Effects of Polysaccharides Extracted from Stem Barks on the Spontaneous Contractile Activity of the Ileal Smooth Muscle
Abstract
1. Introduction
2. Results
2.1. Structural Identification of Polysaccharides from Barks
2.2. Activity of Stem Bark Polysaccharides on the Contractile Activity of Smooth Muscle
2.2.1. Spasmolytic Activity of Pectin Fractions
2.2.2. Effects of Pectin Fractions on the Cholinergic System
2.2.3. Spasmogenic Activity of Hemicellulose Fractions
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Standard Polysaccharides
4.3. Extraction of Pectin and Hemicelluloses
4.4. Monosaccharide Composition
4.5. Endo-Glucanase Digestion
4.6. Endo-Xylanase Digestion
4.7. Oligosaccharide Analysis by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS)
4.8. In Vitro Assays on Excised Ileum Fragments
4.9. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RG-I | rhamnogalacturonan I |
Oxa | pectins extracted with oxalate |
K1 and K4 | hemicelluloses extracted with 1 M and 4 M KOH |
AK | Aucoumea klaineana |
PB | Pentadesma butyracea |
CS | Canarium schweinfurthii |
SZ | Scorodophloeus zenkeri |
4OMe-GlcA | 4-O-methyl glucuronic acid |
GC-FID | gas chromatography–flame ionization detector |
MALDI-TOF MS | Matrix-Assisted Laser Desorption/Ionization time-of-flight mass spectrometry |
References
- Yu, Y.; Shen, M.; Song, Q.; Xie, J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydr. Polym. 2018, 183, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Minzanova, S.T.; Mironov, V.F.; Arkhipova, D.M.; Khabibullina, A.V.; Mironova, L.G.; Zakirova, Y.M.; Milyukov, V.A. Biological activity and pharmacological application of pectic polysaccharides: A review. Polymers 2018, 10, 1407. [Google Scholar] [CrossRef] [PubMed]
- Mayindza Ekaghba, E.L.; Loutelier-Bourhis, C.; Schmitz, I.; Afonso, C.; Lerouge, P.; Mengome, L.E. Phytochemical analysis and antidiarrheal activity of bark decoctions of Pentadesma butyracea Sabine (Clusiaceae). Molecules 2024, 29, 5789. [Google Scholar] [CrossRef] [PubMed]
- Gowda, D.; Sarathy, C. Structure of an L-arabino-D-xylan from the bark of Cinnamomum zeylanicum. Carbohydr. Res. 1987, 166, 263–269. [Google Scholar] [CrossRef]
- Kanari, M.; Tomoda, M.; Gonda, R.; Shimizu, N.; Kimura, M.; Kawaguchi, M.; Kawabe, C.A. A reticuloendothelial system-activating arabinoxylan from the bark of Cinnamomum cassia. Chem. Pharm. Bull. 1989, 37, 3191–3194. [Google Scholar] [CrossRef] [PubMed]
- Fradinho, D.M.; Pascoal Neto, C.; Evtuguin, D.; Jorge, F.C.; Irle, M.A.; Gil, M.H.; Pedrosa de Jesus, J. Chemical characterisation of bark and of alkaline bark extracts from maritime pine grown in Portugal. Ind. Crops Prod. 2002, 16, 23–32. [Google Scholar] [CrossRef]
- Mengome, L.E.; Voxeur, A.; Akue, J.P.; Lerouge, P. In vitro proliferation and production of cytokine and IgG by human PBMCs stimulated with polysaccharide extract from plants endemic to Gabon. Molecules 2014, 19, 18543–18557. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.P.A.; Miranda, I.; Sousa, V.B.; Pereira, H. Chemical composition of barks from Quercus faginea trees and characterization of their lipophilic and polar extracts. PLoS ONE 2018, 13, e0197135. [Google Scholar] [CrossRef] [PubMed]
- Flint, H.; Bayer, E.; Rincon, M.; Lamed, R.; White, B.A. Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nat. Rev. Microbiol. 2008, 6, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhang, Z.; Liu, X.; Hu, W.; Wu, W. Gastrointestinal fermentable polysaccharide is beneficial in alleviating loperamide-induced constipation in mice. Nutrients 2023, 15, 4364. [Google Scholar] [CrossRef] [PubMed]
- Combo, A.M.M.; Aguedo, M.; Paquot, M. Les oligosaccharides pectiques: Production et applications possibles. Biotechnol. Agron. Soc. Environ. 2011, 15, 153–164. [Google Scholar]
- Huang, J.; Lin, B.; Zhang, Y.; Xie, Z.; Zheng, Y.; Wang, Q.; Xiao, H. Bamboo shavings derived O-acetylated xylan alleviates loperamide-induced constipation in mice. Carbohydr. Polym. 2022, 276, 118761. [Google Scholar] [CrossRef] [PubMed]
- Vyshtakalyuk, A.B.; Sosnina, N.A.; Minzanova, S.T.; Zobov, V.V.; Lantsova, A.V.; Minullina, E.R.; Mironov, V.F.; Karaseva, A.N. Effect of pectin substances on contractile activity of the uterine myometrium in rats. Bull. Exp. Biol. Med. 2006, 141, 430–432. [Google Scholar] [CrossRef] [PubMed]
- Graça, J.; Bezerra, M.; Lima, V.; Rodrigues, J.; Monteiro, D.; Quinderé, A.; Amorim, R.; Paula, R.; Benevides, N. Effect of a Crude Sulfated polysaccharide from Halymenia floresia (Rhodophyta) on gastrointestinal smooth muscle contractility. Braz. Arch. Biol. Technol. 2011, 54, 907–916. [Google Scholar] [CrossRef]
- Rawat, P.; Singh, P.K.; Kumar, V. Evidence based traditional anti-diarrheal medicinal plants and their phytocompounds. Biomed. Pharmacother. 2017, 96, 1453–1464. [Google Scholar] [CrossRef] [PubMed]
- Mougnala Moukagni, E.; Ziegler-Devin, I.; Safou-Tchima, R.; Brosse, N. Extraction of acetylated glucuronoxylans and glucomannans from Okoume (Aucoumea klaineana Pierre) sapwood and heartwood by steam explosion. Ind. Crops Prod. 2021, 166, 113466. [Google Scholar] [CrossRef]
- Xie, Y.; Guo, X.; Ma, Z.; Gong, J.; Wang, H.; Lv, Y. Efficient extraction and structural characterization of hemicellulose from sugarcane bagasse Pith. Polymers 2020, 12, 608. [Google Scholar] [CrossRef] [PubMed]
- De Ponti, F.; Giaroni, C.; Cosentino, M.; Lecchini, S.; Frigo, G. Calcium-channel blockers and gastrointestinal motility: Basic and clinical aspects. Pharmacol. Ther. 1993, 60, 121–148. [Google Scholar] [CrossRef] [PubMed]
- Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Bot. J. Linn. Soc. 2009, 161, 105–121. [Google Scholar] [CrossRef]
Plant | Code | Extract | Yield (%) | % Pectins and Hemicelluloses |
---|---|---|---|---|
Aucoumea klaineana | AKoxa | Oxalate | 0.1 | 1.5 |
AKK1 | 1 M KOH | 3 | 98.5 | |
AKK4 | 4 M KOH | 4 | ||
Pentadesma butyracea | PBoxa | Oxalate | 0.4 | 3.7 |
PBK1 | 1 M KOH | 4.1 | 96.3 | |
PBK4 | 4 M KOH | 6.1 | ||
Canarium schweinfurthii | CSoxa | Oxalate | 0.05 | 1 |
CSK1 | 1 M KOH | 1.8 | 99 | |
CSK4 | 4 M KOH | 2.8 | ||
Scorodophloeus zenkeri | SZoxa | Oxalate | 0.3 | 4.6 |
SZK1 | 1 M KOH | 2.1 | 95.4 | |
SZK4 | 4 M KOH | 4 |
Monomer | AKoxa | PBoxa | CSoxa | SZoxa |
---|---|---|---|---|
Ara | 18.3 ± 3 | 32.9 ± 6 | 30.4 ± 6 | 14.1 ± 3 |
Rha | 8.8 ± 2 | 7.7 ± 2 | 11 ± 2 | 9.4 ± 2 |
Fuc | 2.0 ± 0.8 | 0.6 ± 0.2 | 1.4 ± 0.5 | 2.0 ± 0.5 |
Xyl | 8.7 ± 2 | 10.2 ± 3 | 9.6 ± 3 | 8.3 ± 2 |
GlcA | 4.2 ± 2 | 3.0 ± 1 | 3.1 ± 1 | 2.7 ± 1 |
Man | 5.5 ± 2 | 3 ± 1 | 4.4 ± 1 | 5.5 ± 2 |
Gal | 38.8 ± 7 | 24.2 ± 6 | 35.9 ± 7 | 13.9 ± 3 |
GalA | 9.9 ± 3 | 17.4 ± 5 | 13 ± 3 | 39.8 ± 7 |
[GalA/Rha] | 1.13 | 2.25 | 1.18 | 4.23 |
[GalA/Ara] | 2.12 | 0.8 | 1.17 | 0.96 |
[(Gal+Ara)/Rha] | 6.48 | 7.3 | 6.02 | 2.98 |
Monomer | Aucoumea klaineana | Pentadesma butyracea | Canarium schweinfurthii | Scorodophloeus zenkeri | ||||
---|---|---|---|---|---|---|---|---|
AKK1 | AKK4 | PBK1 | PBK4 | CSK1 | CSK4 | SZK1 | SZK4 | |
Ara | 5.6 ± 1 | 6.5 ± 1 | 25.2 ± 3 | 12.5 ± 2 | 10.5 ± 2 | 6.3 ± 1 | 6.7 ± 1 | 8.4 ± 1 |
Rha | 2.0 ± 0.5 | 3.0 ± 1 | 3.0 ± 0.5 | 2.1 ± 0.5 | 2.8 ± 0.1 | 1.0 ± 0.1 | 2.5 ± 0.5 | 1.1 ± 0.2 |
Fuc | 0.8 ± 0 | 1.0 ± 0.2 | 0.6 ± 0.1 | 1.5 ± 0.2 | 0.9 ± 0.2 | 0.8 ± 0.2 | 1.9 ± 0.5 | 1.0 ± 0 |
Xyl | 55.9 ± 5 | 42.9 ± 4 | 29.4 ± 3 | 49.5 ± 5 | 22.6 ± 3 | 65.4 ± 5 | 60.8 ± 7 | 75.1 ± 5 |
GlcA | 2.1 ± 0.2 | 2.3 ± 0.7 | 1.9 ± 0.3 | 1.6 ± 0.1 | 2.6 ± 0.2 | 0.7 ± 0.1 | 1.6 ± 0.2 | 0.7 ± 0.1 |
Man | 1.4 ± 0.2 | 2.6 ± 0.5 | 1.7 ± 0.2 | 3.9 ± 0.5 | 1.6 ± 0.2 | 1.7 ± 0.2 | 3.8 ± 0.1 | 1.3 ± 0.1 |
Gal | 4.4 ± 0.4 | 11.1 ± 2 | 17.3 ± 3 | 10.8 ± 2 | 8.5 ± 1 | 2.9 ± 0.5 | 4.9 ± 0.4 | 2.7 ± 0.5 |
GalA | 2.2 ± 0.2 | 6.2 ± 0.3 | 10.6 ± 2 | 3.8 ± 0.5 | 5.0 ± 0.5 | 1.3 ± 0.2 | 5.7 ± 0.5 | 2.6 ± 0.3 |
Glc | 25.7 ± 4 | 23.3 ± 3 | 11.4 ± 2 | 13.9 ± 3 | 45 ± 5 | 19.7 ± 2 | 12.1 ± 2 | 6.7 ± 0.5 |
Xyl/Ara | 10 | 6.6 | 1.1 | 4 | 2 | 10 | 9 | 9 |
Extracts | % Relaxation ± SD a | |
---|---|---|
Positive control | Loperamide | 55 ± 4 |
Plant extracts | AKoxa | 100 ± 0 **** |
CSoxa | 100 ± 0 **** | |
PBoxa | 59.0 ± 9.0 | |
SZoxa | 52.5 ± 4.1 | |
Standard polysaccharide | Lemon polygalacturonic acid | 100 ± 0 **** |
Acetylcholine (10−3 µM) + plant extracts b | Acetylcholine (10−3 µM) + PBoxa | 41.9 ± 4 #### |
Acetylcholine (10−3 µM) + SZoxa | 59.1 ± 9 ### |
Sample | % Stimulation ± SD a | |
---|---|---|
Positive control | Picosulphate | 84.0 ± 1.3 |
Plant extracts | AKK1 | 205.3 ± 14.2 **** |
CSK1 | 277.9 ± 28.2 **** | |
PBK1 | 165.0 ± 21.1 ** | |
SZK1 | 195.5 ± 3.3 *** | |
AKK4 | 189.0 ± 7.0 *** | |
CSK4 | 366.6 ± 10.5 **** | |
PBK4 | 411.1 ± 38.6 **** | |
SZK4 | 363.3 ± 15.2 **** | |
Standard polysaccharides | Wheat arabinoxylan | 94.2 ± 10.7 |
Beechwood glucuronoxylan | 61.8 ± 3.7 | |
Tamarind xyloglucan | 0 ± 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayindza Ekaghba, E.L.; Perruchon, O.; Lerouge, P.; Mengome, L.E. Effects of Polysaccharides Extracted from Stem Barks on the Spontaneous Contractile Activity of the Ileal Smooth Muscle. Molecules 2025, 30, 3156. https://doi.org/10.3390/molecules30153156
Mayindza Ekaghba EL, Perruchon O, Lerouge P, Mengome LE. Effects of Polysaccharides Extracted from Stem Barks on the Spontaneous Contractile Activity of the Ileal Smooth Muscle. Molecules. 2025; 30(15):3156. https://doi.org/10.3390/molecules30153156
Chicago/Turabian StyleMayindza Ekaghba, Ericka Lorleil, Olivier Perruchon, Patrice Lerouge, and Line Edwige Mengome. 2025. "Effects of Polysaccharides Extracted from Stem Barks on the Spontaneous Contractile Activity of the Ileal Smooth Muscle" Molecules 30, no. 15: 3156. https://doi.org/10.3390/molecules30153156
APA StyleMayindza Ekaghba, E. L., Perruchon, O., Lerouge, P., & Mengome, L. E. (2025). Effects of Polysaccharides Extracted from Stem Barks on the Spontaneous Contractile Activity of the Ileal Smooth Muscle. Molecules, 30(15), 3156. https://doi.org/10.3390/molecules30153156