewed by 309
Abstract
Sarcopenia is a progressive age-related musculoskeletal disorder characterized by loss of muscle mass, strength, and physical performance, contributing to functional decline and increased risk of disability. Emerging evidence suggests that vitamin D (Vit D) plays a pivotal role in skeletal muscle physiology beyond [...] Read more.
Sarcopenia is a progressive age-related musculoskeletal disorder characterized by loss of muscle mass, strength, and physical performance, contributing to functional decline and increased risk of disability. Emerging evidence suggests that vitamin D (Vit D) plays a pivotal role in skeletal muscle physiology beyond its classical functions in bone metabolism. This review aims to critically analyze the relationship between serum Vit D levels and sarcopenia in older adults, focusing on pathophysiological mechanisms, diagnostic criteria, clinical evidence, and preventive strategies. An integrative narrative review of observational studies, randomized controlled trials, and meta-analyses published in the last decade was conducted. The analysis incorporated international diagnostic criteria for sarcopenia (EWGSOP2, AWGS, FNIH, IWGS), current guidelines for Vit D sufficiency, and molecular mechanisms related to Vit D receptor (VDR) signaling in muscle tissue. Low serum 25-hydroxyvitamin D levels are consistently associated with decreased muscle strength, reduced physical performance, and increased prevalence of sarcopenia. Although interventional trials using Vit D supplementation report variable results, benefits are more evident in individuals with baseline deficiency and when combined with protein intake and resistance training. Mechanistically, Vit D influences muscle health via genomic and non-genomic pathways, regulating calcium homeostasis, mitochondrial function, oxidative stress, and inflammatory signaling. Vit D deficiency represents a modifiable risk factor for sarcopenia and functional impairment in older adults. While current evidence supports its role in muscular health, future high-quality trials are needed to establish optimal serum thresholds and dosing strategies for prevention and treatment. An individualized, multimodal approach involving supplementation, exercise, and nutritional optimization appears most promising. Full article
(This article belongs to the Special Issue Vitamin D: Latest Scientific Discoveries in Health and Disease)
Show Figures

Figure 1

25 pages, 2786 KiB  
Review
Mechanisms Underlying Muscle-Related Diseases and Aging: Insights into Pathophysiology and Therapeutic Strategies
by Jialin Fan, Zara Khanzada and Yunpeng Xu
Muscles 2025, 4(3), 26; https://doi.org/10.3390/muscles4030026 - 31 Jul 2025
Viewed by 151
Abstract
Skeletal muscle aging and related diseases are characterized by progressive loss of muscle mass, strength, and metabolic function. Central to these processes is mitochondrial dysfunction, which impairs energy metabolism, redox homeostasis, and proteostasis. In addition, non-mitochondrial factors such as muscle stem cell exhaustion, [...] Read more.
Skeletal muscle aging and related diseases are characterized by progressive loss of muscle mass, strength, and metabolic function. Central to these processes is mitochondrial dysfunction, which impairs energy metabolism, redox homeostasis, and proteostasis. In addition, non-mitochondrial factors such as muscle stem cell exhaustion, neuromuscular junction remodeling, and chronic inflammation also contribute significantly to muscle degeneration. This review integrates recent advances in understanding mitochondrial and non-mitochondrial mechanisms underlying muscle aging and disease. Additionally, we discuss emerging therapeutic approaches targeting these pathways to preserve muscle health and promote healthy aging. Full article
Show Figures

Figure 1

17 pages, 1485 KiB  
Article
Selective Inhibition of Vascular Smooth Muscle Cell Function by COVID-19 Antiviral Drugs: Impact of Heme Oxygenase-1
by Kelly J. Peyton, Giovanna L. Durante and William Durante
Antioxidants 2025, 14(8), 945; https://doi.org/10.3390/antiox14080945 (registering DOI) - 31 Jul 2025
Viewed by 212
Abstract
Coronavirus disease 2019 (COVID-19) causes cardiovascular complications, which contributes to the high mortality rate of the disease. Emerging evidence indicates that aberrant vascular smooth muscle cell (SMC) function is a key driver of vascular disease in COVID-19. While antivirals alleviate the symptoms of [...] Read more.
Coronavirus disease 2019 (COVID-19) causes cardiovascular complications, which contributes to the high mortality rate of the disease. Emerging evidence indicates that aberrant vascular smooth muscle cell (SMC) function is a key driver of vascular disease in COVID-19. While antivirals alleviate the symptoms of COVID-19, it is not known whether these drugs directly affect SMCs. Accordingly, the present study investigated the ability of three approved COVID-19 antiviral drugs to influence SMC function. Treatment of SMCs with remdesivir (RDV), but not molnupiravir or nirmatrelvir, inhibited cell proliferation, DNA synthesis, and migration without affecting cell viability. RDV also stimulated an increase in heme oxygenase-1 (HO-1) expression that was not observed with molnupiravir or nirmatrelvir. The induction of HO-1 by RDV was abolished by mutating the antioxidant responsive element of the promoter, overexpressing dominant-negative NF-E2-related factor-2 (Nrf2), or treating cells with an antioxidant. Finally, silencing HO-1 partly rescued the proliferative and migratory response of RDV-treated SMCs, and this was reversed by carbon monoxide and bilirubin. In conclusion, the induction of HO-1 via the oxidant-sensitive Nrf2 signaling pathway contributes to the antiproliferative and antimigratory actions of RDV by generating carbon monoxide and bilirubin. These pleiotropic actions of RDV may prevent occlusive vascular disease in COVID-19. Full article
Show Figures

Figure 1

19 pages, 2893 KiB  
Article
Factors Influencing the Effectiveness of Botulinum Toxin Therapy in Bruxism Management
by Azusa Furuhata, Kazuya Yoshida and Shiroh Isono
Toxins 2025, 17(8), 384; https://doi.org/10.3390/toxins17080384 - 31 Jul 2025
Viewed by 199
Abstract
A total of 304 patients with bruxism (206 women, 98 men; mean age: 52.5 years) received 25 units of botulinum toxin injected into the bilateral masseter muscles; the changes in various clinical symptoms and their contributing factors were analyzed 2 months after treatment. [...] Read more.
A total of 304 patients with bruxism (206 women, 98 men; mean age: 52.5 years) received 25 units of botulinum toxin injected into the bilateral masseter muscles; the changes in various clinical symptoms and their contributing factors were analyzed 2 months after treatment. The mean masseter muscle electromyographic amplitude (189 μV) and maximal bite force (618.4 N) significantly decreased after botulinum toxin therapy compared to that at baseline (55.4 μV, 527.3 N, respectively; p < 0.001). Maximal mouth opening (44 mm), sleep quality (visual analog scale: 5.3), shoulder and neck stiffness (6.7), and headache (5.4) significantly improved after the injection (47.3 mm, 6.6, 4.7, and 2.6, respectively; p < 0.001). Multivariate analysis revealed that the mean masseter electromyographic amplitude reduction rate was significantly affected by age, sex, and baseline amplitude (all p < 0.001); the maximal bite force reduction rate was influenced by age (p < 0.001), sex (p = 0.007), and baseline bite force (p = 0.008). Age, sex, and muscle activity may affect the therapeutic effects. A more effective outcome for bruxism can be achieved using a tailored approach involving dose adjustment, thereby preventing the side effects attributed to excessive dosage. Full article
Show Figures

Graphical abstract

19 pages, 4279 KiB  
Article
Identification of Anticancer Target Combinations to Treat Pancreatic Cancer and Its Associated Cachexia Using Constraint-Based Modeling
by Feng-Sheng Wang, Ching-Kai Wu and Kuang-Tse Huang
Molecules 2025, 30(15), 3200; https://doi.org/10.3390/molecules30153200 - 30 Jul 2025
Viewed by 222
Abstract
Pancreatic cancer is frequently accompanied by cancer-associated cachexia, a debilitating metabolic syndrome marked by progressive skeletal muscle wasting and systemic metabolic dysfunction. This study presents a systems biology framework to simultaneously identify therapeutic targets for both pancreatic ductal adenocarcinoma (PDAC) and its associated [...] Read more.
Pancreatic cancer is frequently accompanied by cancer-associated cachexia, a debilitating metabolic syndrome marked by progressive skeletal muscle wasting and systemic metabolic dysfunction. This study presents a systems biology framework to simultaneously identify therapeutic targets for both pancreatic ductal adenocarcinoma (PDAC) and its associated cachexia (PDAC-CX), using cell-specific genome-scale metabolic models (GSMMs). The human metabolic network Recon3D was extended to include protein synthesis, degradation, and recycling pathways for key inflammatory and structural proteins. These enhancements enabled the reconstruction of cell-specific GSMMs for PDAC and PDAC-CX, and their respective healthy counterparts, based on transcriptomic datasets. Medium-independent metabolic biomarkers were identified through Parsimonious Metabolite Flow Variability Analysis and differential expression analysis across five nutritional conditions. A fuzzy multi-objective optimization framework was employed within the anticancer target discovery platform to evaluate cell viability and metabolic deviation as dual criteria for assessing therapeutic efficacy and potential side effects. While single-enzyme targets were found to be context-specific and medium-dependent, eight combinatorial targets demonstrated robust, medium-independent effects in both PDAC and PDAC-CX cells. These include the knockout of SLC29A2, SGMS1, CRLS1, and the RNF20–RNF40 complex, alongside upregulation of CERK and PIKFYVE. The proposed integrative strategy offers novel therapeutic avenues that address both tumor progression and cancer-associated cachexia, with improved specificity and reduced off-target effects, thereby contributing to translational oncology. Full article
(This article belongs to the Special Issue Innovative Anticancer Compounds and Therapeutic Strategies)
Show Figures

Graphical abstract

12 pages, 1143 KiB  
Review
Current Narrative Review—Application of Blood Flow Restriction Exercise in Clinical Knee Problems
by Saehim Kwon, Ki-Cheor Bae, Chang-Jin Yon and Du-Han Kim
Medicina 2025, 61(8), 1377; https://doi.org/10.3390/medicina61081377 - 30 Jul 2025
Viewed by 317
Abstract
Quadricep weakness is frequently observed in patients following anterior cruciate ligament (ACL) injury or in those with knee osteoarthritis, often contributing to functional impairments and persistent symptoms. While high-intensity resistance training has been shown to effectively improve muscle strength, its application may be [...] Read more.
Quadricep weakness is frequently observed in patients following anterior cruciate ligament (ACL) injury or in those with knee osteoarthritis, often contributing to functional impairments and persistent symptoms. While high-intensity resistance training has been shown to effectively improve muscle strength, its application may be limited in certain populations due to pain or the risk of surgical complications. In recent years, blood flow restriction (BFR) training has emerged as a promising alternative. Growing evidence indicates that low-load BFR exercise can significantly improve muscle strength, induce hypertrophy, and enhance knee function, with outcomes comparable to those of high-intensity resistance training. When implemented using appropriate protocols, BFR training appears to be a safe and efficacious rehabilitation strategy for individuals with knee pathology. Full article
(This article belongs to the Special Issue Cutting-Edge Concepts in Knee Surgery)
Show Figures

Figure 1

33 pages, 2605 KiB  
Article
Phytochemical Profile, Vasodilatory and Biphasic Effects on Intestinal Motility, and Toxicological Evaluation of the Methanol and Dichloromethane Extracts from the Aerial Parts of Ipomoea purpurea Used in Traditional Mexican Medicine
by Valeria Sánchez-Hernández, Francisco J. Luna-Vázquez, María Antonieta Carbajo-Mata, César Ibarra-Alvarado, Alejandra Rojas-Molina, Beatriz Maruri-Aguilar, Pedro A. Vázquez-Landaverde and Isela Rojas-Molina
Pharmaceuticals 2025, 18(8), 1134; https://doi.org/10.3390/ph18081134 - 30 Jul 2025
Viewed by 355
Abstract
Background: Cardiovascular diseases, particularly hypertension, and gastrointestinal disorders represent major public health concerns in Mexico. Although a range of pharmacological treatments exists, their use is associated with adverse effects, highlighting the need for safer therapeutic alternatives. Species of the Ipomoea genus are widely [...] Read more.
Background: Cardiovascular diseases, particularly hypertension, and gastrointestinal disorders represent major public health concerns in Mexico. Although a range of pharmacological treatments exists, their use is associated with adverse effects, highlighting the need for safer therapeutic alternatives. Species of the Ipomoea genus are widely employed in Mexican traditional medicine (MTM) for their purgative, anti-inflammatory, analgesic, and sedative properties. Particularly, Ipomoea purpurea is traditionally used as a diuretic and purgative; its leaves and stems are applied topically for their anti-inflammatory and soothing effects. This study aimed to determine their phytochemical composition and to evaluate the associated vasodilatory activity, modulatory effects on intestinal smooth-muscle motility, and toxicological effects of the methanolic (ME-Ip) and dichloromethane (DE-Ip) extracts obtained from the aerial parts of I. purpurea. Methods: The phytochemical composition of the ME-Ip and DE-Ip extracts of I. purpurea was assessed using UPLC-QTOF-MS and GC-MS, respectively. For both extracts, the vasodilatory activity and effects on intestinal smooth muscle were investigated using ex vivo models incorporating isolated rat aorta and ileum, respectively, whereas acute toxicity was evaluated in vivo. Results: Phytochemical analysis revealed, for the first time, the presence of two glycosylated flavonoids within the Ipomoea genus; likewise, constituents with potential anti-inflammatory activity were detected. The identified compounds in I. purpurea extracts may contribute to the vasodilatory, biphasic, and purgative effects observed in this species. The EC50 values for the vasodilatory effects of the methanolic (ME-Ip) and dichloromethane (DE-Ip) extracts were 0.80 and 0.72 mg/mL, respectively. In the initial phase of the experiments on isolated ileal tissues, both extracts induced a spasmodic (contractile) effect on basal motility, with ME-Ip exhibiting higher potency (EC50 = 27.11 μg/mL) compared to DE-Ip (EC50 = 1765 μg/mL). In contrast, during the final phase of the experiments, both extracts demonstrated a spasmolytic effect, with EC50 values of 0.43 mg/mL for ME-Ip and 0.34 mg/mL for DE-Ip. In addition, both extracts exhibited low levels of acute toxicity. Conclusions: The phytochemical profile and the vasodilatory and biphasic effects of the I. purpurea extracts explain, in part, the use of I. purpurea in MTM. The absence of acute toxic effects constitutes a preliminary step in the toxicological safety assessment of I. purpurea extracts and demonstrates their potential for the development of phytopharmaceutic agents as adjuvants for the treatment of cardiovascular and gastrointestinal disorders. Full article
Show Figures

Graphical abstract

10 pages, 621 KiB  
Review
Optimizing Hip Abductor Strengthening for Lower Extremity Rehabilitation: A Narrative Review on the Role of Monster Walk and Lateral Band Walk
by Ángel González-de-la-Flor
J. Funct. Morphol. Kinesiol. 2025, 10(3), 294; https://doi.org/10.3390/jfmk10030294 - 30 Jul 2025
Viewed by 379
Abstract
Introduction: Hip abductor strength is essential for pelvic stability, lower limb alignment, and injury prevention. Weaknesses of the gluteus medius and minimus contribute to various musculoskeletal conditions. Lateral band walks and monster walks are elastic resistance exercises commonly used to target the [...] Read more.
Introduction: Hip abductor strength is essential for pelvic stability, lower limb alignment, and injury prevention. Weaknesses of the gluteus medius and minimus contribute to various musculoskeletal conditions. Lateral band walks and monster walks are elastic resistance exercises commonly used to target the hip abductors and external rotators in functional, weight-bearing tasks. Therefore, the aim was to summarize the current evidence on the biomechanics, muscle activation, and clinical applications of lateral and monster band walks. Methods: This narrative review was conducted following the SANRA guideline. A comprehensive literature search was performed across PubMed, Scopus, Web of Science, and SPORTDiscus up to April 2025. Studies on the biomechanics, electromyography, and clinical applications of lateral band walks and monster walks were included, alongside relevant evidence on hip abductor strengthening. Results: A total of 13 studies were included in the review, of which 4 specifically investigated lateral band walk and/or monster walk exercises. Lateral and monster walks elicit moderate to high activation of the gluteus medius and maximus, especially when performed with the band at the ankles or forefeet and in a semi-squat posture. This technique minimizes compensation from the tensor fasciae latae and promotes selective gluteal recruitment. Proper execution requires control of the trunk and pelvis, optimal squat depth, and consistent band tension. Anatomical factors (e.g., femoral torsion), sex differences, and postural variations may influence movement quality and necessitate tailored instruction. Full article
(This article belongs to the Special Issue Biomechanical Analysis in Physical Activity and Sports—2nd Edition)
Show Figures

Figure 1

4 pages, 269 KiB  
Editorial
Beyond a Simple Switch: Decoding the Multifactorial Phenotypic Plasticity of Vascular Smooth Muscle Cells
by Francisca Muñoz, Claire M. Holden and Alejandra San Martin
Cells 2025, 14(15), 1171; https://doi.org/10.3390/cells14151171 - 30 Jul 2025
Viewed by 220
Abstract
Vascular smooth muscle cells (VSMCs) are central to the maintenance of vascular homeostasis and the progression of cardiovascular diseases (CVDs), owing to their remarkable phenotypic plasticity. This editorial introduces a Special Issue of Cells that compiles recent advances in our understanding of the [...] Read more.
Vascular smooth muscle cells (VSMCs) are central to the maintenance of vascular homeostasis and the progression of cardiovascular diseases (CVDs), owing to their remarkable phenotypic plasticity. This editorial introduces a Special Issue of Cells that compiles recent advances in our understanding of the molecular, epigenetic, metabolic, and mechanical mechanisms that govern VSMC behavior. Highlighted contributions explore the roles of RNA modifications, chromatin remodeling, lipid metabolism, and mechanotransduction in VSMC phenotypic switching, revealing new therapeutic targets and diagnostic opportunities. Together, these studies emphasize the multifactorial regulation of VSMC plasticity and its dual role in vascular repair and disease pathogenesis. Full article
(This article belongs to the Special Issue Role of Vascular Smooth Muscle Cells in Cardiovascular Disease)
Show Figures

Figure 1

13 pages, 449 KiB  
Article
Effects of Polysaccharides Extracted from Stem Barks on the Spontaneous Contractile Activity of the Ileal Smooth Muscle
by Ericka Lorleil Mayindza Ekaghba, Olivier Perruchon, Patrice Lerouge and Line Edwige Mengome
Molecules 2025, 30(15), 3156; https://doi.org/10.3390/molecules30153156 - 28 Jul 2025
Viewed by 168
Abstract
Decoctions of stem barks from Aucoumea klaineana, Canarium schweinfurthii, Pentadesma butyracea and Scorodophloeus zenkeri are used against affections of irritable bowel syndrome in Gabonese traditional medicine. In the present study, we aim to determine whether the bark polysaccharides may contribute to [...] Read more.
Decoctions of stem barks from Aucoumea klaineana, Canarium schweinfurthii, Pentadesma butyracea and Scorodophloeus zenkeri are used against affections of irritable bowel syndrome in Gabonese traditional medicine. In the present study, we aim to determine whether the bark polysaccharides may contribute to the activity of these plants against the symptoms of gastrointestinal disorders. To this end, we investigated the structure and the pharmacological activity of polysaccharides extracted from their stem barks. The pectic and hemicellulose polysaccharides were isolated, and their sugar compositions were determined by gas chromatography. In addition, analysis by MALDI-TOF mass spectrometry of oligosaccharides released after digestion with an endo-xylanase indicated that glucuronoarabinoxylans are the main hemicellulose of stem barks. We then evaluated the influence of the polysaccharide fractions on the spontaneous contractile activity of rat ileal smooth muscle and the cholinergic system. Spasmolytic activity of pectic fractions from all stem barks, as well as lemon polygalacturonic acid, were observed, indicating that these extracts exhibit a myorelaxant activity. In contrast, the bark hemicellulose fractions, as well as commercially available beechwood glucuronoxylan and wheat arabinoxylan, were demonstrated to be able to increase the basal contractile activity of smooth muscle. These data show that, beyond physicochemical effects affecting the bowel water content, plant polysaccharides have also an impact on the spontaneous smooth muscle contractility, the main mechanism involved in the pathophysiology of gastrointestinal disorders. Full article
(This article belongs to the Special Issue Phytochemistry, Human Health and Molecular Mechanisms)
Show Figures

Figure 1

Back to TopTop