Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = multilayer PVD coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 5261 KiB  
Review
Wear- and Corrosion-Resistant Coatings for Extreme Environments: Advances, Challenges, and Future Perspectives
by Subin Antony Jose, Zachary Lapierre, Tyler Williams, Colton Hope, Tryon Jardin, Roberto Rodriguez and Pradeep L. Menezes
Coatings 2025, 15(8), 878; https://doi.org/10.3390/coatings15080878 - 26 Jul 2025
Viewed by 716
Abstract
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well [...] Read more.
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well as cryogenic and space applications. A comprehensive overview of promising coating materials is provided, including ceramic-based coatings, metallic and alloy coatings, and polymer and composite systems, as well as nanostructured and multilayered architectures. These materials are deployed using advanced coating technologies such as thermal spraying (plasma spray, high-velocity oxygen fuel (HVOF), and cold spray), chemical and physical vapor deposition (CVD and PVD), electrochemical methods (electrodeposition), additive manufacturing, and in situ coating approaches. Key degradation mechanisms such as adhesive and abrasive wear, oxidation, hot corrosion, stress corrosion cracking, and tribocorrosion are examined with coating performance. The review also explores application-specific needs in aerospace, marine, energy, biomedical, and mining sectors operating in aggressive physiological environments. Emerging trends in the field are highlighted, including self-healing and smart coatings, environmentally friendly coating technologies, functionally graded and nanostructured coatings, and the integration of machine learning in coating design and optimization. Finally, the review addresses broader considerations such as scalability, cost-effectiveness, long-term durability, maintenance requirements, and environmental regulations. This comprehensive analysis aims to synthesize current knowledge while identifying future directions for innovation in protective coatings for extreme environments. Full article
(This article belongs to the Special Issue Advanced Tribological Coatings: Fabrication and Application)
Show Figures

Figure 1

18 pages, 2426 KiB  
Article
Strain-Hardening and Strain-Softening Phenomena Observed in Thin Nitride/Carbonitride Ceramic Coatings During the Nanoindentation Experiments
by Uldis Kanders, Karlis Kanders, Ernests Jansons, Irina Boiko, Artis Kromanis, Janis Lungevics and Armands Leitans
Coatings 2025, 15(6), 674; https://doi.org/10.3390/coatings15060674 - 1 Jun 2025
Cited by 1 | Viewed by 546
Abstract
This study investigates the nanomechanical and tribological behavior of multilayered nitride/carbonitride nanostructured superlattice type coatings (NTCs) composed of alternating TiAlSiNb-N and TiCr-CN sublayers, deposited via high-power ion-plasma magnetron sputtering (HiPIPMS) technique. Reinforced with refractory elements Cr and Nb, the NTC samples exhibit high [...] Read more.
This study investigates the nanomechanical and tribological behavior of multilayered nitride/carbonitride nanostructured superlattice type coatings (NTCs) composed of alternating TiAlSiNb-N and TiCr-CN sublayers, deposited via high-power ion-plasma magnetron sputtering (HiPIPMS) technique. Reinforced with refractory elements Cr and Nb, the NTC samples exhibit high nanohardness (39–59 GPa), low friction, and excellent wear resistance. A novel analytical approach was introduced to extract stress–strain field (SSF) gradients and divergences from nanoindentation data, revealing alternating strain-hardening and strain-softening cycles beneath the incrementally loaded indenter. The discovered oscillatory behavior, consistent across all samples under the investigation, suggests a general deformation mechanism in thin films under incremental loading. Fourier analysis of the SSF gradient oscillatory pattern revealed a variety of characteristic dominant wavelengths within the length-scale interval (0.84–8.10) nm, indicating multi-scale nanomechanical responses. Additionally, the NTC samples display an anisotropic coating morphology exhibited as unidirectional undulating surface roughness waves, potentially attributed to atomic shadowing, strain-induced instabilities, and limited adatom diffusion. These findings deepen our understanding of nanoscale deformation in advanced PVD coatings and underscore the utility of SSF analysis for probing thin-film mechanics. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

14 pages, 21317 KiB  
Article
Investigation of Tensile and Fatigue Behavior of Cr/CrN/TiCrN/TiCrCN Multilayer Films Coated on AA6063 and AZ91 Alloys by Closed-Field Unbalanced Magnetron Sputtering Process
by Ruhi Yeşildal, Sadberk Sezer and Filiz Karabudak
Appl. Sci. 2025, 15(7), 3525; https://doi.org/10.3390/app15073525 - 24 Mar 2025
Viewed by 410
Abstract
Despite the widespread use of Mg and Al alloys among light metals in the automobile and aviation industries, they have low tensile and fatigue strength. Therefore, in the present work, AZ91 Mg and AA6063 Al alloys were coated with a multilayer transition metal [...] Read more.
Despite the widespread use of Mg and Al alloys among light metals in the automobile and aviation industries, they have low tensile and fatigue strength. Therefore, in the present work, AZ91 Mg and AA6063 Al alloys were coated with a multilayer transition metal nitride film (Cr/CrN/TiCrN/TiCrCN) to increase fatigue and tensile strength. Films with Cr/CrN/TiCrN/TiCrCN microstructure architecture were synthesized on the surfaces of AZ91 Mg and AA6063 Al alloys using the CFUBMS (closed-field unbalanced magnetron sputtering) system, one of the PVD (physical vapor deposition) techniques. Films’ structural properties were analyzed by XRD, SEM, and EDAX, whereas mechanical properties were investigated using tensile and rotary bending fatigue testing machines. According to the SEM examination, the Cr, CrN, TiCrN, and TiCrCN multilayer nitride films on the two alloys have a columnar and dense microstructure. The XRD analysis detected Cr (211), CrN (111) and (200), TiN (111), (200) and (222), and TiCN (200) and (311) diffraction peaks. The Cr/CrN/TiCrN/TiCrCN multilayer coating increased the fatigue limit value of AZ91 by 11.22% from 70.26 MPa to 78.15 MPa. The fatigue limit value of AA6063 decreased by 9.79% from 79.71 MPa to 71.9 MPa. After coating, the tensile strength value of AZ91 increased from 137.89 MPa to 139.65 MPa, while the tensile strength of AA6063 decreased from 129.35 MPa to 118.16 MPa. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

23 pages, 7326 KiB  
Article
Significance of Tool Coating Properties and Compacted Graphite Iron Microstructure for Tool Selection in Extreme Machining
by Anna Maria Esposito, Qianxi He, Jose M. DePaiva and Stephen C. Veldhuis
Nanomaterials 2025, 15(2), 130; https://doi.org/10.3390/nano15020130 - 16 Jan 2025
Viewed by 1071
Abstract
This study aims to determine the extent to which coating composition and workpiece properties impact machinability and tool selection when turning Compacted Graphite Iron (CGI) under extreme roughing conditions. Two CGI workpieces, differing in pearlite content and graphite nodularity, were machined at a [...] Read more.
This study aims to determine the extent to which coating composition and workpiece properties impact machinability and tool selection when turning Compacted Graphite Iron (CGI) under extreme roughing conditions. Two CGI workpieces, differing in pearlite content and graphite nodularity, were machined at a cutting speed of 180 m/min, feed rate of 0.18 mm/rev, and depth of cut of 3 mm. To assess the impact of tool properties across a wide range of commercially available tools, four diverse multilayered cemented carbide tools were evaluated: Tool A and Tool B with a thin AlTiSiN PVD coating, Tool C with a thick Al2O3-TiCN CVD coating, and Tool D with a thin Al2O3-TiC PVD coating. The machinability of CGI and wear mechanisms were analyzed using pre-cutting characterization, in-process optical microscopy, and post-test SEM analysis. The results revealed that CGI microstructural variations only affected tool life for Tool A, with a 110% increase in tool life between machining CGI Grade B and Grade A, but that the effects were negligible for all other tools. Tool C had a 250% and 70% longer tool life compared to the next best performance (Tool A) for CGI Grade A and CGI Grade B, respectively. With its thick CVD-coating, Tool C consistently outperformed the others due to its superior protection of the flank face and cutting edge under high-stress conditions. The cutting-induced stresses played a more significant role in the tool wear process than minor differences in workpiece microstructure or tool properties, and a thick CVD coating was most effective in addressing the tool wear effects for the extreme roughing conditions. However, differences in tool life for Tool A showed that tool behavior cannot be predicted based on a single system parameter, even for extreme conditions. Instead, tool properties, workpiece properties, cutting conditions, and their interactions should be considered collectively to evaluate the extent that an individual parameter impacts machinability. This research demonstrates that a comprehensive approach such as this can allow for more effective tool selection and thus lead to significant cost savings and more efficient manufacturing operations. Full article
(This article belongs to the Special Issue Mechanical Properties and Applications for Nanostructured Alloys)
Show Figures

Figure 1

18 pages, 12949 KiB  
Article
Influence of the Applied WC/C and CrN + WC/C Coatings on the Surface Protection of X2CrNi18-9 Cavitation Generators
by Wojciech Borek, Tomasz Linek, Tomasz Tański and Perumal Sureshkumar
Coatings 2025, 15(1), 87; https://doi.org/10.3390/coatings15010087 - 15 Jan 2025
Viewed by 852
Abstract
The purpose of this paper is to investigate the impact of the applied WC/C and CrN + WC/C protective coatings applied using various PVD methods as protection for cavitation generators operating in an environment of intense cavitation wear. In order to carry out [...] Read more.
The purpose of this paper is to investigate the impact of the applied WC/C and CrN + WC/C protective coatings applied using various PVD methods as protection for cavitation generators operating in an environment of intense cavitation wear. In order to carry out planned tasks, special devices generating a cavitation environment have been designed and manufactured. As part of this study, an analysis of the surface of cavitation generators, both before applying the coatings and with the applied protective PVD coatings, and also before and after operation in a cavitation environment, was carried out using the following research techniques: stereoscopic microscopy, scanning electron microscopy, transmission microscopy, XRD, and confocal microscopy. Despite the use of corrosion-resistant steels as a result of the cavitation environment, this causes surface material wear, especially in the area of the through holes. This is due to the fact that there are no protective coatings inside the through hole. Moreover, it was found that, for the tested steel with multilayer CrN + WC/C coatings, there were significantly fewer cavitation defects both on the surface of the material and on the edge of through holes, which indicates that the use of these multilayer coatings can significantly extend the service life of structural elements operating in such environmental conditions. Based on the conducted research tests, it was proven that the applying protective coatings significantly reduce the wear of the surfaces of the tested cavitation generators, thus allowing the use of cheaper steels, not resistant to corrosion, e.g., P265GH steel, which is five times cheaper than austenitic steel. The P265GH steel is used for structural elements in the heating, petrochemical, energy, food, and chemical industries, as well as for structural elements in the aviation, shipbuilding, and many other industries, and, thus, it is possible to reduce the costs associated with the operation of this construction solution in industrial conditions. Full article
(This article belongs to the Special Issue Friction and Wear Behaviors in Mechanical Engineering)
Show Figures

Figure 1

19 pages, 8765 KiB  
Article
Elevated Temperature Tribological Behavior of Duplex Layer CrN/DLC and Nano Multilayer DLC-W Coatings Deposited on Carburized and Hardened 16MnCr5 Steel
by Funsho Olaitan Kolawole, Shola Kolade Kolawole, Newton Kiyoshi Fukumasu, Luis Bernardo Varela, Paulo Konrad Vencovsky, Danilo Assad Ludewigs, Roberto Martins de Souza and André Paulo Tschiptschin
Coatings 2024, 14(9), 1197; https://doi.org/10.3390/coatings14091197 - 17 Sep 2024
Cited by 2 | Viewed by 1285
Abstract
This study investigates the impact of temperature on the tribological performance of duplex layer CrN/DLC and nano-multilayers DLC-W coatings deposited using hybrid PVD-PECVD techniques on carburized and hardened 16MnCr5 discs cut from internal combustion engines valve tappets. Reciprocating dry sliding experiments were conducted [...] Read more.
This study investigates the impact of temperature on the tribological performance of duplex layer CrN/DLC and nano-multilayers DLC-W coatings deposited using hybrid PVD-PECVD techniques on carburized and hardened 16MnCr5 discs cut from internal combustion engines valve tappets. Reciprocating dry sliding experiments were conducted at 25 °C, 150 °C, 200 °C, and 250 °C to analyze the high-temperature tribological behavior of the coatings. The wear mechanisms were characterized using SEM, EDS mapping, Raman spectroscopy, and nanoindentation. The lowest coefficient of friction was obtained for CrN/DLC at 25 °C. The CrN/DLC coefficients of friction (COF) increase with temperatures due to increasing adhesive wear. Similarly, DLC-W exhibited a comparable trend with increasing temperature from 25 °C to 250 °C. Both coatings’ wear resistance decreased with higher temperatures due to the transformation of sp3 C bonds to sp2 C bonds, facilitating the plastic deformation of the coatings and afterward of the substrate. The CrN/DLC displayed superior wear resistance to the DLC-W coating across all temperatures. The DLC-W multilayer coating showed poor wear resistance above 150 °C, being completely removed during the testing. Compared to both coatings, the uncoated 16MnCr5 discs exhibited higher coefficients of friction and wear rates at all temperatures. Predominant wear mechanisms observed in the coated discs were adhesive and abrasive. The study revealed a decrease in the coatings’ structural and mechanical properties with rising temperatures. Hard abrasive WC particles were identified as contributing to increased wear rates in the multilayer DLC-W coatings. Full article
Show Figures

Figure 1

18 pages, 5752 KiB  
Article
Performance Evaluation of PVD and CVD Multilayer-Coated Tools in Machining High-Strength Steel
by Saima Yaqoob, Jaharah A. Ghani, Nabil Jouini and Afifah Z. Juri
Coatings 2024, 14(7), 865; https://doi.org/10.3390/coatings14070865 - 10 Jul 2024
Cited by 5 | Viewed by 2057
Abstract
To curtail the negative effects of traditional flood machining, dry cutting using carbide tools has emerged as a prominent alternative for manufacturers, owing to its low cost and phenomenal surface qualities. In line with this view, high-speed machining of high-strength AISI 4340 alloy [...] Read more.
To curtail the negative effects of traditional flood machining, dry cutting using carbide tools has emerged as a prominent alternative for manufacturers, owing to its low cost and phenomenal surface qualities. In line with this view, high-speed machining of high-strength AISI 4340 alloy steel was carried out using multilayer Al2O3/TiCN-CVD and TiAlN/AlCrN-PVD carbide tools in a dry environment. The experimental scheme was adopted, as per Taguchi’s L18 orthogonal array, to investigate the two most crucial machinability aspects, namely tool life and surface roughness. An analysis of variance (ANOVA) was performed on the obtained data, and it was inferred that the feed rate exhibited the strongest effects on both the tool life and surface roughness, with corresponding percentage contributions of 46.22% and 68.96%, respectively. The longest tool lives of 14.75 min and 10.08 min were obtained at a low cutting speed and feed rate for CVD and PVD tools, respectively. However, the lowest surface roughness of 0.276 µm and 0.307 µm was achieved at a high cutting speed and low feed rate for PVD and CVD tools, respectively. The evolution of tool wear, studied through the microscopic images of the worn tools, revealed that a high cutting speed and feed rate accelerated the flank wear for both types of tools. Nevertheless, the CVD tool exhibited better results due to the thick and effective Al2O3/TiCN coating layer, which protected the carbide substrate against thermal–mechanical loads. Moreover, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) performed on the worn tools revealed that adhesion, oxidation, diffusion, and abrasion were the main wear mechanisms for both types of tools. Full article
(This article belongs to the Special Issue Surface Engineering Processes for Reducing Friction and Wear)
Show Figures

Figure 1

14 pages, 3707 KiB  
Article
Improving the Wear Resistance Properties of 7A04 Aluminum Alloy with Three Surface Modification Coatings
by Jinmeng Hu, Cheng Zhang, Xiaodong Wang, Xiaobo Meng, Caihong Dou, Hua Yu, Changji Wang, Jun Xue, Ziping Qiao and Tao Jiang
Coatings 2024, 14(4), 476; https://doi.org/10.3390/coatings14040476 - 13 Apr 2024
Cited by 3 | Viewed by 2975
Abstract
Multiple advantages, such as good formability, high specific strength, excellent thermal conductivity, and high corrosion resistance, enable aluminum alloy wide application in various fields; however, low surface hardness and poor wear resistance limit its further development. In this study, three surface modification coatings [...] Read more.
Multiple advantages, such as good formability, high specific strength, excellent thermal conductivity, and high corrosion resistance, enable aluminum alloy wide application in various fields; however, low surface hardness and poor wear resistance limit its further development. In this study, three surface modification coatings were successfully prepared on the surface of 7A04 aluminum alloy by microarc oxidation (MAO) and a combination of hard anodizing treatment (HA) and physical vapor deposition (PVD), named MAO, HA+W+DLC, and HA+Ti+ta-C, respectively. The microstructure, hardness, and tribological properties of the three coatings and the 7A04 aluminum alloy substrate were studied. The results show that the surface quality and hardness of the coated samples were higher than those of the 7A04 aluminum alloy and that the HA+Ti+ta-C coating possessed the highest hardness of 34.23 GPa. Moreover, the wear resistance of the two multilayer coatings was significantly improved during the ring-block wear tests under oil lubrication, exhibiting a wear rate of 1.51 × 10−7 mm3/N·m for HA+W+DLC and 1.36 × 10−7 mm3/N·m for HA+Ti+ta-C. Full article
(This article belongs to the Special Issue Enhanced Mechanical Properties of Metals by Surface Treatments)
Show Figures

Figure 1

42 pages, 10483 KiB  
Review
A Comprehensive Review of Cathodic Arc Evaporation Physical Vapour Deposition (CAE-PVD) Coatings for Enhanced Tribological Performance
by Musa Muhammed, Mousa Javidani, Tahere Ebrahimi Sadrabadi, Majid Heidari, Tom Levasseur and Mohammad Jahazi
Coatings 2024, 14(3), 246; https://doi.org/10.3390/coatings14030246 - 20 Feb 2024
Cited by 12 | Viewed by 5274
Abstract
In the realm of industries focused on tribology, such as the machining industry, among others, the primary objective has been tribological performance enhancement, given its substantial impact on production cost. Amid the variety of tribological enhancement techniques, cathodic arc evaporation physical vapour deposition [...] Read more.
In the realm of industries focused on tribology, such as the machining industry, among others, the primary objective has been tribological performance enhancement, given its substantial impact on production cost. Amid the variety of tribological enhancement techniques, cathodic arc evaporation physical vapour deposition (CAE-PVD) coatings have emerged as a promising solution offering both tribological performance enhancement and cost-effectiveness. This review article aims to systematically present the subject of CAE-PVD coatings in light of the tribological performance enhancement. It commences with a comprehensive discussion on substrate preparation, emphasizing the significant effect of substrate roughness on the coating properties and the ensuing tribological performance. The literature analysis conducted revealed that optimum tribological performance could be achieved with an average roughness (Ra) of 0.1 µm. Subsequently, the article explores the CAE-PVD process and the coating’s microstructural evolution with emphasis on advances in macroparticles (MPs) formation and reduction. Further discussions are provided on the characterization of the coatings’ microstructural, mechanical, electrochemical and tribological properties. Most importantly, crucial analytical discussions highlighting the impact of deposition parameters namely: arc current, temperature and substrate bias on the coating properties are also provided. The examination of the analyzed literature revealed that the optimum tribological performance can be attained with a 70 to 100 A arc current, a substrate bias ranging from −100 to −200 V and a deposition temperature exceeding 300 °C. The article further explores advancements in coating doping, monolayer and multilayer coating architectures of CAE-PVD coatings. Finally, invaluable recommendations for future exploration by prospective researchers to further enrich the field of study are also provided. Full article
(This article belongs to the Special Issue Recent Progress on Functional Films and Surface Science)
Show Figures

Figure 1

20 pages, 7952 KiB  
Article
Research on the Tribological Properties of a New Generation of Multi-Layer Nanostructured PVD Coatings for Increasing the Technological Lifetime of Moulds
by Janette Brezinová, Miroslav Džupon, Viktor Puchý, Jakub Brezina, Pavlo Maruschak, Anna Guzanová, Lýdia Sobotová and Miroslav Badida
Metals 2024, 14(1), 131; https://doi.org/10.3390/met14010131 - 22 Jan 2024
Cited by 1 | Viewed by 1942
Abstract
This paper presents the results of research focused on increasing the lifespan of HPDC moulds for casting aluminium alloys by applying duplex PVD coatings in combination with laser texturing the base material before the coatings’ deposition. This article describes the HPDC process and [...] Read more.
This paper presents the results of research focused on increasing the lifespan of HPDC moulds for casting aluminium alloys by applying duplex PVD coatings in combination with laser texturing the base material before the coatings’ deposition. This article describes the HPDC process and the degradation mechanisms of the moulds that arose during this process. The PVD nanostructured coatings utilised, the methods of their deposition, and the evaluation of their wear resistance are defined in this paper. The surface texturing process is described alongside the description of the analysis of the wear of the functional parts of the mould after decommissioning, which was carried out by visual inspection and optical and light microscopy. Three types of PVD duplex coatings were analysed during our study. The coatings were deposited using the LARC technology method (lateral rotating cathode). Subsequently, the procedure of laser texturing in the form of dimple textures using a laser was proposed. The quality of the coatings was evaluated under tribological conditions by means of the “Ball on disc” method. Based on the experimental results, recommendations for practice are established. Full article
Show Figures

Figure 1

43 pages, 7178 KiB  
Review
Coatings and Surface Modification of Alloys for Tribo-Corrosion Applications
by Robert J. K. Wood and Ping Lu
Coatings 2024, 14(1), 99; https://doi.org/10.3390/coatings14010099 - 11 Jan 2024
Cited by 23 | Viewed by 5308
Abstract
This review of the tribocorrosion of coatings and surface modifications covers nearly 195 papers and reviews that have been published in the past 15 years, as compared to only 37 works published up to 2007, which were the subject of a previous review [...] Read more.
This review of the tribocorrosion of coatings and surface modifications covers nearly 195 papers and reviews that have been published in the past 15 years, as compared to only 37 works published up to 2007, which were the subject of a previous review published in 2007. It shows that the research into the subject area is vibrant and growing, to cover emerging deposition, surface modification and testing techniques as well as environmental influences and modelling developments. This growth reflects the need for machines to operate in harsh environments coupled with requirements for increased service life, lower running costs and improved safety factors. Research has also reacted to the need for multifunctional coating surfaces as well as functionally graded systems with regard to depth. The review covers a range of coating types designed for a wide range of potential applications. The emerging technologies are seen to be molten-, solution-, PVD- and PEO-based coatings, with CVD coatings being a less popular solution. There is a growing research interest in duplex surface engineering and coating systems. Surface performance shows a strong playoff between wear, friction and corrosion rates, often with antagonistic relationships and complicated interactions between multiple mechanisms at different scale lengths within tribocorrosion contacts. The tribologically induced stresses are seen to drive damage propagation and accelerate corrosion either within the coating or at the coating coating–substrate interface. This places a focus on coating defect density. The environment (such as pH, DO2, CO2, salinity and temperature) is also shown to have a strong influence on tribocorrosion performance. Coating and surface modification solutions being developed for tribocorrosion applications include a whole range of electrodeposited coatings, hard and tough coatings and high-impedance coatings such as doped diamond-like carbon. Hybrid and multilayered coatings are also being used to control damage penetration into the coating (to increase toughness) and to manage stresses. A particular focus involves the combination of various treatment techniques. The review also shows the importance of the microstructure, the active phases that are dissolved and the critical role of surface films and their composition (oxide or passive) in tribocorrosion performance which, although discovered for bulk materials, is equally applicable to coating performance. New techniques show methods for revealing the response of surfaces to tribocorrosion (i.e., scanning electrochemical microscopy). Modelling tribocorrosion has yet to embrace the full range of coatings and the fact that some coatings/environments result in reduced wear and thus are antagonistic rather than synergistic. The actual synergistic/antagonistic mechanisms are not well understood, making them difficult to model. Full article
(This article belongs to the Special Issue Role of Coatings on Corrosion, Wear and Erosion Behavior)
Show Figures

Figure 1

22 pages, 8599 KiB  
Article
Simple Deconvolution Models for Evaluating the True Microhardness of Thin Nanostructured Coatings Deposited via an Advanced Physical Vapor Deposition Technique
by Uldis Kanders, Karlis Kanders, Ernests Jansons, Janis Lungevics, Raimonds Sirants, Armands Leitans and Irina Boiko
Lubricants 2023, 11(12), 501; https://doi.org/10.3390/lubricants11120501 - 26 Nov 2023
Cited by 2 | Viewed by 1765
Abstract
This article discusses the micromechanical properties and true microhardness determination of nanostructured tribological coatings (NTCs) based on a multilayered alternating nitride/carbonitride bilayer substructure for transition metals. The constituent nitride/carbonitride bilayers in the superlattice structure of the NTC were alloyed with refractory metals, denoted [...] Read more.
This article discusses the micromechanical properties and true microhardness determination of nanostructured tribological coatings (NTCs) based on a multilayered alternating nitride/carbonitride bilayer substructure for transition metals. The constituent nitride/carbonitride bilayers in the superlattice structure of the NTC were alloyed with refractory metals, denoted as Me = Me1 or Me2= Cr, Hf, Nb, W, and Zr. The resulting NTC coatings were deposited onto 100Cr6 steel substrates using an advanced physical vapor deposition (PVD) technique, referred to here as high-power ion-plasma magnetron sputtering (HiPIPMS). The comprising crystalline nanometer-scale TiAlSiMe1-N/TiMe2-CN nanoparticles strengthened by Me additives significantly increased the NTC microhardness to over 3200 HV. The primary focus of this research was to determine the true microhardness of the NTC film samples. The apparent microhardness (Ha) of the film/substrate system for various NTC samples was measured during microindentation testing using the Vickers method. Nine NTC samples were tested, each generating a corresponding microindentation dataset containing between 430 and 640 imprints, depending on the specific NTC sample. These datasets were analyzed using three distinct empirical approaches: (i) the inverse power-law model (IPL-Model), (ii) the sigmoid-like decay model (SLD-Model), and (iii) the error function model (ERF-Model). The observed solid correlation between the proposed models and experiments suggests that the true microhardness estimates (Hf) obtained through the empirical mathematical modeling approach are reliable. Full article
(This article belongs to the Special Issue Tribological Behavior of Metal Coatings)
Show Figures

Figure 1

14 pages, 3894 KiB  
Article
Deposition and Characterisation of a Diamond/Ti/Diamond Multilayer Structure
by Awadesh Kumar Mallik, Fernando Lloret, Marina Gutierrez, Rozita Rouzbahani, Paulius Pobedinskas, Wen-Ching Shih and Ken Haenen
Coatings 2023, 13(11), 1914; https://doi.org/10.3390/coatings13111914 - 8 Nov 2023
Cited by 3 | Viewed by 2201
Abstract
In this work, a diamond/Ti/diamond multilayer structure has been fabricated by successively following thin-film CVD and PVD routes. It has been found that a combined pre-treatment of the silicon base substrate, via argon plasma etching for creating surface roughness and, thereafter, detonation nanodiamond [...] Read more.
In this work, a diamond/Ti/diamond multilayer structure has been fabricated by successively following thin-film CVD and PVD routes. It has been found that a combined pre-treatment of the silicon base substrate, via argon plasma etching for creating surface roughness and, thereafter, detonation nanodiamond (DND) seeding, helps in the nucleation and growth of well-adherent CVD diamond films with a well-defined Raman signal at 1332 cm−1, showing the crystalline nature of the film. Ti sputtering on such a CVD-grown diamond surface leads to an imprinted bead-like microstructure of the titanium film, generated from the underlying diamond layer. The cross-sectional thickness of the titanium layer can be found to vary by as much as 0.5 µm across the length of the surface, which was caused by a subsequent hydrogen plasma etching process step of the composite film conducted after Ti sputtering. The hydrogen plasma etching of the Ti–diamond composite film was found to be essential for smoothening the uneven as-grown texture of the films, which was developed due to the unequal growth of the microcrystalline diamond columns. Such hydrogen plasma surface treatment helped further the nucleation and growth of a nanocrystalline diamond film as the top layer, which was deposited following a similar CVD route to that used in depositing the bottom diamond layer, albeit with different process parameters. For the latter, a hydrogen gas diluted with PH3 precursor recipe produced smaller nanocrystalline diamond crystals for the top layer. The titanium layer in between the two diamond layers possesses a very-fine-grained microstructure. Transmission electron microscopy (TEM) results show evidence of intermixing between the titanium and diamond layers at their respective interfaces. The thin films in the composite multilayer follow the contour of the plasma-etched silicon substrate and are thus useful in producing continuous protective coatings on 3D objects—a requirement for many engineering applications. Full article
(This article belongs to the Special Issue Smart Polymeric Coatings for Corrosion Mitigation)
Show Figures

Figure 1

21 pages, 9573 KiB  
Article
The Surface Assessment and the Properties of Selected Multilayer Coatings
by Bogdan Warcholinski, Adam Gilewicz and Maria Tarnowska
Lubricants 2023, 11(9), 371; https://doi.org/10.3390/lubricants11090371 - 3 Sep 2023
Cited by 5 | Viewed by 1540
Abstract
The paper presents an evaluation of the surface quality and properties of multilayer coatings, obtained using cathodic arc evaporation, of the same structure, in which the top layer is a CrN chromium nitride layer. The second components of a double-layer module with a [...] Read more.
The paper presents an evaluation of the surface quality and properties of multilayer coatings, obtained using cathodic arc evaporation, of the same structure, in which the top layer is a CrN chromium nitride layer. The second components of a double-layer module with a thickness of 400 nm and a thickness of each layer about 200 nm are two component TiN, Mo2N systems and three component TiAlN and CrCN systems. In studies using scanning electron microscopy and optical microscopy, the surface density of the macroparticles of the coating and their dimensions were estimated. The largest amount of macroparticles was recorded on the surface of the TiAlN/CrN coatings and the lowest on CrCN/CrN and Mo2N/CrN coatings. Their adhesion to steel substrates using a scratch test and Rockwell test and wear were also investigated. The results indicated that the melting point of the cathode material directly affected the number and size of the macroparticles on the surface of the growing coating. The number of macroparticles increased with the lowering of the melting point of the cathode material. All the coatings showed good adhesion with the critical load Lc2, greater than 60 N with a hardness above 20 GPa. The Mo2N/CrN coating, despite its relatively low critical load compared to the other tested coatings, had the best wear-resistant properties, which was probably due to the Mo2N → MoO3 transformation. Full article
(This article belongs to the Special Issue Friction and Wear of Cutting Tools and Cutting Tool Materials)
Show Figures

Figure 1

17 pages, 8628 KiB  
Article
Corrosion Resistance in Artificial Perspiration of Cr-Based Decorative Coatings
by Edgar Carneiro, José David Castro, Maria José Lima, Jorge Ferreira and Sandra Carvalho
Nanomaterials 2023, 13(16), 2346; https://doi.org/10.3390/nano13162346 - 15 Aug 2023
Cited by 2 | Viewed by 1709
Abstract
We aim at developing hexavalent chromium-free coatings for frequently touched decorative parts. Cr(N,O) and multilayered CrN/CrO coatings were deposited by means of reactive magnetron sputtering. All samples presented good adhesion to the substrates enhanced by an epoxy layer designed to enhance PVD coating [...] Read more.
We aim at developing hexavalent chromium-free coatings for frequently touched decorative parts. Cr(N,O) and multilayered CrN/CrO coatings were deposited by means of reactive magnetron sputtering. All samples presented good adhesion to the substrates enhanced by an epoxy layer designed to enhance PVD coating adhesion. Similar substrates are found in the automotive industry and can be used in appliances where a metallic finish is desired by the consumer. Corrosion behavior was induced, using artificial sweat to simulate long exposure to human touch for 96 h. In potentiodynamic polarization tests, the coatings were revealed to be nobler than the substrate alone. Cr displayed a non-existent passivation region, while gCrN exhibited a quick passivation of the surface and its respective breakdown and several current fluctuations, indicating the occurrence of pitting, which was confirmed by SEM micrography after the corrosion. Regarding EIS results, all films depicted a diminution of impedance modulus (|Z|) after 96 h, which indicates a diminution of corrosion resistance against artificial sweat. Nitride films exhibited the worst anticorrosive features. On the other hand, Cr and CrO exhibited the highest |Z| values. These results are corroborated by low the corrosion rates of both coatings. The equivalent electrical circuit allows us to confirm oxide formation in the outermost layer of the films due to electrolyte/surface interaction, indicating a self-protecting mechanism. Nitride films showed the lowest values and less corrosion resistance, confirming the results obtained in polarization potentiodynamic tests. The coatings developed in this work, namely Cr and CrO, showed a promising corrosion resistance behavior that could endure a lifetime of frequent human touch in various decorative applications either automotive or general appliances. Full article
Show Figures

Figure 1

Back to TopTop