Effects of Blood-Glucose Lowering Therapies on Body Composition and Muscle Outcomes in Type 2 Diabetes: A Narrative Review
Abstract
1. Introduction
2. Metformin
2.1. Effects on Body Weight and Fat Mass
2.2. Impact on Lean Mass and Muscle
2.3. Impact on Sarcopenia Risk
3. Insulin Therapy
3.1. Effects on Body Weight and Fat Mass
3.2. Effects on Lean Mass and Muscle
3.3. Impact on Sarcopenia Risk
4. Sodium-Glucose Cotransporter 2 Inhibitors (SGLT2 Inhibitors)
4.1. Effects on Body Weight and Fat Mass
4.2. Effects on Lean Mass and Muscle
4.3. Impact on Muscle Function and the Risk of Sarcopenia
5. Glucagon-like Peptide-1 Receptor Agonists (GLP-1 RAs)
5.1. Effects on Body Weight and Fat Mass
5.2. Impact on Lean Mass and Muscle
5.3. Impact on Muscle Function and Sarcopenia Risk
6. Tirzepatide (Dual GIP/GLP-1 RA)
6.1. Effects on Body Weight and Fat Mass
6.2. Impact on Muscle and Lean Mass
6.3. Effects on Muscle Function and Risk of Sarcopenia
7. Comparative Analysis
Direct Comparisons and Relative Positioning (Table 1)
- Weight/Fat Loss: Insulin and sulfonylureas generally cause weight gain, while metformin is neutral or modestly decreases weight [6]. SGLT2 inhibitors cause modest weight/fat loss [38]. GLP-1 RAs cause considerable weight/fat loss, and tirzepatide causes more weight/fat loss than GLP-1 RAs (semaglutide 1 mg) [62].
- Lean Mass Loss: Insulin may increase LBM absolutely but alternatively does so with greater fat gain [20]. The effect of metformin is in contention: neutral or protective in T2D [14]. However, it impairs exercise gains in healthy elderly [16]. SGLT2 inhibitors have been consistently shown to cause modest LBM/SMM loss in absolute terms in meta-analyses [38]. GLP-1 RAs bring about the most pronounced absolute LBM reduction, proportional to the scale of weight loss [41]. Given the greater total weight loss, tirzepatide causes great absolute LBM loss, with some network meta-analyses also suggesting less LBM preservation compared to liraglutide but greater fat loss [62,63,64,65,66]. However, direct head-to-head comparisons considering bias/confounding effects are awaited.
- Sarcopenia Risk/Muscle Function: Negative impacts from insulin contributed by fat gain and lack of functional benefits [29]. Metformin has shown protective interactions observed mostly in T2D but is incompatible with exercise hypertrophy [16]. SGLT2 inhibitors cause more consistent concern, considering the meta-analytical evidence for LBM/SMM loss and possible strength reduction [45]. GLP-1 RAs and tirzepatide bring about the loss of LBM and cause theoretical concerns but no functional data; this loss may be adaptive, and hence it is wise to monitor and mitigate [64].
Feature | Metformin [10,70] | Insulin [71] | GLP-1 Ras [55,56,72] | SGLT2 Inhibitors [42,73] | Tirzepatide [62,64,66,74] |
---|---|---|---|---|---|
Weight Change | Neutral/Modest loss | Gain | Significant loss | Modest loss | Superior loss |
Fat Mass Change | Decrease | Increase | Significant decrease | Decrease | Superior decrease |
Visceral Fat Change | Decrease (some evidence) | Increase (potential) | Significant decrease | Decrease | Significant decrease |
Lean Mass Change | Neutral/Blunts gain with exercise | Increase (along with fat) | Significant decrease | Significant decrease | Significant decrease |
Lean Mass (% Total Loss) | Variable | Variable/Low | ~20–50% | ~20–50% | ~25% |
Muscle Function/Strength | Blunted by exercise | No improvement/Worse? | Limited data/Concern | Reduced (Meta-analysis) | Limited data/Concern |
Sarcopenia Risk | Lower risk | Complex/Potential risk | Concern/Monitor | Concern/Monitor | Concern/Monitor |
Key Mechanisms | AMPK activation, ↓ Inflammation | Anabolism, Fat storage | Appetite suppression, ↓ Gastric emptying | Glycosuria, Caloric loss | Dual incretin agonism, Appetite suppression |
8. Discussions
8.1. Strength
8.2. Limitations
9. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Magliano, D.J.; Boyko, E.J. IDF Diabetes Atlas; International Diabetes Federation: Brussels, Belgium, 2025; ISBN 9782930229966. [Google Scholar]
- Mesinovic, J.; Fyfe, J.J.; Talevski, J.; Wheeler, M.J.; Leung, G.K.W.; George, E.S.; Hunegnaw, M.T.; Glavas, C.; Jansons, P.; Daly, R.M.; et al. Type 2 Diabetes Mellitus and Sarcopenia as Comorbid Chronic Diseases in Older Adults: Established and Emerging Treatments and Therapies. Diabetes Metab. J. 2023, 47, 719–742. [Google Scholar] [CrossRef]
- Wang, C.C.L.; Hess, C.N.; Hiatt, W.R.; Goldfine, A.B. Clinical Update: Cardiovascular Disease in Diabetes Mellitus. Circulation 2016, 133, 2459–2502. [Google Scholar] [CrossRef]
- Mesinovic, J.; Zengin, A.; De Courten, B.; Ebeling, P.R.; Scott, D. Sarcopenia and Type 2 Diabetes Mellitus: A Bidirectional Relationship. Diabetes Metab. Syndr. Obes. 2019, 12, 1057–1072. [Google Scholar] [CrossRef]
- Ma, X.-Y.; Chen, F.-Q. Effects of Anti-Diabetic Drugs on Sarcopenia: Best Treatment Options for Elderly Patients with Type 2 Diabetes Mellitus and Sarcopenia Effects of Anti-Diabetic Drugs on Sarcopenia: Best Treatment Options for Elderly Patients with Type 2 Diabetes Mellitus. World J. Clin. Cases 2021, 9, 10064–10074. [Google Scholar] [CrossRef]
- Ghusn, W.; Hurtado, M.D.; Acosta, A. Weight-Centric Treatment of Type 2 Diabetes Mellitus. Obes. Pillars 2022, 4, 100045. [Google Scholar] [CrossRef]
- Nurkolis, F.; Harbuwono, D.S.; Taslim, N.A.; Soegondo, S.; Suastika, K.; Sparringa, R.A.; Mustika, A.; Syam, A.F.; Santini, A.; Holly, J.M.P.; et al. New Insight on Dietary Strategies to Increase Insulin Sensitivity and Reduce Diabetes Prevalence: An Expert Perspective and Recommendation. Discov. Food 2025, 5, 136. [Google Scholar] [CrossRef]
- American Diabetes Association. Standard of Care in Diabetes; American Diabetes Association: Crystal, VA, USA, 2023. [Google Scholar]
- Ida, S.; Kaneko, R.; Imataka, K.; Okubo, K.; Shirakura, Y.; Azuma, K.; Fujiwara, R.; Murata, K. Effects of Antidiabetic Drugs on Muscle Mass in Type 2 Diabetes Mellitus. Curr. Diabetes Rev. 2021, 17, 293–303. [Google Scholar] [CrossRef]
- Pu, R.; Shi, D.; Gan, T.; Ren, X.; Ba, Y.; Huo, Y.; Bai, Y.; Cheng, T.Z.; Cheng, N. Effects of Metformin in Obesity Treatment in Different Populations: A Meta-Analysis. Ther. Adv. Endocrinol. Metab. 2020, 11, 2042018820926000. [Google Scholar] [CrossRef]
- New, T.; Nyein, M.L.; ThinNwe, T.; Ko, K.; Kyi, M.M.; Myint, Y.; Hlaing, C.; Sein, M.T.; Sonawane, K.; Pawar, D. Evaluation of Effects of Metformin on Body Fat in Patients with Prediabetes. A Randomized Single Blinded Study. Int. J. Recent Sci. Res. 2020, 11, 40068–40073. [Google Scholar] [CrossRef]
- Fujimoto, W.Y.; Jablonski, K.A.; Bray, G.A.; Kriska, A.; Barrett-Connor, E.; Haffner, S.; Hanson, R.; Hill, J.O.; Hubbard, V.; Stamm, E.; et al. Body Size and Shape Changes and the Risk of Diabetes in the Diabetes Prevention Program. Diabetes 2007, 56, 1680–1685. [Google Scholar] [CrossRef]
- Haddad, F.; Dokmak, G.; Bader, M.; Karaman, R. A Comprehensive Review on Weight Loss Associated with Anti-Diabetic Medications. Life 2023, 13, 1012. [Google Scholar] [CrossRef]
- Lee, C.G.; Boyko, E.J.; Barrett-Connor, E.; Miljkovic, I.; Hoffman, A.R.; Everson-Rose, S.A.; Lewis, C.E.; Cawthon, P.M.; Strotmeyer, E.S.; Orwoll, E.S. Insulin Sensitizers May Attenuate Lean Mass Loss in Older Men with Diabetes. Diabetes Care 2011, 34, 2381–2386. [Google Scholar] [CrossRef]
- Chen, F.; Xu, S.; Wang, Y.; Chen, F.; Cao, L.; Liu, T.; Huang, T.; Wei, Q.; Ma, G.; Zhao, Y.; et al. Risk Factors for Sarcopenia in the Elderly with Type 2 Diabetes Mellitus and the Effect of Metformin. J. Diabetes Res. 2020, 2020, 3950404. [Google Scholar] [CrossRef]
- Walton, R.G.; Dungan, C.M.; Long, D.E.; Tuggle, S.C.; Kosmac, K.; Peck, B.D.; Bush, H.M.; Tezanos, A.G.V.; McGwin, G.; Windham, S.T.; et al. Metformin Blunts Muscle Hypertrophy in Response to Progressive Resistance Exercise Training in Older Adults: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial: The MASTERS Trial. Aging Cell 2019, 18, e13039. [Google Scholar] [CrossRef]
- Rentflejsz, J.; Wojszel, Z.B. Diabetes Mellitus Should Be Considered While Analysing Sarcopenia-Related Biomarkers. J. Clin. Med. 2024, 13, 1107. [Google Scholar] [CrossRef]
- Sravya, S.L.; Swain, J.; Sahoo, A.K.; Mangaraj, S.; Kanwar, J.; Jadhao, P.; Das, S. Sarcopenia in Type 2 Diabetes Mellitus: Study of the Modifiable Risk Factors Involved. J. Clin. Med. 2023, 12, 5499. [Google Scholar] [CrossRef]
- Dahlén, A.D.; Dashi, G.; Maslov, I.; Attwood, M.M.; Jonsson, J.; Trukhan, V.; Schiöth, H.B. Trends in Antidiabetic Drug Discovery: FDA Approved Drugs, New Drugs in Clinical Trials and Global Sales. Front. Pharmacol. 2022, 12, 807548. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Y.; Chen, S.; Shao, H. Anti-Diabetic Drugs and Sarcopenia: Emerging Links, Mechanistic Insights, and Clinical Implications. J. Cachexia Sarcopenia Muscle 2021, 12, 1368–1379. [Google Scholar] [CrossRef]
- Laxy, M.; Schöning, V.M.; Kurz, C.; Holle, R.; Peters, A.; Meisinger, C.; Rathmann, W.; Mühlenbruch, K.; Kähm, K. Performance of the UKPDS Outcomes Model 2 for Predicting Death and Cardiovascular Events in Patients with Type 2 Diabetes Mellitus from a German Population-Based Cohort. Pharmacoeconomics 2019, 37, 1485–1494. [Google Scholar] [CrossRef]
- Handelsman, Y.; Wyne, K.; Cannon, A.; Shannon, M.; Schneider, D. Glycemic Efficacy, Weight Effects, and Safety of Once-Weekly Glucagon-like Peptide-1 Receptor Agonists. J. Manag. Care Spec. Pharm. 2018, 24, S14–S29. [Google Scholar] [CrossRef]
- Gallagher, D.; Kelley, D.E.; Yim, J.E.; Spence, N.; Albu, J.; Boxt, L.; Xavier Pi-Sunyer, F.; Heshka, S. Adipose Tissue Distribution Is Different in Type 2 Diabetes. Am. J. Clin. Nutr. Am. J. 2009, 89, 807–814. [Google Scholar] [CrossRef]
- Apovian, C.M.; Okemah, J.; O’Neil, P.M. Body Weight Considerations in the Management of Type 2 Diabetes. Adv. Ther. 2019, 36, 44–58. [Google Scholar] [CrossRef] [PubMed]
- Beaudry, K.M.; Devries, M.C. Nutritional Strategies to Combat Type 2 Diabetes in Aging Adults: The Importance of Protein. Front. Nutr. 2019, 6, 138. [Google Scholar] [CrossRef]
- Fujita, S.; Rasmussen, B.B.; Cadenas, J.G.; Grady, J.J.; Volpi, E. Effect of Insulin on Human Skeletal Muscle Protein Synthesis Is Modulated by Insulin-Induced Changes in Muscle Blood Flow and Amino Acid Availability. Am. J. Physiol. Endocrinol. Metab 2006, 291, E745–E754. [Google Scholar] [CrossRef]
- Lisco, G.; Disoteo, O.E.; De Tullio, A.; De Geronimo, V.; Giagulli, V.A.; Monzani, F.; Jirillo, E.; Cozzi, R.; Guastamacchia, E.; De Pergola, G.; et al. Sarcopenia and Diabetes: A Detrimental Liaison of Advancing Age. Nutrients 2024, 16, 63. [Google Scholar] [CrossRef]
- Tanaka, K.-I.; Kanazawa, I.; Sugimoto, T. Reduction in Endogenous Insulin Secretion Is a Risk Factor of Sarcopenia in Men with Type 2 Diabetes Mellitus. Calcif. Tissue Int. 2015, 97, 385–390. [Google Scholar] [CrossRef]
- Ferrari, U.; Then, C.; Rottenkolber, M.; Selte, C.; Seissler, J.; Conzade, R.; Linkohr, B.; Peters, A.; Drey, M.; Thorand, B. Longitudinal Association of Type 2 Diabetes and Insulin Therapy with Muscle Parameters in the KORA-Age Study. Acta Diabetol. 2020, 57, 1057–1063. [Google Scholar] [CrossRef]
- Purnamasari, D.; Tetrasiwi, E.N.; Kartiko, G.J.; Astrella, C.; Husam, K.; Laksmi, P.W. Sarcopenia and Chronic Complications of Type 2 Diabetes Mellitus. Rev. Diabet. Stud. 2022, 18, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European Consensus on Definition and Diagnosis. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef]
- Kahn, S.; Anderson, C.; Buse, J.; Selvin, E. Diabetes Care—ADA (2024). Am. Diabetes Assoc. 2024, 47, S1–S4. [Google Scholar]
- Wanner, C.; Inzucchi, S.E.; Lachin, J.M.; Fitchett, D.; von Eynatten, M.; Mattheus, M.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Zinman, B. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 323–334. [Google Scholar] [CrossRef]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef]
- Steiner, S. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. Z. Gefassmedizin 2016, 13, 17–18. [Google Scholar] [CrossRef]
- Ma, H.; Lin, Y.H.; Dai, L.Z.; Lin, C.S.; Huang, Y.; Liu, S.Y. Efficacy and Safety of GLP-1 Receptor Agonists versus SGLT-2 Inhibitors in Overweight/Obese Patients with or without Diabetes Mellitus: A Systematic Review and Network Meta-Analysis. BMJ Open 2023, 13, e061807. [Google Scholar] [CrossRef] [PubMed]
- Op Den Kamp, Y.J.M.; de Ligt, M.; Dautzenberg, B.; Kornips, E.; Esterline, R.; Hesselink, M.K.C.; Hoeks, J.; Schrauwen-Hinderling, V.B.; Havekes, B.; Oscarsson, J.; et al. Effects of the SGLT2 Inhibitor Dapagliflozin on Energy Metabolism in Patients with Type 2 Diabetes: A Randomized, Double-Blind Crossover Trial. Diabetes Care 2021;44:1334–1343. Diabetes Care 2022, 45, 1297. [Google Scholar] [CrossRef] [PubMed]
- Pan, R.; Zhang, Y.; Wang, R.; Xu, Y.; Ji, H.; Zhao, Y. Effect of SGLT-2 Inhibitors on Body Composition in Patients with Type 2 Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Trials. PLoS ONE 2022, 17, e0279889. [Google Scholar] [CrossRef] [PubMed]
- Rodbard, H.W.; Rosenstock, J.; Canani, L.H.; Deerochanawong, C.; Gumprecht, J.; Lindberg, S.Ø.; Lingvay, I.; Søndergaard, A.L.; Treppendahl, M.B.; Montanya, E. Oral Semaglutide versus Empagliflozin in Patients with Type 2 Diabetes Uncontrolled on Metformin: The PIONEER 2 Trial. Diabetes Care 2019, 42, 2272–2281. [Google Scholar] [CrossRef]
- Zhang, S.; Qi, Z.; Wang, Y.; Song, D.; Zhu, D. Effect of Sodium-Glucose Transporter 2 Inhibitors on Sarcopenia in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Front. Endocrinol 2023, 14, 1203666. [Google Scholar] [CrossRef]
- Sargeant, J.A.; Henson, J.; King, J.A.; Yates, T.; Khunti, K.; Davies, M.J. A Review of the Effects of Glucagon-like Peptide-1 Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors on Lean Body Mass in Humans. Endocrinol. Metab. 2019, 34, 247–262. [Google Scholar] [CrossRef]
- Schork, A.; Saynisch, J.; Vosseler, A.; Jaghutriz, B.A.; Heyne, N.; Peter, A.; Häring, H.U.; Stefan, N.; Fritsche, A.; Artunc, F. Effect of SGLT2 Inhibitors on Body Composition, Fluid Status and Renin-Angiotensin-Aldosterone System in Type 2 Diabetes: A Prospective Study Using Bioimpedance Spectroscopy. Cardiovasc. Diabetol. 2019, 18, 46. [Google Scholar] [CrossRef]
- Toomey, C.M.; McCormack, W.G.; Jakeman, P. The Effect of Hydration Status on the Measurement of Lean Tissue Mass by Dual-Energy X-Ray Absorptiometry. Eur. J. Appl. Physiol. 2017, 117, 567–574. [Google Scholar] [CrossRef]
- Sasaki, T.; Sugawara, M.; Fukuda, M. Sodium–Glucose Cotransporter 2 Inhibitor-Induced Changes in Body Composition and Simultaneous Changes in Metabolic Profile: 52-Week Prospective LIGHT (Luseogliflozin: The Components of Weight Loss in Japanese Patients with Type 2 Diabetes Mellitus) Study. J. Diabetes Investig. 2019, 10, 108–117. [Google Scholar] [CrossRef]
- Xia, C.; Han, Y.; Yin, C.; Geng, R.; Liu, Z.; Du, Y.; Yu, M. Relationship between Sodium–Glucose Cotransporter-2 Inhibitors and Muscle Atrophy in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2023, 14, 1220516. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.Y.; Kim, D.J. Benefit and Safety of Sodium-Glucose Co-Transporter 2 Inhibitors in Older Patients with Type 2 Diabetes Mellitus. Diabetes Metab. J. 2024, 48, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, F.; Hashimoto, Y.; Kaji, A.; Sakai, R.; Okamura, T.; Kitagawa, N.; Okada, H.; Nakanishi, N.; Majima, S.; Senmaru, T.; et al. Sarcopenia Is Associated With a Risk of Mortality in People With Type 2 Diabetes Mellitus. Front. Endocrinol. 2021, 12, 783363. [Google Scholar] [CrossRef]
- Brown, E.; Wilding, J.P.H.; Barber, T.M.; Alam, U.; Cuthbertson, D.J. Weight Loss Variability with SGLT2 Inhibitors and GLP-1 Receptor Agonists in Type 2 Diabetes Mellitus and Obesity: Mechanistic Possibilities. Obes. Rev. 2019, 20, 816–828. [Google Scholar] [CrossRef]
- Vilsbøll, T.; Christensen, M.; Junker, A.E.; Knop, F.K.; Gluud, L.L. Effects of Glucagon-like Peptide-1 Receptor Agonists on Weight Loss: Systematic Review and Meta-Analyses of Randomised Controlled Trials. BMJ 2012, 344, d7771. [Google Scholar] [CrossRef]
- Rodríguez Jiménez, B.; Rodríguez de Vera Gómez, P.; Belmonte Lomas, S.; Mesa Díaz, Á.M.; Caballero Mateos, I.; Galán, I.; Morales Portillo, C.; Martínez-Brocca, M.A. Transforming Body Composition with Semaglutide in Adults with Obesity and Type 2 Diabetes Mellitus. Front. Endocrinol. 2024, 15, 1386542. [Google Scholar] [CrossRef]
- Szekeres, Z.; Nagy, A.; Jahner, K.; Szabados, E. Impact of Selected Glucagon-like Peptide-1 Receptor Agonists on Serum Lipids, Adipose Tissue, and Muscle Metabolism—A Narrative Review. Int. J. Mol. Sci. 2024, 25, 8214. [Google Scholar] [CrossRef]
- Zhao, L.; Zhu, C.; Lu, M.; Chen, C.; Nie, X.; Abudukerimu, B.; Zhang, K.; Ning, Z.; Chen, Y.; Cheng, J.; et al. The Key Role of a Glucagon-like Peptide-1 Receptor Agonist in Body Fat Redistribution. J. Endocrinol. 2019, 240, 271–286. [Google Scholar] [CrossRef] [PubMed]
- Anyiam, O.; Ardavani, A.; Rashid, R.S.A.; Panesar, A.; Idris, I. How Do Glucagon-like Peptide-1 Receptor Agonists Affect Measures of Muscle Mass in Individuals with, and without, Type 2 Diabetes: A Systematic Review and Meta-Analysis. Obes. Rev. 2025, 26, e13916. [Google Scholar] [CrossRef]
- Wilding, J.P.H.; Batterham, R.L.; Calanna, S.; Davies, M.; Van Gaal, L.F.; Lingvay, I.; McGowan, B.M.; Rosenstock, J.; Tran, M.T.D.; Wadden, T.A.; et al. Once-Weekly Semaglutide in Adults with Overweight or Obesity. N. Engl. J. Med. 2021, 384, 989–1002. [Google Scholar] [CrossRef]
- Linge, J.; Birkenfeld, A.L.; Neeland, I.J. Muscle Mass and Glucagon-Like Peptide-1 Receptor Agonists: Adaptive or Maladaptive Response to Weight Loss? Circulation 2024, 150, 1288–1298. [Google Scholar] [CrossRef] [PubMed]
- Volpe, S.; Lisco, G.; Fanelli, M.; Racaniello, D.; Colaianni, V.; Lavarra, V.; Triggiani, D.; Crudele, L.; Triggiani, V.; Sabbà, C.; et al. Oral Semaglutide Improves Body Composition and Preserves Lean Mass in Patients with Type 2 Diabetes: A 26-Week Prospective Real-Life Study. Front. Endocrinol. 2023, 14, 1240263. [Google Scholar] [CrossRef]
- Massimino, E.; Izzo, A.; Riccardi, G.; Pepa, G. Della The Impact of Glucose-Lowering Drugs on Sarcopenia in Type 2 Diabetes: Current Evidence and Underlying Mechanisms. Cells 2021, 10, 1958. [Google Scholar] [CrossRef] [PubMed]
- Ikejima, S.; Kondo, S.; Sakai, T.; Taniai, H.; Takahashi, T.; Umezu, J.; Iseka, M.; Inoue, M.; Nishihara, H.; Murata, K.; et al. Novel Approach to Sarcopenia in Diabetic Patients Treated with GLP-1 Receptor Agonists (GLP-1RA). Diabetes 2018, 67, 673. [Google Scholar] [CrossRef]
- Jiao, R.; Lin, C.; Cai, X.; Wang, J.; Wang, Y.; Lv, F.; Yang, W.; Ji, L. Characterizing Body Composition Modifying Effects of a Glucagon-like Peptide 1 Receptor-Based Agonist: A Meta-Analysis. Diabetes Obes. Metab. 2025, 27, 259–267. [Google Scholar] [CrossRef]
- Lv, X.; Wang, H.; Chen, C.; Zhao, Y.; Li, K.; Wang, Y.; Wang, L.; Fu, S.; Liu, J. The Effect of Tirzepatide on Weight, Lipid Metabolism and Blood Pressure in Overweight/Obese Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Diabetes Metab. Syndr. Obes. 2024, 17, 701–714. [Google Scholar] [CrossRef]
- Sallam, M.; Snygg, J.; El Ghandour, S.; Sallam, M. Efficacy and Safety of Tirzepatide for Weight Management in Non-Diabetic Obese Individuals: A Narrative Review. Obesities 2025, 5, 26. [Google Scholar] [CrossRef]
- Jensen, T.L.; Brønden, A.; Christensen, M.B.; Karstoft, K.; Sonne, D.P. The Body Weight Reducing Effects of Tirzepatide in People with and without Type 2 Diabetes: A Review on Efficacy and Adverse Effects. Patient Prefer. Adherence 2024, 18, 373–382. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; Aronne, L.J.; Ahmad, N.N.; Wharton, S.; Connery, L.; Alves, B.; Kiyosue, A.; Zhang, S.; Liu, B.; Bunck, M.C.; et al. Tirzepatide Once Weekly for the Treatment of Obesity. N. Engl. J. Med. 2022, 387, 205–216. [Google Scholar] [CrossRef]
- Rochira, V.; Greco, C.; Boni, S.; Costantino, F.; Dalla Valentina, L.; Zanni, E.; Itani, L.; El Ghoch, M. The Effect of Tirzepatide on Body Composition in People with Overweight and Obesity: A Systematic Review of Randomized, Controlled Studies. Diseases 2024, 12, 204. [Google Scholar] [CrossRef]
- Cariou, B.; Linge, J.; Neeland, I.J.; Dahlqvist Leinhard, O.; Petersson, M.; Fernández Landó, L.; Bray, R.; Rodríguez, Á. Effect of Tirzepatide on Body Fat Distribution Pattern in People with Type 2 Diabetes. Diabetes Obes. Metab. 2024, 26, 2446–2455. [Google Scholar] [CrossRef] [PubMed]
- Karakasis, P.; Patoulias, D.; Fragakis, N.; Mantzoros, C.S. Effect of Glucagon-like Peptide-1 Receptor Agonists and Co-Agonists on Body Composition: Systematic Review and Network Meta-Analysis. Metabolism 2025, 164, 156113. [Google Scholar] [CrossRef]
- Aronne, L.J.; Horn, D.B.; le Roux, C.W.; Ho, W.; Falcon, B.L.; Valderas, E.G.; Das, S.; Lee, C.J.; Glass, L.C.; Senyucel, C.; et al. Tirzepatide as Compared with Semaglutide for the Treatment of Obesity. N. Engl. J. Med. 2025, 393, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Weronika, J. Tirzepatide in Sport: A Comprehensive Review of Its Metabolic Impacts and Potential Applications for Athletes 1; Wiktor Biesiada Gromkowski Regional Specialist Hospital: Wrocław, Poland, 2025; pp. 1–15. [Google Scholar]
- Rasouli, N.; Wilding, J.P.H.; Kwan, A.Y.M.; Paik, J.S.; Sharma, P.; Peleshok, J. Tirzepatide for Older Adults with Type 2 Diabetes and Without Obesity: A Post Hoc Analysis of the SURPASS Clinical Trials. Diabetes Ther. 2025, 16, 701–715. [Google Scholar] [CrossRef]
- Feng, W.; Bi, Y.; Li, P.; Yin, T.; Gao, C.; Shen, S.; Gao, L.; Yang, D.; Zhu, D. Effects of Liraglutide, Metformin and Gliclazide on Body Composition in Patients with Both Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease: A Randomized Trial. J. Diabetes Investig. 2019, 10, 399–407. [Google Scholar] [CrossRef]
- Shah, P.K.; Mudaliar, S.; Chang, A.R.; Aroda, V.; Andre, M.; Burke, P.; Henry, R.R. Effects of Intensive Insulin Therapy Alone and in Combination with Pioglitazone on Body Weight, Composition, Distribution and Liver Fat Content in Patients with Type 2 Diabetes. Diabetes Obes. Metab. 2011, 12, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Perna, S.; Guido, D.; Bologna, C.; Solerte, S.B.; Guerriero, F.; Isu, A.; Rondanelli, M. Liraglutide and Obesity in Elderly: Efficacy in Fat Loss and Safety in Order to Prevent Sarcopenia. A Perspective Case Series Study. Aging Clin. Exp. Res. 2016, 28, 1251–1257. [Google Scholar] [CrossRef]
- Rodríguez-Moctezuma, J.R.; Robles-López, G.; López-Carmona, J.M.; Gutiérrez-Rosas, M.J. Effects of Metformin on the Body Composition in Subjects with Risk Factors for Type 2 Diabetes. Diabetes Obes. Metab. 2005, 7, 189–192. [Google Scholar] [CrossRef]
- Heise, T.; Devries, J.H.; Urva, S.; Li, J.; Pratt, E.J.; Thomas, M.K.; Mather, K.J.; Karanikas, C.A.; Dunn, J.; Haupt, A.; et al. Tirzepatide Reduces Appetite, Energy Intake, and Fat Mass in People with Type 2 Diabetes. Diabetes Care 2023, 46, 998–1004. [Google Scholar] [CrossRef] [PubMed]
- Abdrabou Abouelmagd, A.; Abdelrehim, A.M.; Bashir, M.N.; Abdelsalam, F.; Marey, A.; Tanas, Y.; Abuklish, D.M.; Belal, M.M. Efficacy and Safety of Retatrutide, a Novel GLP-1, GIP, and Glucagon Receptor Agonist for Obesity Treatment: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Bayl. Univ. Med. Cent. Proc. 2025, 38, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Vaishnaw, A. Scholar Rock Reports Positive Phase 2 EMBRAZE Trial Results Demonstrating Statistically Significant Preservation of Lean Mass with Apitegromab During Tirzepatide-Induced Weight Loss; Scholar Rock: Cambridge, MA, USA, 2025. [Google Scholar]
- Newswire, G.; Phase, T. Veru Announces Positive Topline Data from Phase 2b QUALITY Clinical Study: Enobosarm Preserved Lean Mass in Patients Receiving WEGOVY® (Semaglutide) for Weight Reduction; Veru Inc.: Miami, FL, USA, 2025. [Google Scholar]
- Merz, K.E.; Thurmond, D.C. Role of Skeletal Muscle in Insulin Resistance and Glucose Uptake. Compr. Physiol. 2020, 10, 785–809. [Google Scholar] [CrossRef]
- Tay, J.; Thompson, C.H.; Luscombe-Marsh, N.D.; Wycherley, T.P.; Noakes, M.; Buckley, J.D.; Wittert, G.A.; Yancy, W.S.; Brinkworth, G.D. Effects of an Energy-Restricted Low-Carbohydrate, High Unsaturated Fat/Low Saturated Fat Diet versus a High-Carbohydrate, Low-Fat Diet in Type 2 Diabetes: A 2-Year Randomized Clinical Trial. Diabetes Obes. Metab. 2018, 20, 858–871. [Google Scholar] [CrossRef]
- Dyson, P. Low Carbohydrate Diets and Type 2 Diabetes: What Is the Latest Evidence? Diabetes Ther. 2015, 6, 411–424. [Google Scholar] [CrossRef]
- Szczerba, E.; Barbaresko, J.; Schiemann, T.; Stahl-Pehe, A.; Schwingshackl, L.; Schlesinger, S. Diet in the Management of Type 2 Diabetes: Umbrella Review of Systematic Reviews with Meta-Analyses of Randomised Controlled Trials. BMJ Med. 2023, 2, e000664. [Google Scholar] [CrossRef]
- Saslow, L.R.; Daubenmier, J.J.; Moskowitz, J.T.; Kim, S.; Murphy, E.J.; Phinney, S.D.; Ploutz-Snyder, R.; Goldman, V.; Cox, R.M.; Mason, A.E.; et al. Twelve-Month Outcomes of a Randomized Trial of a Moderate-Carbohydrate versus Very Low-Carbohydrate Diet in Overweight Adults with Type 2 Diabetes Mellitus or Prediabetes. Nutr. Diabetes 2017, 7, 304. [Google Scholar] [CrossRef]
- Gardner, C.D.; Landry, M.J.; Perelman, D.; Petlura, C.; Durand, L.R.; Aronica, L.; Crimarco, A.; Cunanan, K.M.; Chang, A.; Dant, C.C.; et al. Effect of a Ketogenic Diet versus Mediterranean Diet on Glycated Hemoglobin in Individuals with Prediabetes and Type 2 Diabetes Mellitus: The Interventional Keto-Med Randomized Crossover Trial. Am. J. Clin. Nutr. 2022, 116, 640–652. [Google Scholar] [CrossRef] [PubMed]
- Huo, R.; Du, T.; Xu, Y.; Xu, W.; Chen, X.; Sun, K.; Yu, X. Effects of Mediterranean-Style Diet on Glycemic Control, Weight Loss and Cardiovascular Risk Factors among Type 2 Diabetes Individuals: A Meta-Analysis. Eur. J. Clin. Nutr. 2015, 69, 1200–1208. [Google Scholar] [CrossRef]
- Esposito, K.; Maiorino, M.I.; Bellastella, G.; Chiodini, P.; Panagiotakos, D.; Giugliano, D. A Journey into a Mediterranean Diet and Type 2 Diabetes: A Systematic Review with Meta-Analyses. BMJ Open 2015, 5, e008222. [Google Scholar] [CrossRef]
- Meir, A.Y.; Rinott, E.; Tsaban, G.; Zelicha, H.; Kaplan, A.; Rosen, P.; Shelef, I.; Youngster, I.; Shalev, A.; Blüher, M.; et al. Effect of Green-Mediterranean Diet on Intrahepatic Fat: The DIRECT plus Randomised Controlled Trial. Gut 2021, 70, 2085–2095. [Google Scholar] [CrossRef]
- Clina, J.G.; Sayer, R.D.; Pan, Z.; Cohen, C.W.; McDermott, M.T.; Catenacci, V.A.; Wyatt, H.R.; Hill, J.O. High- and Normal-Protein Diets Improve Body Composition and Glucose Control in Adults with Type 2 Diabetes: A Randomized Trial. Obesity 2023, 31, 2021–2030. [Google Scholar] [CrossRef]
- Leidy, H.J.; Clifton, P.M.; Astrup, A.; Wycherley, T.P.; Westerterp-Plantenga, M.S.; Luscombe-Marsh, N.D.; Woods, S.C.; Mattes, R.D. The Role of Protein in Weight Loss and Maintenance. Am. J. Clin. Nutr. 2015, 101, 1320S–1329S. [Google Scholar] [CrossRef]
- Fanti, M.; Mishra, A.; Longo, V.D.; Brandhorst, S. Time-Restricted Eating, Intermittent Fasting, and Fasting-Mimicking Diets in Weight Loss. Curr. Obes. Rep. 2021, 10, 70–80. [Google Scholar] [CrossRef]
- Panizza, C.E.; Lim, U.; Yonemori, K.M.; Cassel, K.D.; Wilkens, L.R.; Harvie, M.N.; Maskarinec, G.; Delp, E.J.; Lampe, J.W.; Shepherd, J.A.; et al. Effects of Intermittent Energy Restriction Combined with a Mediterranean Diet on Reducing Visceral Adiposity: A Randomized Active Comparator Pilot Study. Nutrients 2019, 11, 1386. [Google Scholar] [CrossRef] [PubMed]
- Sutton, E.F.; Beyl, R.; Early, K.S.; Cefalu, W.T.; Ravussin, E.; Peterson, C.M. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab. 2018, 27, 1212–1221.e3. [Google Scholar] [CrossRef]
- Aryaeian, N.; Sedehi, S.K.; Arablou, T. Polyphenols and Their Effects on Diabetes Management: A Review. Med. J. Islam. Repub. Iran. 2017, 31, 134. [Google Scholar] [CrossRef] [PubMed]
- Jakubiak, G.K.; Pawlas, N.; Morawiecka-Pietrzak, M.; Starzak, M.; Stanek, A.; Cieślar, G. Retrospective Cross-Sectional Study of the Relationship of Thyroid Volume and Function with Anthropometric Measurements, Body Composition Analysis Parameters, and the Diagnosis of Metabolic Syndrome in Euthyroid People Aged 18–65. Medicina 2024, 60, 1080. [Google Scholar] [CrossRef] [PubMed]
Dietary Intervention | Key Principles | Summary of Effects on Body Composition |
---|---|---|
Low-Carbohydrate Diet (e.g., <130 g carbs/day) [79,80,81] | Low carb (<130 g/day), higher protein/fat, lowers insulin & glucose. | Short-term: ~5–7% BW loss, ↓ waist. Long-term like other diets if calories matched. |
Ketogenic Diet (very low-carb, high-fat) [82,83] | Very low carb (<50 g/day), high-fat (~70%), induces ketosis. | Most effective for rapid fat loss (~5–10% BW in 3–6 mo), ↓ visceral fat. |
Mediterranean Diet (moderate-fat, whole-food diet) [84,85,86] | Whole foods, healthy fats (olive oil), moderate carbs/protein. | Moderate, sustained fat loss (~5% BW in 12 mo), ↓ waist, good adherence. |
High-Protein Diet (>25% calories from protein) [87,88] | High-protein (>25% kcal), supports satiety & lean mass retention. | Effective fat loss with calorie deficit. Best muscle preservation when combined with exercise. |
Intermittent Fasting (e.g., 5:2 diet, ADF, TRF) [89,90,91] | Cyclic calorie restriction (e.g., 5:2, ADF, TRF), induces fasting benefits. | Fat loss equals daily diets if calories matched. ↓ visceral fat, preserves lean mass. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bujdei-Tebeică, I.; Mihai, D.A.; Pantea-Stoian, A.M.; Ștefan, S.D.; Stoicescu, C.; Serafinceanu, C. Effects of Blood-Glucose Lowering Therapies on Body Composition and Muscle Outcomes in Type 2 Diabetes: A Narrative Review. Medicina 2025, 61, 1399. https://doi.org/10.3390/medicina61081399
Bujdei-Tebeică I, Mihai DA, Pantea-Stoian AM, Ștefan SD, Stoicescu C, Serafinceanu C. Effects of Blood-Glucose Lowering Therapies on Body Composition and Muscle Outcomes in Type 2 Diabetes: A Narrative Review. Medicina. 2025; 61(8):1399. https://doi.org/10.3390/medicina61081399
Chicago/Turabian StyleBujdei-Tebeică, Ioana, Doina Andrada Mihai, Anca Mihaela Pantea-Stoian, Simona Diana Ștefan, Claudiu Stoicescu, and Cristian Serafinceanu. 2025. "Effects of Blood-Glucose Lowering Therapies on Body Composition and Muscle Outcomes in Type 2 Diabetes: A Narrative Review" Medicina 61, no. 8: 1399. https://doi.org/10.3390/medicina61081399
APA StyleBujdei-Tebeică, I., Mihai, D. A., Pantea-Stoian, A. M., Ștefan, S. D., Stoicescu, C., & Serafinceanu, C. (2025). Effects of Blood-Glucose Lowering Therapies on Body Composition and Muscle Outcomes in Type 2 Diabetes: A Narrative Review. Medicina, 61(8), 1399. https://doi.org/10.3390/medicina61081399