Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (232)

Search Parameters:
Keywords = multiple drug-resistant bacteria

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 317 KiB  
Review
Combination Antibiotic Therapy for Orthopedic Infections
by Eric Bonnet and Julie Lourtet-Hascoët
Antibiotics 2025, 14(8), 761; https://doi.org/10.3390/antibiotics14080761 - 29 Jul 2025
Viewed by 302
Abstract
Background/Objectives: Limited robust data support the use of antibiotic combinations in the treatment of orthopedic infections. However, in certain situations, the combination of antibiotics seems to be beneficial. This review aims to outline the circumstances under which a combination of antibiotics may [...] Read more.
Background/Objectives: Limited robust data support the use of antibiotic combinations in the treatment of orthopedic infections. However, in certain situations, the combination of antibiotics seems to be beneficial. This review aims to outline the circumstances under which a combination of antibiotics may be utilized in the treatment of orthopedic infections. Methods: We reviewed the existing guidelines on orthopedic infections and focused on situations where antibiotic combinations are recommended or proposed optionally. We chose vitro and animal studies that provide evidence for the effectiveness of several widely recommended combinations. Results: The combinations serve multiple purposes: they provide empirical coverage while awaiting microbiological results, offer targeted treatment for difficult-to-treat infections, and facilitate oral treatment primarily for staphylococcal infections. The objectives include enhancing bacterial coverage against Gram-positive and Gram-negative bacteria, achieving synergistic effects with bactericidal agents, and reducing the risk of antibiotic resistance. The review outlines specific combinations for fracture-related infections, periprosthetic joint infections, spinal infections, and anterior cruciate ligament reconstruction infections, emphasizing the importance of tailoring antibiotic choices based on local epidemiology and patient history. The review also addresses potential drawbacks of combination therapy, such as toxicity, higher costs, and drug interactions, underscoring the complexity of managing orthopedic infections effectively. Conclusions: According to the guidelines, several different proposals are made, depending in part on the countries’ epidemiology. In a well-defined situation, various authors propose either monotherapy or a combination of antibiotics. When a combination is suggested, the choice of antibiotics is based on the expected effect: broadening the spectrum, enhancing bactericidal activity, achieving a synergistic effect, or reinforcing biofilm activity to optimize the treatment. Full article
(This article belongs to the Section Antibiotic Therapy in Infectious Diseases)
19 pages, 2160 KiB  
Article
Genetic Diversity and Phylogenetic Analysis Among Multidrug-Resistant Pseudomonas spp. Isolated from Solid Waste Dump Sites and Dairy Farms
by Tuhina Das, Arkaprava Das, Neha Das, Rittika Mukherjee, Mousumi Saha, Dipanwita Das and Agniswar Sarkar
Acta Microbiol. Hell. 2025, 70(3), 30; https://doi.org/10.3390/amh70030030 - 16 Jul 2025
Viewed by 375
Abstract
The excessive use of antimicrobials drives the emergence of multidrug resistance (MDR) in bacterial strains, which harbor resistance genes to survive under diverse drug pressures. Such resistance can result in life-threatening infections. The predominance of MDR Pseudomonas spp. poses significant challenges to public [...] Read more.
The excessive use of antimicrobials drives the emergence of multidrug resistance (MDR) in bacterial strains, which harbor resistance genes to survive under diverse drug pressures. Such resistance can result in life-threatening infections. The predominance of MDR Pseudomonas spp. poses significant challenges to public health and environmental sustainability, particularly in ecosystems affected by human activities. Characterizing MDR Pseudomonas spp. is crucial for developing effective diagnostic tools and biosecurity protocols, with broader implications for managing other pathogenic bacteria. Strains were diagnosed through 16S rRNA PCR and sequencing, complemented by phylogenetic analysis to evaluate local and global evolutionary connections. Antibiotic susceptibility tests revealed extensive resistance across multiple classes, with MIC values surpassing clinical breakpoints. This study examined the genetic diversity, resistance potential, and phylogenetic relationships among Pseudomonas aeruginosa strain DG2 and Pseudomonas fluorescens strain FM3, which were isolated from solid waste dump sites (n = 30) and dairy farms (n = 22) in West Bengal, India. Phylogenetic analysis reveals distinct clusters that highlight significant geographic linkages and genetic variability among the strains. Significant biofilm production under antibiotic exposure markedly increased resistance levels. RAPD-PCR profiling revealed substantial genetic diversity among the isolates, indicating variations in their genetic makeup. In contrast, SDS-PAGE analysis provided insights into the protein expression patterns that are activated by stress, which are closely linked to MDR. This dual approach offers a clearer perspective on their adaptive responses to environmental stressors. This study underscores the need for vigilant monitoring of MDR Pseudomonas spp. in anthropogenically impacted environments to mitigate risks to human and animal health. Surveillance strategies combining phenotypic and molecular approaches are essential to assess the risks posed by resilient pathogens. Solid waste and dairy farm ecosystems emerge as critical reservoirs for the evolution and dissemination of MDR Pseudomonas spp. Full article
Show Figures

Figure 1

18 pages, 4199 KiB  
Article
Effects of Antibiotic Residues on Fecal Microbiota Composition and Antimicrobial Resistance Gene Profiles in Cattle from Northwestern China
by Wei He, Xiaoming Wang, Yuying Cao, Cong Liu, Zihui Qin, Yang Zuo, Yiming Li, Fang Tang, Jianjun Dai, Shaolin Wang and Feng Xue
Microorganisms 2025, 13(7), 1658; https://doi.org/10.3390/microorganisms13071658 - 14 Jul 2025
Viewed by 343
Abstract
Grazing is a free-range farming model commonly practiced in low-external-input agricultural systems. The widespread use of veterinary antibiotics in livestock farming has led to significant environmental accumulation of antibiotic residues and antibiotic resistance genes (ARGs), posing global health risks. This study investigated the [...] Read more.
Grazing is a free-range farming model commonly practiced in low-external-input agricultural systems. The widespread use of veterinary antibiotics in livestock farming has led to significant environmental accumulation of antibiotic residues and antibiotic resistance genes (ARGs), posing global health risks. This study investigated the antibiotic residues, bacterial community, ARG profiles, and mobile genetic elements (MGEs) in cattle feces from three provinces in western China (Ningxia, Xinjiang, and Inner Mongolia) under grazing modes. The HPLC-MS detection showed that the concentration of tetracycline antibiotics was the highest in all three provinces. Correlation analysis revealed a significant negative correlation between antibiotic residues and the diversity and population abundance of intestinal microbiota. However, the abundance of ARGs was directly proportional to antibiotic residues. Then, the Sankey analysis revealed that the ARGs in the cattle fecal samples were concentrated in 15 human pathogenic bacteria (HPB) species, with 9 of these species harboring multiple drug resistance genes. Metagenomic sequencing revealed that carbapenemase-resistant genes (blaKPC and blaVIM) were also present in considerable abundance, accounting for about 10% of the total ARGs detected in three provinces. Notably, Klebsiella pneumoniae strains carrying blaCTX-M-55 were detected, which had a possibility of IncFII plasmids harboring transposons and IS19, indicating the risk of horizontal transfer of ARGs. This study significantly advances the understanding of the impact of antibiotic residues on the fecal microbiota composition and ARG profiles in grazing cattle from northwestern China. Furthermore, it provides critical insights for the development of rational antibiotic usage strategies and comprehensive public health risk assessments. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

25 pages, 1759 KiB  
Review
Harnessing the Potential of Antibacterial and Antibiofilm Phytochemicals in the Combat Against Superbugs: A One Health Perspective
by Suma Sarojini, Saranya Jayaram, Sandhya Kalathilparambil Santhosh, Pragyan Priyadarshini, Manikantan Pappuswamy and Balamuralikrishnan Balasubramanian
Antibiotics 2025, 14(7), 692; https://doi.org/10.3390/antibiotics14070692 - 9 Jul 2025
Viewed by 660
Abstract
The war between humans and bacteria started centuries ago. With the advent of antibiotics, there was a temporary ceasefire in this war, but the scenario soon started becoming worse with the emergence of drug-resistant strains within years of the deployment of antibiotics in [...] Read more.
The war between humans and bacteria started centuries ago. With the advent of antibiotics, there was a temporary ceasefire in this war, but the scenario soon started becoming worse with the emergence of drug-resistant strains within years of the deployment of antibiotics in the market. With the surge in the misuse of antibiotics, there was a drastic increase in the number of multidrug-resistant (MDR) and extensively drug-resistant bacterial strains, even to antibiotics like Methicillin and vancomycin, aggravating the healthcare scenario. The threat of MDR ESKAPE pathogens is particularly high in nosocomial infections, where biofilms formed by bacteria create a protective barrier that makes them highly resistant to antibiotics, complicating the treatment efforts. Scientists are looking at natural and sustainable solutions, as several studies have projected deaths contributed by drug-resistant bacteria to go beyond 50 million by 2050. Many plant-derived metabolites have shown excellent antibacterial and antibiofilm properties that can be tapped for combating superbugs. The present review explores the current status of various studies on antibacterial plant metabolites like alkaloids and flavonoids and their mechanisms in disrupting biofilms and killing bacteria by way of inhibiting key survival strategies of bacteria like motility, quorum-sensing, reactive oxygen species production, and adhesion. These mechanisms were found to be varied in Gram-positive, Gram-negative, and acid-fast bacteria like Mycobacterium tuberculosis, which will be discussed in detail. The successful tapping of the benefits of such plant-derived chemicals in combination with evolving techniques of nanotechnology and targeted drug delivery can go a long way in achieving the goal of One Health, which advocates the unity of multiple practices for the optimal health of people, animals, and the environment. Full article
Show Figures

Figure 1

16 pages, 8686 KiB  
Article
Potential Natural Inhibitors of MRSA ABC Transporters and MecA Identified Through In Silico Approaches
by Benson Otarigho, Paul M. Duffin and Mofolusho O. Falade
Microorganisms 2025, 13(6), 1431; https://doi.org/10.3390/microorganisms13061431 - 19 Jun 2025
Viewed by 538
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) poses a significant clinical challenge due to its resistance to multiple antibiotics. The urgent need for new therapeutic approaches has led to the exploration of natural compounds as potential treatments, particularly those targeting the key bacterial proteins involved in [...] Read more.
Methicillin-resistant Staphylococcus aureus (MRSA) poses a significant clinical challenge due to its resistance to multiple antibiotics. The urgent need for new therapeutic approaches has led to the exploration of natural compounds as potential treatments, particularly those targeting the key bacterial proteins involved in antibiotic resistance. This study focused on the multidrug ABC transporter and MecA proteins, which play crucial roles in MRSA′s pathogenicity and resistance mechanisms. Using computational techniques and molecular docking methods, we assessed the interactions of 80 natural compounds with S. aureus multidrug ABC transporter SAV1866 (SAV1866) and MecA proteins. Our analysis revealed 14 compounds with robust binding to SAV1866 and one compound with a strong affinity for MecA. Notably, these compounds showed weaker affinities for the MgrA, MepR, and arlR proteins, suggesting specificity in their interactions. Among the 15 promising compounds identified, 1′,2-Binaphthalen-4-one-2′,3-dimethyl-1,8′-epoxy-1,4′,5,5′,8,8′-hexahydroxy-8-O-β-glucopyranosyl-5′-O-β-xylopyranosyl(1→6)-β-glucopyranoside; Cis-3,4-dihydrohamacanthin b; and Mamegakinone exhibited the highest binding affinities to S. aureus SAV1866. These compounds represent diverse chemical classes, including alkaloids, indole derivatives, naphthalenes, and naphthoquinones, offering a range of structural scaffolds for further drug development. Our findings provide valuable insights into potential new antibacterial agents targeting S. aureus SAV1866 and MecA proteins. These results lay the groundwork for future in vitro and in vivo studies to validate these compounds′ efficacy for combating MRSA infections, potentially leading to the development of novel therapeutic strategies against antibiotic-resistant bacteria. Full article
Show Figures

Figure 1

11 pages, 1844 KiB  
Brief Report
The Co-Existence of mcr-1.1 and mcr-3.5 in Escherichia coli Isolated from Clinical Samples in Thailand
by Panida Nobthai, Sirigade Ruekit, Dutsadee Peerapongpaisarn, Prawet Sukhchat, Brett E. Swierczewski, Nattaya Ruamsap and Paphavee Lertsethtakarn
Antibiotics 2025, 14(6), 596; https://doi.org/10.3390/antibiotics14060596 - 10 Jun 2025
Viewed by 657
Abstract
The emergence of colistin resistance poses a significant threat to its efficacy as a last-line treatment against multidrug-resistant Gram-negative bacterial infections. In this study, 178 multi-drug resistant (MDR) Escherichia coli isolates collected from clinical samples at Queen Sirikit Naval Hospital, Chonburi, Thailand, were [...] Read more.
The emergence of colistin resistance poses a significant threat to its efficacy as a last-line treatment against multidrug-resistant Gram-negative bacterial infections. In this study, 178 multi-drug resistant (MDR) Escherichia coli isolates collected from clinical samples at Queen Sirikit Naval Hospital, Chonburi, Thailand, were evaluated for colistin resistance. Of these, six were identified as mcr gene carriers, mediating colistin resistance. Specifically, mcr-1 was detected in three E. coli isolates, mcr-3 was detected in one E. coli isolate, and mcr-1 and mcr-3 were detected in two E. coli isolates, designated AMR-0220 and AMR-0361. Whole-genome sequencing and bioinformatics analysis revealed that AMR-0220 and AMR-0361 belonged to ST410 and ST617 lineages, respectively. Both isolates carried multiple plasmids, with mcr-1.1 located on an IncX4-type plasmid that is closely related to previously reported mcr-1.1-carrying IncX4 plasmids. In contrast, mcr-3.5 was identified on distinct plasmid backbones: an IncFIB-type plasmid in AMR-0220 and an IncFII-type plasmid in AMR-0361. Overall, our findings demonstrate that the mcr genes found in E. coli isolates in this region are located on different mobile genetic elements, indicating the potential for a widespread dissemination of colistin resistance among Gram-negative bacteria throughout Thailand’s healthcare system. Full article
Show Figures

Figure 1

19 pages, 4057 KiB  
Article
A Pilot Study on Single-Cell Raman Spectroscopy Combined with Machine Learning for Phenotypic Characterization of Staphylococcus aureus
by Li Liu, Junjing Xue, Yang Song, Taijie Zhan, Yang Liu, Xiaohui Song, Li Mei, Duochun Wang, Yu Vincent Fu and Qiang Wei
Microorganisms 2025, 13(6), 1333; https://doi.org/10.3390/microorganisms13061333 - 8 Jun 2025
Viewed by 787
Abstract
Rapid and accurate identification of pathogenic bacteria phenotypic traits, including virulence, drug resistance, and metabolic activity, is essential for clinical diagnosis and infectious disease control. Traditional methods are time-consuming, highlighting the need for more efficient approaches. This study develops a single-cell Raman spectroscopy [...] Read more.
Rapid and accurate identification of pathogenic bacteria phenotypic traits, including virulence, drug resistance, and metabolic activity, is essential for clinical diagnosis and infectious disease control. Traditional methods are time-consuming, highlighting the need for more efficient approaches. This study develops a single-cell Raman spectroscopy approach to detect multiple phenotypic traits of Staphylococcus aureus (S. aureus) as a proof of concept. We constructed a single-cell Raman spectral database encompassing 6240 spectra from 10 strains of S. aureus with diverse phenotypic traits and developed a convolutional neural network (CNN) to predict these phenotypes from the Raman spectra. The CNN model achieved 93.90%, 98.73%, and 98.66% accuracy in identifying enterotoxin-producing strains, methicillin-resistant S. aureus (MRSA), and growth stages, respectively. Characteristic Raman peaks for enterotoxin producers mainly appeared at 781, 939, 1161, 1337, 1451, and 1524 cm−1, whereas MRSA primarily exhibited peaks at 723, 780, 939, 1095, 1162, 1340, 1451, 1523, and 1660 cm−1. During culture, nucleic acid-related peaks weakened, lipid peaks increased, and protein peaks initially increased and subsequently decreased. This integration of Raman spectroscopy and machine learning demonstrates considerable potential for rapid bacterial phenotyping. Future research should expand to a wider range of bacterial species and phenotypes to enhance the diagnosis, prevention, and management of infectious diseases. Full article
(This article belongs to the Collection Feature Papers in Medical Microbiology)
Show Figures

Graphical abstract

17 pages, 2218 KiB  
Article
Identification and Antibiotic Resistance of Isolates from Poultry Meat and Poultry Meat By-Products Exhibiting Characteristic Salmonella Morphology on Chromogenic Agar
by Sarah Panera-Martínez, Cristina Rodríguez-Melcón, Camino González-Machado, Carlos Alonso-Calleja and Rosa Capita
Antibiotics 2025, 14(6), 540; https://doi.org/10.3390/antibiotics14060540 - 24 May 2025
Viewed by 721
Abstract
Background/Objectives: The main objective of this research work was to identify and determine the antibiotic resistance of the false-positive isolates on chromogenic agar when analyzing Salmonella in chicken meat. Methods: A total of 234 samples of chicken meat (carcasses, cuts and [...] Read more.
Background/Objectives: The main objective of this research work was to identify and determine the antibiotic resistance of the false-positive isolates on chromogenic agar when analyzing Salmonella in chicken meat. Methods: A total of 234 samples of chicken meat (carcasses, cuts and preparations) were studied using buffered peptone water for primary enrichment, Rappaport–Vassiliadis soy broth for secondary enrichment and Salmonella Chromogen Agar Set as a selective solid medium. Colonies with a morphology characteristic of Salmonella (one isolate per sample) were identified by matrix-assisted laser desorption ionization and time-of-flight mass spectrometry (MALDI-TOF). Results: Colonies with a characteristic morphology of Salmonella were detected in 71 samples. Only five isolates (7.0% of the total) corresponded to the genus Salmonella. Other genera detected were Hafnia (three isolates; 4.2% of the total), Escherichia (22; 31.0%), Klebsiella (19; 26.8%), Proteus (6; 8.5%) and Pseudomonas (16; 22.5%). The 66 isolates of these last five genera were tested for susceptibility to a panel of 42 antibiotics of clinical importance by disc diffusion. All isolates presented multiple resistances, to between 4 and 29 antibiotics, all of them having a multi drug-resistant (MDR) phenotype except for one Pseudomonas strain, with an extensively drug-resistant (XDR) phenotype. Conclusions: These results highlight the low selectivity of this method, with the specific culture media under test, for the detection of Salmonella in poultry meat. The considerable prevalence of antibiotic resistance observed suggests a need to improve control measures throughout the poultry meat production chain to prevent this food from becoming a reservoir of bacteria with resistance to multiple antibiotics. Full article
Show Figures

Figure 1

26 pages, 3148 KiB  
Article
Transcriptional Regulatory Systems in Pseudomonas: A Comparative Analysis of Helix-Turn-Helix Domains and Two-Component Signal Transduction Networks
by Zulema Udaondo, Kelsey Aguirre Schilder, Ana Rosa Márquez Blesa, Mireia Tena-Garitaonaindia, José Canto Mangana and Abdelali Daddaoua
Int. J. Mol. Sci. 2025, 26(10), 4677; https://doi.org/10.3390/ijms26104677 - 14 May 2025
Viewed by 586
Abstract
Bacterial communities in diverse environmental niches respond to various external stimuli for survival. A primary means of communication between bacterial cells involves one-component (OC) and two-component signal transduction systems (TCSs). These systems are key for sensing environmental changes and regulating bacterial physiology. TCSs, [...] Read more.
Bacterial communities in diverse environmental niches respond to various external stimuli for survival. A primary means of communication between bacterial cells involves one-component (OC) and two-component signal transduction systems (TCSs). These systems are key for sensing environmental changes and regulating bacterial physiology. TCSs, which are the more complex of the two, consist of a sensor histidine kinase for receiving an external input and a response regulator to convey changes in bacterial cell physiology. For numerous reasons, TCSs have emerged as significant targets for antibacterial drug design due to their role in regulating expression level, bacterial viability, growth, and virulence. Diverse studies have shown the molecular mechanisms by which TCSs regulate virulence and antibiotic resistance in pathogenic bacteria. In this study, we performed a thorough analysis of the data from multiple public databases to assemble a comprehensive catalog of the principal detection systems present in both the non-pathogenic Pseudomonas putida KT2440 and the pathogenic Pseudomonas aeruginosa PAO1 strains. Additionally, we conducted a sequence analysis of regulatory elements associated with transcriptional proteins. These were classified into regulatory families based on Helix-turn-Helix (HTH) protein domain information, a common structural motif for DNA-binding proteins. Moreover, we highlight the function of bacterial TCSs and their involvement in functions essential for bacterial survival and virulence. This comparison aims to identify novel targets that can be exploited for the development of advanced biotherapeutic strategies, potentially leading to new treatments for bacterial infections. Full article
Show Figures

Figure 1

31 pages, 3417 KiB  
Review
Green Synthesis, Characterization, and Potential Antibacterial and Anticancer Applications of Gold Nanoparticles: Current Status and Future Prospects
by Md. Amdadul Huq, Md. Rasel Rana, Abdus Samad, Md. Shahedur Rahman, M. Mizanur Rahman, Md Ashrafudoulla, Shahina Akter and Jong-Whi Park
Biomedicines 2025, 13(5), 1184; https://doi.org/10.3390/biomedicines13051184 - 13 May 2025
Cited by 1 | Viewed by 1385
Abstract
Drug resistance is a serious problem for human health worldwide. Day by day this drug resistance is increasing and creating an anxious situation for the treatment of both cancer and infectious diseases caused by pathogenic microorganisms. Researchers are trying to solve this terrible [...] Read more.
Drug resistance is a serious problem for human health worldwide. Day by day this drug resistance is increasing and creating an anxious situation for the treatment of both cancer and infectious diseases caused by pathogenic microorganisms. Researchers are trying to solve this terrible situation to overcome drug resistance. Biosynthesized gold nanoparticles (AuNPs) could be a promising agent for controlling drug-resistant pathogenic microorganisms and cancer cells. AuNPs can be synthesized via chemical and physical approaches, carrying many threats to the ecosystem. Green synthesis of AuNPs using biological agents such as plants and microbes is the most fascinating and attractive alternative to physicochemical synthesis as it offers many advantages, such as simplicity, non-toxicity, cost-effectiveness, and eco-friendliness. Plant extracts contain numerous biomolecules, and microorganisms produce various metabolites that act as reducing, capping, and stabilizing agents during the synthesis of AuNPs. The characterization of green-synthesized AuNPs has been conducted using multiple instruments including UV–Vis spectrophotometry (UV–Vis), transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), DLS, and Fourier transform infrared spectroscopy (FT-IR). AuNPs have detrimental effects on bacterial and cancer cells via the disruption of cell membranes, fragmentation of DNA, production of reactive oxygen species, and impairment of metabolism. The biocompatibility and biosafety of synthesized AuNPs must be investigated using a proper in vitro and in vivo screening model system. In this review, we have emphasized the green, facile, and eco-friendly synthesis of AuNPs using plants and microorganisms and their potential antimicrobial and anticancer applications and highlighted their antibacterial and anticancer mechanisms. This study demonstrates that green-synthesized AuNPs may potentially be used to control pathogenic bacteria as well as cancer cells. Full article
Show Figures

Figure 1

16 pages, 1028 KiB  
Review
Characterization of Antibiotic Resistance in Shewanella Species: An Emerging Pathogen in Clinical and Environmental Settings
by Shahid Sher, Gary P. Richards, Salina Parveen and Henry N. Williams
Microorganisms 2025, 13(5), 1115; https://doi.org/10.3390/microorganisms13051115 - 13 May 2025
Cited by 2 | Viewed by 1257
Abstract
Antibiotic resistance is increasing at an alarming rate worldwide, in large part due to their misuse and improper disposal. Antibiotics administered to treat human and animal diseases, including feed supplements for the treatment or prevention of disease in farm animals, have contributed greatly [...] Read more.
Antibiotic resistance is increasing at an alarming rate worldwide, in large part due to their misuse and improper disposal. Antibiotics administered to treat human and animal diseases, including feed supplements for the treatment or prevention of disease in farm animals, have contributed greatly to the emergence of a multitude of antibiotic-resistant pathogens. Shewanella is one of many bacteria that have developed antibiotic resistance, and in some species, multiple-antibiotic resistance (MAR). Shewanella is a rod-shaped, Gram-negative, oxidase-positive, and H2S-producing bacterium that is naturally found in the marine environment. In humans, Shewanella spp. can cause skin and soft tissue infections, septicemia, cellulitis, osteomyelitis, and ear and wound infections. Some Shewanella have been shown to be resistant to a variety of antibiotics, including beta-lactams, aminoglycoside, quinolones, third- or fourth-generation cephalosporins, and carbapenems, due to the presence of genes such as the blaOXA-class D beta-lactamase-encoding gene, blaAmpC-class-C beta-lactamase-encoding gene, and the qnr gene. Bacteria can acquire and transmit these genes through different horizontal gene-transmission mechanisms such as transformation, transduction, and conjugation. The genes for antibiotic resistance are present on Shewanella chromosomes and plasmids. Apart from this, heavy metals such as arsenic, mercury, cadmium, and chromium can also increase antibiotic resistance in Shewanella due to co-selection processes such as co-resistance, cross resistance, and co-regulation mechanisms. Antibiotics and drugs enter Shewanella spp. through pores or gates in their cell wall and may be ejected from the bacteria by efflux pumps, which are the first line of bacterial defense against antibiotics. Multiple-drug resistant Shewanella can be particularly difficult to control. This review focuses on the phenotypic and genomic characteristics of Shewanella that are involved in the increase in antimicrobial resistance in this bacterium. Full article
Show Figures

Figure 1

14 pages, 1892 KiB  
Article
In Vivo Antimicrobial Activity of Nisin Z Against S. aureus and Polyurea Pharmadendrimer PUREG4OEI48 Against P. aeruginosa from Diabetic Foot Infections
by Isa Serrano, Dalila Mil-Homens, Rita F. Pires, Vasco D. B. Bonifácio, Joana F. Guerreiro, Eva Cunha, Sofia S. Costa, Luís Tavares and Manuela Oliveira
Antibiotics 2025, 14(5), 444; https://doi.org/10.3390/antibiotics14050444 - 28 Apr 2025
Cited by 1 | Viewed by 1056
Abstract
Background/Objectives: Diabetic foot infections (DFIs) are commonly associated with frequent hospitalizations, limb amputations, and premature death due to the profile of the bacteria infecting foot ulcers. DFIs are generally colonized by a polymicrobial net of bacteria that grows in biofilms, developing an increased [...] Read more.
Background/Objectives: Diabetic foot infections (DFIs) are commonly associated with frequent hospitalizations, limb amputations, and premature death due to the profile of the bacteria infecting foot ulcers. DFIs are generally colonized by a polymicrobial net of bacteria that grows in biofilms, developing an increased antimicrobial resistance to multiple antibiotics. DFI treatment is a hurdle, and the need to develop new therapies that do not promote resistance is urgent. Therefore, the antibacterial efficacy of Nisin Z (antimicrobial peptide), a core–shell polycationic polyurea pharmadendrimer (PUREG4OEI48) (antimicrobial polymer), and amlodipine (antihypertensive drug) was evaluated against S. aureus and P. aeruginosa isolated from a DFI and previously characterized. Methods: The antibacterial activity was analyzed in vitro by determining the minimal inhibitory concentration (MIC) and in vivo in a Galleria mellonella model by assessing the larvae survival and health index. Results: The results indicate that Nisin Z exhibited antibacterial activity against S. aureus in vivo, allowing larvae full survival, and no antibacterial activity against P. aeruginosa. Nisin Z may have reduced the antibacterial effectiveness of both PUREG4OEI48 and amlodipine. PUREG4OEI48 significantly increased the survival of the larvae infected with P. aeruginosa, while amlodipine showed no activity against both bacteria in vivo. Conclusions: These findings suggest that both Nisin Z and PUREG4OEI48 could potentially be used individually as adjunct treatments for mild DFIs. However, further studies are needed to confirm these findings and assess the potential toxicity and efficacy of PUREG4OEI48 in more complex models. Full article
(This article belongs to the Special Issue Strategies to Combat Antibiotic Resistance and Microbial Biofilms)
Show Figures

Figure 1

30 pages, 3765 KiB  
Article
Antibacterial Activity of GO-Based Composites Enhanced by Phosphonate-Functionalized Ionic Liquids and Silver
by Xinyu Liu, Xing Zhao, Hongda Qiu, Weida Liang, Linlin Liu, Yunyu Sun, Lingling Zhao, Xiao Wang and Hongze Liang
Materials 2025, 18(8), 1889; https://doi.org/10.3390/ma18081889 - 21 Apr 2025
Viewed by 731
Abstract
The development of antibiotic-independent antimicrobial materials is critical for addressing bacterial resistance to conventional antibiotics. Currently, there is a lack of comprehensive understanding of ionic liquid-modified composites in antimicrobial applications. Here, we innovatively prepared GO-based composites modified with phosphonate ionic liquids via a [...] Read more.
The development of antibiotic-independent antimicrobial materials is critical for addressing bacterial resistance to conventional antibiotics. Currently, there is a lack of comprehensive understanding of ionic liquid-modified composites in antimicrobial applications. Here, we innovatively prepared GO-based composites modified with phosphonate ionic liquids via a series of surface functionalizations. The resulting antibacterial composites exhibit significant broad-spectrum activity against both Gram-negative and Gram-positive bacteria, including drug-resistant strains, with stronger efficacy against Gram-negative species. Additionally, the material features excellent long-term reusability and the ability to inhibit/destroy biofilms, which is vital for combating persistent infections. Mechanistic studies reveal its antibacterial effects through multiple pathways: disrupting bacterial membranes, inducing ROS, and inactivating intracellular substances—mechanisms less likely to promote resistance. Overall, these phosphonate ionic liquid-modified polycationic materials demonstrate substantial potential in treating bacterial infections, offering a promising strategy to tackle antibiotic resistance challenges. Full article
(This article belongs to the Special Issue Ionic Liquids: New Trends in Advanced Applications)
Show Figures

Figure 1

23 pages, 2849 KiB  
Article
Comprehensive Genomic Analysis of Klebsiella pneumoniae and Its Temperate N-15-like Phage: From Isolation to Functional Annotation
by Reham Yahya, Aljawharah Albaqami, Amal Alzahrani, Suha M. Althubaiti, Moayad Alhariri, Eisa T. Alrashidi, Nada Alhazmi, Mohammed A. Al-Matary and Najwa Alharbi
Microorganisms 2025, 13(4), 908; https://doi.org/10.3390/microorganisms13040908 - 15 Apr 2025
Viewed by 1631
Abstract
Antibiotic resistance to Klebsiella pneumoniae poses a major public health threat, particularly in intensive care unit (ICU) settings. The emergence of extensively drug-resistant (XDR) strains complicates treatment options, requiring a deeper understanding of their genetic makeup and potential therapeutic targets. This research delineated [...] Read more.
Antibiotic resistance to Klebsiella pneumoniae poses a major public health threat, particularly in intensive care unit (ICU) settings. The emergence of extensively drug-resistant (XDR) strains complicates treatment options, requiring a deeper understanding of their genetic makeup and potential therapeutic targets. This research delineated an extensively drug-resistant (XDR) Klebsiella pneumoniae strain obtained from an ICU patient and telomeric temperate phage derived from hospital effluent. The bacteria showed strong resistance to multiple antibiotics, including penicillin (≥16 μg/mL), ceftriaxone (≥32 μg/mL), and meropenem (≥8 μg/mL), which was caused by SHV-11 beta-lactamase, NDM-1 carbapenemase, and porin mutations (OmpK37, MdtQ). The strain was categorized as K46 and O2a types and carried virulence genes involved in iron acquisition, adhesion, and immune evasion, as well as plasmids (IncHI1B_1_pNDM-MAR, IncFIB) and eleven prophage regions, reflecting its genetic adaptability and resistance dissemination. The 172,025 bp linear genome and 46.3% GC content of the N-15-like phage showed strong genomic similarities to phages of the Sugarlandvirus genus, especially those that infect K. pneumoniae. There were structural proteins (11.8%), DNA replication and repair enzymes (9.3%), and a toxin–antitoxin system (0.4%) encoded by the phage genome. A protelomerase and ParA/B partitioning proteins indicate that the phage is replicating and maintaining itself in a manner similar to the N15 phage, which is renowned for maintaining a linear plasmid prophage throughout lysogeny. Understanding the dynamics of antibiotic resistance and pathogen development requires knowledge of phages like this one, which are known for their temperate nature and their function in altering bacterial virulence and resistance profiles. The regulatory and structural proteins of the phage also provide a model for research into the biology of temperate phages and their effects on microbial communities. The importance of temperate phages in bacterial genomes and their function in the larger framework of microbial ecology and evolution is emphasized in this research. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

19 pages, 9449 KiB  
Article
Mechanisms of Salmonella typhimurium Resistance to Cannabidiol
by Iddrisu Ibrahim, Joseph Atia Ayariga, Junhuan Xu, Daniel A. Abugri, Robertson K. Boakai and Olufemi S. Ajayi
Microorganisms 2025, 13(3), 551; https://doi.org/10.3390/microorganisms13030551 - 28 Feb 2025
Viewed by 939
Abstract
The emergence of multi-drug resistance (MDR) poses a huge risk to public health globally. Yet these recalcitrant pathogens continue to rise in incidence rate with resistance rates significantly outpacing the speed of antibiotic development. This therefore presents related health issues such as untreatable [...] Read more.
The emergence of multi-drug resistance (MDR) poses a huge risk to public health globally. Yet these recalcitrant pathogens continue to rise in incidence rate with resistance rates significantly outpacing the speed of antibiotic development. This therefore presents related health issues such as untreatable nosocomial infections arising from organ transplants and surgeries, as well as community-acquired infections that are related to people with compromised immunity, e.g., diabetic and HIV patients, etc. There is a global effort to fight MRD pathogens spearheaded by the World Health Organization, thus calling for research into novel antimicrobial agents to fight multiple drug resistance. Previously, our laboratory demonstrated that Cannabidiol (CBD) is an effective antimicrobial against Salmonella typhimurium (S. typhimurium). However, we observed resistance development over time. To understand the mechanisms S. typhimurium uses to develop resistance to CBD, we studied the abundance of bacteria lipopolysaccharide (LPS) and membrane sterols of both CBD-susceptible and CBD-resistant S. typhimurium strains. Using real-time quantitative polymerase chain reaction (rt qPCR), we also analyzed the expression of selected genes known for aiding resistance development in S. typhimurium. We found a significantly higher expression of blaTEM (over 150 mRNA expression) representing over 55% of all the genes considered in the study, fimA (over 12 mRNA expression), fimZ (over 55 mRNA expression), and integron 2 (over 1.5 mRNA expression) in the CBD-resistant bacteria, and these were also accompanied by a shift in abundance in cell surface molecules such as LPS at 1.76 nm, ergosterols at 1.03 nm, oleic acid at 0.10 nm and MPPSE at 2.25nm. For the first time, we demonstrated that CBD-resistance development in S. typhimurium might be caused by several structural and genetic factors. These structural factors demonstrated here include LPS and cell membrane sterols, which showed significant differences in abundances on the bacterial cell surfaces between the CBD-resistant and CBD-susceptible strains of S. typhimurium. Specific key genetic elements implicated for the resistance development investigated included fimA, fimZ, int2, ompC, blaTEM, DNA recombinase (STM0716), leucine-responsive transcriptional regulator (lrp/STM0959), and the spy gene of S. typhimurium. In this study, we revealed that blaTEM might be the highest contributor to CBD-resistance, indicating the potential gene to target in developing agents against CBD-resistant S. typhimurium strains. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

Back to TopTop