Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = multicomponent reactions (MCRs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 3111 KiB  
Article
Multi-Component Synthesis of New Fluorinated-Pyrrolo[3,4-b]pyridin-5-ones Containing the 4-Amino-7-chloroquinoline Moiety and In Vitro–In Silico Studies Against Human SARS-CoV-2
by Roberto E. Blanco-Carapia, Ricardo Hernández-López, Sofía L. Alcaraz-Estrada, Rosa Elena Sarmiento-Silva, Montserrat Elemi García-Hernández, Nancy Viridiana Estrada-Toledo, Gerardo Padilla-Bernal, Leonardo D. Herrera-Zúñiga, Jorge Garza, Rubicelia Vargas, Eduardo González-Zamora and Alejandro Islas-Jácome
Int. J. Mol. Sci. 2025, 26(15), 7651; https://doi.org/10.3390/ijms26157651 (registering DOI) - 7 Aug 2025
Abstract
A one-pot synthetic methodology that combines an Ugi-Zhu three-component reaction (UZ-3CR) with a cascade sequence (intermolecular aza Diels–Alder cycloaddition/intramolecular N-acylation/decarboxylation/dehydration) using microwave-heating conditions, ytterbium (III) triflate (Yb(OTf)3) as the catalyst, and chlorobenzene (for the first time in a multi-component reaction [...] Read more.
A one-pot synthetic methodology that combines an Ugi-Zhu three-component reaction (UZ-3CR) with a cascade sequence (intermolecular aza Diels–Alder cycloaddition/intramolecular N-acylation/decarboxylation/dehydration) using microwave-heating conditions, ytterbium (III) triflate (Yb(OTf)3) as the catalyst, and chlorobenzene (for the first time in a multi-component reaction (MCR)) as the solvent, was developed to synthesize twelve new fluorinated-pyrrolo[3,4-b]pyridin-5-ones containing a 4-amino-7-chloroquinoline moiety, yielding 50–77% in 95 min per product, with associated atom economies around 88%, also per product. Additionally, by in vitro tests, compounds 19d and 19i were found to effectively stop early SARS-CoV-2 replication, IC50 = 6.74 µM and 5.29 µM, at 0 h and 1 h respectively, while cell viability remained above 90% relative to the control vehicle at 10 µM. Additional computer-based studies revealed that the most active compounds formed strong favorable interactions with important viral proteins (Mpro, NTDα and NTDo) of coronavirus, supporting a two-pronged approach that affects both how the virus infects the cells and how it replicates its genetic material. Finally, quantum chemistry analyses of non-covalent interactions were performed from Density-Functional Theory (DFT) to better understand how the active compounds hit the virus. Full article
(This article belongs to the Special Issue New Advances in Molecular Research of Coronavirus)
17 pages, 989 KiB  
Article
Combination of aza-Friedel Crafts MCR with Other MCRs Under Heterogeneous Conditions
by Giovanna Bosica and Roderick Abdilla
Catalysts 2025, 15(7), 657; https://doi.org/10.3390/catal15070657 - 6 Jul 2025
Viewed by 599
Abstract
Multicomponent reactions (MCRs) enable the efficient assembly of complex small molecules via multiple bond-forming events in a single step. However, individual MCRs typically yield products with similar core structures, limiting access to larger, more intricate scaffolds. Strategic selection of reactants allows the combination [...] Read more.
Multicomponent reactions (MCRs) enable the efficient assembly of complex small molecules via multiple bond-forming events in a single step. However, individual MCRs typically yield products with similar core structures, limiting access to larger, more intricate scaffolds. Strategic selection of reactants allows the combination of distinct MCRs, thus facilitating the synthesis of advanced molecular architectures with potential biological significance. Using our previously reported method for performing the aza-Friedel Crafts multicomponent reaction under green heterogeneous conditions, we have incorporated some of the obtained products into diverse multicomponent reactions to generate, in an unprecedent approach, eight novel products, some of which were also characterized by two-dimensional NMR techniques. The biological properties of such products are under investigation. Full article
Show Figures

Graphical abstract

12 pages, 3217 KiB  
Article
Decarboxylation-Driven Double Annulations: Innovative Multi-Component Reaction Pathways
by Desheng Zhan, Gang Yang, Tieli Zhou, Sashirekha Nallapati and Xiaofeng Zhang
Molecules 2025, 30(7), 1594; https://doi.org/10.3390/molecules30071594 - 2 Apr 2025
Viewed by 486
Abstract
A concerted five-component reaction strategy has been developed, featuring double [3+2] cycloadditions utilizing aspartic acid. This approach provides valuable insights into mechanistic pathways, allowing for the distinction between concerted and stepwise processes based on reaction efficiency and diastereoselectivity. Both aspartic and glutamic acids [...] Read more.
A concerted five-component reaction strategy has been developed, featuring double [3+2] cycloadditions utilizing aspartic acid. This approach provides valuable insights into mechanistic pathways, allowing for the distinction between concerted and stepwise processes based on reaction efficiency and diastereoselectivity. Both aspartic and glutamic acids have been employed for a thorough evaluation and exploration of decarboxylation-driven double annulations. This method effectively constructs pyrrolizidine frameworks through a concerted double 1,3-dipolar cycloaddition with aspartic acid, as well as tetrahydropyrrolizinones via three-component double annulations, which include decarboxylative 1,3-dipolar cycloaddition and lactamization with glutamic acid. These highly convergent, decarboxylation-driven multicomponent reactions (MCRs) efficiently produce fused polyheterocyclic systems while being environmentally friendly, generating only CO2 and water as byproducts. Full article
(This article belongs to the Special Issue Heterocyclic Chemistry with Applications (Second Edition))
Show Figures

Figure 1

17 pages, 2501 KiB  
Article
Evaluation of Quinazolin-2,4-Dione Derivatives as Promising Antibacterial Agents: Synthesis, In Vitro, In Silico ADMET and Molecular Docking Approaches
by Aboubakr H. Abdelmonsef, Mohamed El-Naggar, Amal O. A. Ibrahim, Asmaa S. Abdelgeliel, Ihsan A. Shehadi, Ahmed M. Mosallam and Ahmed Khodairy
Molecules 2024, 29(23), 5529; https://doi.org/10.3390/molecules29235529 - 22 Nov 2024
Viewed by 1297
Abstract
A series of new quinazolin-2,4-dione derivatives incorporating amide/eight-membered nitrogen-heterocycles 2ac, in addition, acylthiourea/amide/dithiolan-4-one and/or phenylthiazolidin-4-one 3ad and 4ad. The starting compound 1 was prepared by reaction of 4-(2,4-dioxo-1,4-dihydro-2H-quinazolin-3-yl)-benzoyl chloride with ammonium thiocyanate and [...] Read more.
A series of new quinazolin-2,4-dione derivatives incorporating amide/eight-membered nitrogen-heterocycles 2ac, in addition, acylthiourea/amide/dithiolan-4-one and/or phenylthiazolidin-4-one 3ad and 4ad. The starting compound 1 was prepared by reaction of 4-(2,4-dioxo-1,4-dihydro-2H-quinazolin-3-yl)-benzoyl chloride with ammonium thiocyanate and cyanoacetic acid hydrazide. The reaction of 1 with strong electrophiles, namely, o-aminophenol, o-amino thiophenol, and/or o-phenylene diamine, resulted in corresponding quinazolin-2,4-dione derivatives incorporating eight-membered nitrogen-heterocycles 2ad. Compounds 3ad and 4ad were synthesized in good-to-excellent yield through a one-pot multi-component reaction (MCR) of 1 with carbon disulfide and/or phenyl isocyanate under mild alkaline conditions, followed by ethyl chloroacetate, ethyl iodide, methyl iodide, and/or concentrated HCl, respectively. The obtained products were physicochemically characterized by melting points, elemental analysis, and spectroscopic techniques, such as FT-IR, 1H-NMR, 13C-NMR, and MS. The antibacterial efficacy of the obtained eleven molecules was examined in vitro against two Gram-positive bacterial strains (Staphylococcus aureus and Staphylococcus haemolyticus). Furthermore, Computer-Aided Drug Design (CADD) was performed on the synthesized derivatives, standard drug (Methotrexate), and reported antibacterial drug with the target enzymes of bacterial strains (S. aureus and S. haemolyticus) to explain their binding mode of actions. Notably, our findings highlight compounds 2b and 2c as showing both the best antibacterial activity and docking scores against the targets. Finally, according to ADMET predictions, compounds 2b and 2c possessed acceptable pharmacokinetics properties and drug-likeness properties. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

12 pages, 10150 KiB  
Proceeding Paper
Cobalt (II) Complex on Nanodiamond-Grafted Polyethyleneimine@Folic Acid: An Extremely Effective Nanocatalyst for Green Synthesis of 5-Substituted 1H-Tetrazole Derivatives
by Zahra Nasri, Arezoo Ramezani and Hossein Ghafuri
Chem. Proc. 2024, 16(1), 86; https://doi.org/10.3390/ecsoc-28-20132 - 14 Nov 2024
Viewed by 267
Abstract
In this paper, a novel, cost-effective, and green methodology has been investigated for the preparation of cobalt (II) nanoparticles supported on a nanodiamond-carbon-structure grafted polyethyleneimine@folic acid (ND-g-PEI@FA@Co(II)) nanocomposite. Some of the physicochemical characteristics of the synthesized efficient heterogeneous nanocatalyst, including bond formation and [...] Read more.
In this paper, a novel, cost-effective, and green methodology has been investigated for the preparation of cobalt (II) nanoparticles supported on a nanodiamond-carbon-structure grafted polyethyleneimine@folic acid (ND-g-PEI@FA@Co(II)) nanocomposite. Some of the physicochemical characteristics of the synthesized efficient heterogeneous nanocatalyst, including bond formation and functional groups, percentage of elements, crystalline phase, and surface morphology were studied using techniques such as Fourier transform infrared spectroscopy (FT-IR), Energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). Following the principles of green chemistry, this nanocatalyst has been used in the production of 5-substituted 1H-tetrazole derivatives using different benzaldehyde derivatives, sodium azide, and malononitrile agents in ethanol eco-friendly solvent with high efficiency. The mechanism of tetrazole synthesis is carried out through cascade condensations, such as Knoevenagel condensation, 1,3-dipolar cycloaddition, and tautomerization reactions. The main advantages of the ND-g-PEI@FA@Co(II) nanocatalyst include facile preparation, easy separation, minimal consumption of catalyst for a multicomponent reaction (MCR), the use of cheap and recyclable materials, excellent product yield, and reusability up to four times with good efficiency. The substrate used in this heterogeneous catalyst (ND) with appropriate thermal stability, abundant availability in large quantities, and non-toxicity are prominent features of the synthesized nanocomposite. Full article
Show Figures

Figure 1

20 pages, 4832 KiB  
Review
Green Catalysts and/or Green Solvents for Sustainable Multi-Component Reactions
by Gatien Messire, Emma Caillet and Sabine Berteina-Raboin
Catalysts 2024, 14(9), 593; https://doi.org/10.3390/catal14090593 - 4 Sep 2024
Cited by 8 | Viewed by 3769
Abstract
Here, we describe some well-known multicomponent reactions and the progress made over the past decade to make these processes even more environmentally friendly. We focus on the Mannich, Hantzsch, Biginelli, Ugi, Passerini, Petasis, and Groebke–Blackburn–Bienaymé reactions. After describing the origin of the reactions [...] Read more.
Here, we describe some well-known multicomponent reactions and the progress made over the past decade to make these processes even more environmentally friendly. We focus on the Mannich, Hantzsch, Biginelli, Ugi, Passerini, Petasis, and Groebke–Blackburn–Bienaymé reactions. After describing the origin of the reactions and their mechanisms, we summarize some advances in terms of the eco-compatibility of these different MCRs. These are followed by examples of some reactions, considered as variants, which are less well documented but which are promising in terms of structures generated or synthetic routes. Full article
Show Figures

Scheme 1

23 pages, 3384 KiB  
Article
Derivatization of Abietane Acids by Peptide-like Substituents Leads to Submicromolar Cytotoxicity at NCI-60 Panel
by Elena Tretyakova, Anna Smirnova, Denis Babkov and Oxana Kazakova
Molecules 2024, 29(15), 3532; https://doi.org/10.3390/molecules29153532 - 27 Jul 2024
Cited by 1 | Viewed by 1530
Abstract
Natural compounds, including diterpenoids, play a critical role in various biological processes and are recognized as valuable components in cancer treatment. Isocyanides multicomponent reactions (IsMCRs) are one of the effective methods to obtain adducts at the carboxyl group with a peptide-like substituent. In [...] Read more.
Natural compounds, including diterpenoids, play a critical role in various biological processes and are recognized as valuable components in cancer treatment. Isocyanides multicomponent reactions (IsMCRs) are one of the effective methods to obtain adducts at the carboxyl group with a peptide-like substituent. In this study, dehydroabietic acid and levopimaric acid diene adducts as the starting scaffolds were modified by the multicomponent Passerini (P-3CR) and Ugi (U-4CR) reactions to afford α-acyloxycarboxamides and α-acylaminocarboxamides. A group of twenty novel diterpene hybrids was subjected to NCI in vitro assessment, and a consistent structure–activity relationship was established. Eleven of the synthesized derivatives inhibited the growth of cancer cells of 4 to 39 cell lines in one dose assay, and the most active were derivatives 3d, 9d, and 10d holding a fragment of 1a,4a-dehydroquinopimaric acid. They were selected for a five-dose analysis and demonstrated a significant antiproliferative effect towards human cancer cell lines. The outstanding cytotoxic activity was observed for the P-3CR product 3d with growth inhibitory at submicromolar and micromolar concentrations (GI50 = 0.42–3 μM) against the most sensitive cell lines. The U-4CR products 9d and 10d showed selective activity against all leukemia cell lines with GI50 in the range of 1–17 µM and selectivity indexes of 5.49 and 4.72, respectively. Matrix COMPARE analysis using the GI50 vector showed a moderate positive correlation of compound 3d with standard anticancer agents that can influence kinase receptors and epidermal growth factor receptors (EGFRs). The ADMET analysis acknowledges the favorable prognosis using compounds as potential anticancer agents. The obtained results indicate that these new hybrids could be useful for the further development of anticancer drugs, and 1a,4a-dehydroquinopimaric acid derivatives could be recommended for in-depth studies and the synthesis of new antitumor analogs on their basis. Full article
(This article belongs to the Special Issue Lead Compounds Discovery and Antitumor Drug Design)
Show Figures

Figure 1

12 pages, 2790 KiB  
Review
Recent Progress on Multi-Component Reactions Involving Nucleophile, Arynes and CO2
by Shaoxuan Gong, Xiumei Xie, Hongxia Sun, Yuting Liu, Junjie Li and Zhen Zhang
Molecules 2024, 29(13), 3152; https://doi.org/10.3390/molecules29133152 - 2 Jul 2024
Cited by 3 | Viewed by 1520
Abstract
Carbon dioxide (CO2) is a non-toxic, abundant and recoverable source of carbon monoxide. Despite its thermodynamically stable and kinetically inert nature, research on CO2 utilisation is ongoing. CO2-based aryne reactions, crucial for synthesising ortho-substituted benzoic acids and [...] Read more.
Carbon dioxide (CO2) is a non-toxic, abundant and recoverable source of carbon monoxide. Despite its thermodynamically stable and kinetically inert nature, research on CO2 utilisation is ongoing. CO2-based aryne reactions, crucial for synthesising ortho-substituted benzoic acids and their cyclisation products, have garnered significant attention, and multi-component reactions (MCRs) involving CO2, aryne and nucleophilic reagents have been extensively studied. This review highlights recent advancements in CO2 capture reactions utilising phenylalkyne reactive intermediates. Mechanistic insights into these reactions are provided together with prospects for further development in this field. Full article
(This article belongs to the Special Issue Design and Synthesis of Organometallic Optoelectronic Materials)
Show Figures

Figure 1

62 pages, 15240 KiB  
Review
An Overview of the Synthesis of 3,4-Fused Pyrrolocoumarins of Biological Interest
by Eleni Kapidou and Konstantinos E. Litinas
Molecules 2024, 29(12), 2748; https://doi.org/10.3390/molecules29122748 - 9 Jun 2024
Cited by 1 | Viewed by 1812
Abstract
3,4-Fused pyrrolocoumarins, synthetically prepared or naturally occurring, possess interesting biological properties. In this review, the synthetic strategies for the synthesis of the title compounds are presented along with their biological activities. Two routes are followed for that synthesis. In one, the pyrrole ring [...] Read more.
3,4-Fused pyrrolocoumarins, synthetically prepared or naturally occurring, possess interesting biological properties. In this review, the synthetic strategies for the synthesis of the title compounds are presented along with their biological activities. Two routes are followed for that synthesis. In one, the pyrrole ring is formed from coumarin derivatives, such as aminocoumarins or other coumarins. In the other approach, the pyranone moiety is built from an existing pyrrole derivative or through the simultaneous formation of coumarin and pyrrole frameworks. The above syntheses are achieved via 1,3-dipolar cycloaddition reactions, Michael reaction, aza-Claisen rearrangement reactions, multi-component reactions (MCR), as well as metal-catalyzed reactions. Pyrrolocoumarins present cytotoxic, antifungal, antibacterial, α-glucosidase inhibition, antioxidant, lipoxygenase (LOX) inhibition, and fluorescent activities, as well as benzodiazepine receptor ability. Full article
(This article belongs to the Special Issue Organic Synthesis and Application of Bioactive Molecules)
Show Figures

Graphical abstract

26 pages, 5655 KiB  
Article
Novel Biopolymer-Based Catalyst for the Multicomponent Synthesis of N-aryl-4-aryl-Substituted Dihydropyridines Derived from Simple and Complex Anilines
by Giovanna Bosica and Roderick Abdilla
Molecules 2024, 29(8), 1884; https://doi.org/10.3390/molecules29081884 - 20 Apr 2024
Cited by 1 | Viewed by 2511
Abstract
Although Hantzsch synthesis has been an established multicomponent reaction method for more than a decade, its derivative, whereby an aniline replaces ammonium acetate as the nitrogen source, has not been explored at great length. Recent studies have shown that the products of such [...] Read more.
Although Hantzsch synthesis has been an established multicomponent reaction method for more than a decade, its derivative, whereby an aniline replaces ammonium acetate as the nitrogen source, has not been explored at great length. Recent studies have shown that the products of such a reaction, N-aryl-4-aryldihydropyridines (DHPs), have significant anticancer activity. In this study, we successfully managed to synthesize a wide range of DHPs (18 examples, 8 of which were novel) using a metal-free, mild, inexpensive, recoverable, and biopolymer-based heterogeneous catalyst, known as piperazine, which was supported in agar–agar gel. In addition, 8 further examples (3 novel) of such dihydropyridines were synthesized using isatin instead of aldehyde as a reactant, producing spiro-linked structures. Lastly, this catalyst managed to afford an unprecedented product that was derived using an innovative technique—a combination of multicomponent reactions. Essentially, the product of our previously reported aza-Friedel–Crafts multicomponent reaction could itself be used as a reactant instead of aniline in the synthesis of more complex dihydropyridines. Full article
(This article belongs to the Special Issue Multicomponent Reactions in Organic Synthesis)
Show Figures

Graphical abstract

18 pages, 9567 KiB  
Review
Recent Developments in Functional Polymers via the Kabachnik–Fields Reaction: The State of the Art
by Rui Yuan, Xianzhe He, Chongyu Zhu and Lei Tao
Molecules 2024, 29(3), 727; https://doi.org/10.3390/molecules29030727 - 4 Feb 2024
Cited by 3 | Viewed by 2315
Abstract
Recently, multicomponent reactions (MCRs) have attracted much attention in polymer synthesis. As one of the most well-known MCRs, the Kabachnik–Fields (KF) reaction has been widely used in the development of new functional polymers. The KF reaction can efficiently introduce functional groups into polymer [...] Read more.
Recently, multicomponent reactions (MCRs) have attracted much attention in polymer synthesis. As one of the most well-known MCRs, the Kabachnik–Fields (KF) reaction has been widely used in the development of new functional polymers. The KF reaction can efficiently introduce functional groups into polymer structures; thus, polymers prepared via the KF reaction have unique α-aminophosphonates and show important bioactivity, metal chelating abilities, and flame-retardant properties. In this mini-review, we mainly summarize the latest advances in the KF reaction to synthesize functional polymers for the preparation of heavy metal adsorbents, multifunctional hydrogels, flame retardants, and bioimaging probes. We also discuss some emerging applications of functional polymers prepared by means of the KF reaction. Finally, we put forward our perspectives on the further development of the KF reaction in polymer chemistry. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

12 pages, 2602 KiB  
Communication
A Facile Ugi/Ullmann Cascade Reaction to Access Fused Indazolo-Quinoxaline Derivatives with Potent Anticancer Activity
by Yong Li, Liujun He, Hongxia Qin, Yao Liu, Binxin Yang, Zhigang Xu and Donglin Yang
Molecules 2024, 29(2), 464; https://doi.org/10.3390/molecules29020464 - 17 Jan 2024
Cited by 3 | Viewed by 1750
Abstract
A facile methodology for the construction of a complex heterocycle indazolo-fused quinoxalinone has been developed via an Ugi four-component reaction (U-4CR) followed by an intramolecular Ullmann reaction. The expeditious process features an operationally simple approach, time efficiency, and a broad substrate scope. Biological [...] Read more.
A facile methodology for the construction of a complex heterocycle indazolo-fused quinoxalinone has been developed via an Ugi four-component reaction (U-4CR) followed by an intramolecular Ullmann reaction. The expeditious process features an operationally simple approach, time efficiency, and a broad substrate scope. Biological activity was evaluated and demonstrated that compound 6e inhibits human colon cancer cell HCT116 proliferation with an IC50 of 2.1 μM, suggesting potential applications for developing a drug lead in medicinal chemistry. Full article
(This article belongs to the Special Issue Synthesis and Properties of Heterocyclic Compounds: Recent Advances)
Show Figures

Figure 1

6 pages, 740 KiB  
Proceeding Paper
One-Pot Synthesis of Imidazo[2,1-b]thiazole via Groebke–Blackburn–Bienaymé Reaction under Free Catalyts
by David Calderón-Rangel, Karla A. González Pérez, Alejandro Corona Díaz and Rocío Gámez-Montaño
Chem. Proc. 2023, 14(1), 103; https://doi.org/10.3390/ecsoc-27-16095 - 15 Nov 2023
Viewed by 1487
Abstract
The imidazo[2,1-b]thiazole scaffold is widely present in natural and synthetic compounds with important properties or biological activities, such as anti-inflammatory, anti-bacterial, anti-tuberculosis, cytotoxic, anthelmintic, anti-hypertensive, or herbicidal properties. The isocyanide multicomponent reaction (I-MCR) process is a greener alternative and efficient synthetic [...] Read more.
The imidazo[2,1-b]thiazole scaffold is widely present in natural and synthetic compounds with important properties or biological activities, such as anti-inflammatory, anti-bacterial, anti-tuberculosis, cytotoxic, anthelmintic, anti-hypertensive, or herbicidal properties. The isocyanide multicomponent reaction (I-MCR) process is a greener alternative and efficient synthetic tool. Herein, we describe a novel methodology, one-pot synthesis for the synthesis of imidazo[2,1-b]thiazole by Groebke–Blackburn–Bienaymé reaction (GBBR) using little-explored 3-formylchromone. Full article
Show Figures

Figure 1

7 pages, 938 KiB  
Short Note
4a′-Hydroxy-3′,3′,5,6′,6′,7-hexamethyl-3′,4′,4a′,6′,7′,9a′-hexahydrospiro[indole-3,9′-xanthene]-1′,2,8′(1H,2′H,5′H)-trione
by Yuliya E. Ryzhkova, Varvara M. Kalashnikova, Fedor V. Ryzhkov, Artem N. Fakhrutdinov and Michail N. Elinson
Molbank 2023, 2023(3), M1721; https://doi.org/10.3390/M1721 - 8 Sep 2023
Viewed by 1391
Abstract
Pseudo-multicomponent reactions (Pseudo-MCRs) have led to a variety of compounds with interesting biological properties, especially desirable in the pharmaceutical industry. The isatin nucleus could be considered a privileged scaffold for the design of biologically active substances. Dimedone is an interesting and versatile molecule [...] Read more.
Pseudo-multicomponent reactions (Pseudo-MCRs) have led to a variety of compounds with interesting biological properties, especially desirable in the pharmaceutical industry. The isatin nucleus could be considered a privileged scaffold for the design of biologically active substances. Dimedone is an interesting and versatile molecule for most organic transformations, especially one-pot and multicomponent reactions. Xanthene derivatives are still an attractive research field for both academia investigations and industry. In this investigation, a simple and efficient tandem Knoevenagel–Michael protocol with subsequent cyclization for the synthesis of the previously unknown 4a′-hydroxy-3′,3′,5,6′,6′,7-hexamethyl-3′,4′,4a′,6′,7′,9a′-hexahydrospiro[indole-3,9′-xanthene]-1′,2,8′(1H,2′H,5′H)-trione was elaborated. The suggested method is based on the pseudo-MCR of 5,7-dimethylisatin and dimedone. The structure of the earlier unknown compound was proven using 1H, 13C-NMR, and IR spectroscopy, mass spectrometry, and elemental analysis. To compare the developed protocol with the existing ones, unsubstituted spiro[indole-3,9′-xanthene] was synthesized. Its structure has been proven using two-dimensional (2D) NMR spectroscopy techniques. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

25 pages, 11364 KiB  
Review
Engaging Isatins and Amino Acids in Multicomponent One-Pot 1,3-Dipolar Cycloaddition Reactions—Easy Access to Structural Diversity
by Hua Zhao and Yufen Zhao
Molecules 2023, 28(18), 6488; https://doi.org/10.3390/molecules28186488 - 7 Sep 2023
Cited by 6 | Viewed by 2679
Abstract
Multicomponent reactions (MCRs) have undoubtedly emerged as the most indispensable tool for organic chemists worldwide, finding extensive utility in the synthesis of intricate natural products, heterocyclic molecules with significant bioactivity, and pharmaceutical agents. The multicomponent one-pot 1,3-dipolar cycloaddition reactions, which were initially conceptualized [...] Read more.
Multicomponent reactions (MCRs) have undoubtedly emerged as the most indispensable tool for organic chemists worldwide, finding extensive utility in the synthesis of intricate natural products, heterocyclic molecules with significant bioactivity, and pharmaceutical agents. The multicomponent one-pot 1,3-dipolar cycloaddition reactions, which were initially conceptualized by Rolf Huisgen in 1960, find extensive application in contemporary heterocyclic chemistry. In terms of green synthesis, the multicomponent 1,3-dipolar cycloaddition is highly favored owing to its numerous advantages, including high step- and atom-economies, remarkable product diversity, as well as excellent efficiency and diastereoselectivity. Among the numerous pieces of research, the most fascinating reaction involves the utilization of azomethine ylides generated from isatins and amino acids that can be captured by various dipolarophiles. This approach offers a highly efficient and convenient method for constructing spiro-pyrrolidine oxindole scaffolds, which are crucial building blocks in biologically active molecules. Consequently, this review delves deeper into the dipolarophiles utilized in the 1,3-dipolar cycloaddition of isatins and amino acids over the past six years. Full article
(This article belongs to the Special Issue Green and Highly Efficient One-Pot Synthesis and Catalysis)
Show Figures

Graphical abstract

Back to TopTop