Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (129)

Search Parameters:
Keywords = multi-unmanned surface vehicle system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 7941 KiB  
Article
Synergistic Hierarchical AI Framework for USV Navigation: Closing the Loop Between Swin-Transformer Perception, T-ASTAR Planning, and Energy-Aware TD3 Control
by Haonan Ye, Hongjun Tian, Qingyun Wu, Yihong Xue, Jiayu Xiao, Guijie Liu and Yang Xiong
Sensors 2025, 25(15), 4699; https://doi.org/10.3390/s25154699 - 30 Jul 2025
Viewed by 249
Abstract
Autonomous Unmanned Surface Vehicle (USV) operations in complex ocean engineering scenarios necessitate robust navigation, guidance, and control technologies. These systems require reliable sensor-based object detection and efficient, safe, and energy-aware path planning. To address these multifaceted challenges, this paper proposes a novel synergistic [...] Read more.
Autonomous Unmanned Surface Vehicle (USV) operations in complex ocean engineering scenarios necessitate robust navigation, guidance, and control technologies. These systems require reliable sensor-based object detection and efficient, safe, and energy-aware path planning. To address these multifaceted challenges, this paper proposes a novel synergistic AI framework. The framework integrates (1) a novel adaptation of the Swin-Transformer to generate a dense, semantic risk map from raw visual data, enabling the system to interpret ambiguous marine conditions like sun glare and choppy water, enabling real-time environmental understanding crucial for guidance; (2) a Transformer-enhanced A-star (T-ASTAR) algorithm with spatio-temporal attentional guidance to generate globally near-optimal and energy-aware static paths; (3) a domain-adapted TD3 agent featuring a novel energy-aware reward function that optimizes for USV hydrodynamic constraints, making it suitable for long-endurance missions tailored for USVs to perform dynamic local path optimization and real-time obstacle avoidance, forming a key control element; and (4) CUDA acceleration to meet the computational demands of real-time ocean engineering applications. Simulations and real-world data verify the framework’s superiority over benchmarks like A* and RRT, achieving 30% shorter routes, 70% fewer turns, 64.7% fewer dynamic collisions, and a 215-fold speed improvement in map generation via CUDA acceleration. This research underscores the importance of integrating powerful AI components within a hierarchical synergy, encompassing AI-based perception, hierarchical decision planning for guidance, and multi-stage optimal search algorithms for control. The proposed solution significantly advances USV autonomy, addressing critical ocean engineering challenges such as navigation in dynamic environments, object avoidance, and energy-constrained operations for unmanned maritime systems. Full article
Show Figures

Figure 1

17 pages, 2420 KiB  
Article
Hybrid Obstacle Avoidance Algorithm Based on IAPF and MPC for Underactuated Multi-USV Formation
by Hui Sun, Qing Xue, Mingyang Pan, Zongying Liu and Hangqi Li
J. Mar. Sci. Eng. 2025, 13(8), 1436; https://doi.org/10.3390/jmse13081436 - 27 Jul 2025
Viewed by 240
Abstract
In this paper, we propose a hybrid algorithm that integrates an improved artificial potential field method (IAPF), model predictive control (MPC), and an extended state observer (ESO) to address the obstacle avoidance problem in multi-unmanned surface vehicle (Multi-USV) formations, including both dynamic and [...] Read more.
In this paper, we propose a hybrid algorithm that integrates an improved artificial potential field method (IAPF), model predictive control (MPC), and an extended state observer (ESO) to address the obstacle avoidance problem in multi-unmanned surface vehicle (Multi-USV) formations, including both dynamic and static obstacles, as well as navigation through narrow waterways. Initially, the virtual structure method was applied for formation control. Next, the traditional potential field method was enhanced by employing a saturated attractive potential field and a partitioned repulsive potential field, which improve formation stability and obstacle avoidance accuracy in complex environments. The extended state observer was then employed to estimate and compensate for unknown system dynamics and external disturbances from the marine environment in real time, improving system robustness. On this basis, by leveraging the multi-step predictive optimization capabilities of model predictive control, the proposed algorithm dynamically adjusts control inputs based on the desired trajectories generated from potential field forces, which ensures the stability of formation control and effective obstacle avoidance. The simulation results demonstrate that the proposed algorithm effectively avoids both dynamic and static obstacles in multi-unmanned surface vehicle formations and enables successful navigation through narrow waterways by altering the formation. Full article
Show Figures

Figure 1

15 pages, 5152 KiB  
Article
Hydraulic Performance and Flow Characteristics of a High-Speed Centrifugal Pump Based on Multi-Objective Optimization
by Yifu Hou and Rong Xue
Fluids 2025, 10(7), 174; https://doi.org/10.3390/fluids10070174 - 2 Jul 2025
Viewed by 278
Abstract
Pump-driven liquid cooling systems are widely utilized in unmanned aerial vehicle (UAV) electronic thermal management. As a critical power component, the miniaturization and lightweight design of the pump are essential. Increasing the operating speed of the pump allows for a reduction in impeller [...] Read more.
Pump-driven liquid cooling systems are widely utilized in unmanned aerial vehicle (UAV) electronic thermal management. As a critical power component, the miniaturization and lightweight design of the pump are essential. Increasing the operating speed of the pump allows for a reduction in impeller size while maintaining hydraulic performance, thereby significantly decreasing the overall volume and mass. However, high-speed operation introduces considerable internal flow losses, placing stricter demands on the geometric design and flow-field compatibility of the impeller. In this study, a miniature high-speed centrifugal pump (MHCP) was investigated, and a multi-objective optimization of the impeller was carried out using response surface methodology (RSM) to improve internal flow characteristics and overall hydraulic performance. Numerical simulations demonstrated strong predictive capability, and experimental results validated the model’s accuracy. At the design condition (10,000 rpm, 4.8 m3/h), the pump achieved a head of 46.1 m and an efficiency of 49.7%, corresponding to its best efficiency point (BEP). Sensitivity analysis revealed that impeller outlet diameter and blade outlet angle were the most influential parameters affecting pump performance. Following the optimization, the pump head increased by 3.7 m, and the hydraulic efficiency improved by 4.8%. In addition, the pressure distribution and streamlines within the impeller exhibited better uniformity, while the turbulent kinetic energy near the blade suction surface and at the impeller outlet was markedly decreased. This work provides theoretical support and design guidance for the efficient application of MHCPs in UAV thermal management systems. Full article
Show Figures

Figure 1

26 pages, 6535 KiB  
Article
Aerodynamic Optimization of Morphing Airfoil by PCA and Optimization-Guided Data Augmentation
by Ao Guo, Jing Wang, Miao Zhang and Han Wang
Aerospace 2025, 12(7), 599; https://doi.org/10.3390/aerospace12070599 - 1 Jul 2025
Viewed by 318
Abstract
An aircraft that has been carefully optimized for a single flight condition will tend to perform poorly at other flight conditions. For aircraft such as long-haul airliners, this is not necessarily a problem, since the cruise condition so heavily dominates a typical mission. [...] Read more.
An aircraft that has been carefully optimized for a single flight condition will tend to perform poorly at other flight conditions. For aircraft such as long-haul airliners, this is not necessarily a problem, since the cruise condition so heavily dominates a typical mission. However, other aircraft, such as Unmanned Aerial Vehicles (UAVs), may be expected to perform well at a wide range of flight conditions. Morphing systems may be a solution to this problem, as they allow the aircraft to adapt its shape to produce optimum performance at each flight condition. This study proposes an aerodynamic optimization framework for morphing airfoils by integrating Principal Component Analysis (PCA) for geometric dimensionality reduction and deep learning (DL) for surrogate modeling, alongside an optimization-guided data augmentation strategy. By employing PCA, the geometric dimensionality of airfoil surfaces is reduced from 24 to 18 design variables while preserving 100% shape fidelity, thus establishing a compressed morphing parameterization space. A Multi-Island Genetic Algorithm (MIGA) efficiently explores the reduced design space, while iterative retraining of the surrogate model enhances prediction accuracy, particularly in high-performance regions. Additionally, Shapley Additive Explanation (SHAP) analysis reveals interpretable correlations between principal component modes and aerodynamic performances. Experimental results show that the optimized airfoil achieves a 54.66% increase in low-speed cruise lift-to-drag ratio and 10.90% higher climb lift compared to the baseline. Overall, the proposed framework not only enhances the adaptability of morphing airfoils across various low-speed flight conditions but also facilitates targeted surrogate refinement and efficient data acquisition in high-performance regions. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

20 pages, 741 KiB  
Article
Long-Endurance Collaborative Search and Rescue Based on Maritime Unmanned Systems and Deep-Reinforcement Learning
by Pengyan Dong, Jiahong Liu, Hang Tao, Yang Zhao, Zhijie Feng and Hanjiang Luo
Sensors 2025, 25(13), 4025; https://doi.org/10.3390/s25134025 - 27 Jun 2025
Viewed by 317
Abstract
Maritime vision sensing can be applied to maritime unmanned systems to perform search and rescue (SAR) missions under complex marine environments, as multiple unmanned aerial vehicles (UAVs) and unmanned surface vehicles (USVs) are able to conduct vision sensing through the air, the water-surface, [...] Read more.
Maritime vision sensing can be applied to maritime unmanned systems to perform search and rescue (SAR) missions under complex marine environments, as multiple unmanned aerial vehicles (UAVs) and unmanned surface vehicles (USVs) are able to conduct vision sensing through the air, the water-surface, and underwater. However, in these vision-based maritime SAR systems, collaboration between UAVs and USVs is a critical issue for successful SAR operations. To address this challenge, in this paper, we propose a long-endurance collaborative SAR scheme which exploits the complementary strengths of the maritime unmanned systems. In this scheme, a swarm of UAVs leverages a multi-agent reinforcement-learning (MARL) method and probability maps to perform cooperative first-phase search exploiting UAV’s high altitude and wide field of view of vision sensing. Then, multiple USVs conduct precise real-time second-phase operations by refining the probabilistic map. To deal with the energy constraints of UAVs and perform long-endurance collaborative SAR missions, a multi-USV charging scheduling method is proposed based on MARL to prolong the UAVs’ flight time. Through extensive simulations, the experimental results verified the effectiveness of the proposed scheme and long-endurance search capabilities. Full article
(This article belongs to the Special Issue Underwater Vision Sensing System: 2nd Edition)
Show Figures

Figure 1

18 pages, 2943 KiB  
Article
Monitoring Moringa oleifera Lam. in the Mediterranean Area Using Unmanned Aerial Vehicles (UAVs) and Leaf Powder Production for Food Fortification
by Carlo Greco, Raimondo Gaglio, Luca Settanni, Antonio Alfonzo, Santo Orlando, Salvatore Ciulla and Michele Massimo Mammano
Agriculture 2025, 15(13), 1359; https://doi.org/10.3390/agriculture15131359 - 25 Jun 2025
Viewed by 397
Abstract
The increasing global demand for resilient, sustainable agricultural systems has intensified the need for advanced monitoring strategies, particularly for climate-adaptive crops such as Moringa oleifera Lam. This study presents an integrated approach using Unmanned Aerial Vehicles (UAVs) equipped with multispectral and thermal cameras [...] Read more.
The increasing global demand for resilient, sustainable agricultural systems has intensified the need for advanced monitoring strategies, particularly for climate-adaptive crops such as Moringa oleifera Lam. This study presents an integrated approach using Unmanned Aerial Vehicles (UAVs) equipped with multispectral and thermal cameras to monitor the vegetative performance and determine the optimal harvest period of four M. oleifera genotypes in a Mediterranean environment. High-resolution data were collected and processed to generate the NDVI, canopy temperature, and height maps, enabling the assessment of plant vigor, stress conditions, and spatial canopy structure. NDVI analysis revealed robust vegetative growth (0.7–0.9), with optimal harvest timing identified on 30 October 2024, when the mean NDVI exceeded 0.85. Thermal imaging effectively discriminated plant crowns from surrounding weeds by capturing cooler canopy zones due to active transpiration. A clear inverse correlation between NDVI and Land Surface Temperature (LST) was observed, reinforcing its relevance for stress diagnostics and environmental monitoring. The results underscore the value of UAV-based multi-sensor systems for precision agriculture, offering scalable tools for phenotyping, harvest optimization, and sustainable management of medicinal and aromatic crops in semiarid regions. Moreover, in this study, to produce M. oleifera leaf powder intended for use as a food ingredient, the leaves of four M. oleifera genotypes were dried, milled, and evaluated for their hygiene and safety characteristics. Plate count analyses confirmed the absence of pathogenic bacterial colonies in the M. oleifera leaf powders, highlighting their potential application as natural and functional additives in food production. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

23 pages, 51170 KiB  
Article
Automatic Detection of Landslide Surface Cracks from UAV Images Using Improved U-Network
by Hao Xu, Li Wang, Bao Shu, Qin Zhang and Xinrui Li
Remote Sens. 2025, 17(13), 2150; https://doi.org/10.3390/rs17132150 - 23 Jun 2025
Viewed by 503
Abstract
Surface cracks are key indicators of landslide deformation, crucial for early landslide identification and deformation pattern analysis. However, due to the complex terrain and landslide extent, manual surveys or traditional digital image processing often face challenges with efficiency, precision, and interference susceptibility in [...] Read more.
Surface cracks are key indicators of landslide deformation, crucial for early landslide identification and deformation pattern analysis. However, due to the complex terrain and landslide extent, manual surveys or traditional digital image processing often face challenges with efficiency, precision, and interference susceptibility in detecting these cracks. Therefore, this study proposes a comprehensive automated pipeline to enhance the efficiency and accuracy of landslide surface crack detection. First, high-resolution images of landslide areas are collected using unmanned aerial vehicles (UAVs) to generate a digital orthophoto map (DOM). Subsequently, building upon the U-Net architecture, an improved encoder–decoder semantic segmentation network (IEDSSNet) was proposed to segment surface cracks from the images with complex backgrounds. The model enhances the extraction of crack features by integrating residual blocks and attention mechanisms within the encoder. Additionally, it incorporates multi-scale skip connections and channel-wise cross attention modules in the decoder to improve feature reconstruction capabilities. Finally, post-processing techniques such as morphological operations and dimension measurements were applied to crack masks to generate crack inventories. The proposed method was validated using data from the Heifangtai loess landslide in Gansu Province. Results demonstrate its superiority over current state-of-the-art semantic segmentation networks and open-source crack detection networks, achieving F1 scores and IOU of 82.11% and 69.65%, respectively—representing improvements of 3.31% and 4.63% over the baseline U-Net model. Furthermore, it maintained optimal performance with demonstrated generalization capability under varying illumination conditions. In this area, a total of 1658 surface cracks were detected and cataloged, achieving an accuracy of 85.22%. The method proposed in this study demonstrates strong performance in detecting surface cracks in landslide areas, providing essential data for landslide monitoring, early warning systems, and mitigation strategies. Full article
Show Figures

Figure 1

19 pages, 2213 KiB  
Article
A Novel UAV-to-Multi-USV Channel Model Incorporating Massive MIMO for 6G Maritime Communications
by Yuyang Zhang, Yi Zhang, Jia Liu, Borui Huang, Hengtai Chang, Yu Liu and Jie Huang
Electronics 2025, 14(13), 2536; https://doi.org/10.3390/electronics14132536 - 23 Jun 2025
Viewed by 300
Abstract
With the advancement of sixth-generation (6G) wireless communication technology, new demands have been placed on maritime communications. In maritime environments, factors such as evaporation ducts and sea waves significantly impact signal transmission. Moreover, in multi-user communication scenarios, interactions between different users introduce additional [...] Read more.
With the advancement of sixth-generation (6G) wireless communication technology, new demands have been placed on maritime communications. In maritime environments, factors such as evaporation ducts and sea waves significantly impact signal transmission. Moreover, in multi-user communication scenarios, interactions between different users introduce additional complexities. This paper proposes a novel channel model for maritime unmanned aerial vehicle (UAV) to multi-unmanned surface vehicle (USV) communications, which incorporates massive multiple-input–multiple-output (MIMO) antennas at both the transmitter (Tx) and receiver (Rx), while also accounting for the effects of evaporation ducts and sea waves on the channel. For the USV-single-user maritime model, the temporal auto-correlation function (ACF) and spatial cross-correlation function (CCF) are analyzed. For the UAV-to-multi-user channel model, key channel characteristics such as channel matrix collinearity (CMC) and channel capacity are examined. Finally, the accuracy and effectiveness of the proposed model are validated through a comparison between the measured and simulated data under a single-link environment. Meanwhile, a comparison between the CMC obtained from the proposed model and that derived from Ray-Tracing further verifies the model’s accuracy in multi-link environments. This model provides essential theoretical guidance for future 6G maritime communication systems. Full article
(This article belongs to the Special Issue New Trends in Next-Generation Wireless Transmissions)
Show Figures

Figure 1

26 pages, 9416 KiB  
Article
Multi-Component Remote Sensing for Mapping Buried Water Pipelines
by John Lioumbas, Thomas Spahos, Aikaterini Christodoulou, Ioannis Mitzias, Panagiota Stournara, Ioannis Kavouras, Alexandros Mentes, Nopi Theodoridou and Agis Papadopoulos
Remote Sens. 2025, 17(12), 2109; https://doi.org/10.3390/rs17122109 - 19 Jun 2025
Viewed by 542
Abstract
Accurate localization of buried water pipelines in rural areas is crucial for maintenance and leak management but is often hindered by outdated maps and the limitations of traditional geophysical methods. This study aimed to develop and validate a multi-source remote-sensing workflow, integrating UAV [...] Read more.
Accurate localization of buried water pipelines in rural areas is crucial for maintenance and leak management but is often hindered by outdated maps and the limitations of traditional geophysical methods. This study aimed to develop and validate a multi-source remote-sensing workflow, integrating UAV (unmanned aerial vehicle)-borne near-infrared (NIR) surveys, multi-temporal Sentinel-2 imagery, and historical Google Earth orthophotos to precisely map pipeline locations and establish a surface baseline for future monitoring. Each dataset was processed within a unified least-squares framework to delineate pipeline axes from surface anomalies (vegetation stress, soil discoloration, and proxies) and rigorously quantify positional uncertainty, with findings validated against RTK-GNSS (Real-Time Kinematic—Global Navigation Satellite System) surveys of an excavated trench. The combined approach yielded sub-meter accuracy (±0.3 m) with UAV data, meter-scale precision (≈±1 m) with Google Earth, and precision up to several meters (±13.0 m) with Sentinel-2, significantly improving upon inaccurate legacy maps (up to a 300 m divergence) and successfully guiding excavation to locate a pipeline segment. The methodology demonstrated seasonal variability in detection capabilities, with optimal UAV-based identification occurring during early-vegetation growth phases (NDVI, Normalized Difference Vegetation Index ≈ 0.30–0.45) and post-harvest periods. A Sentinel-2 analysis of 221 cloud-free scenes revealed persistent soil discoloration patterns spanning 15–30 m in width, while Google Earth historical imagery provided crucial bridging data with intermediate spatial and temporal resolution. Ground-truth validation confirmed the pipeline location within 0.4 m of the Google Earth-derived position. This integrated, cost-effective workflow provides a transferable methodology for enhanced pipeline mapping and establishes a vital baseline of surface signatures, enabling more effective future monitoring and proactive maintenance to detect leaks or structural failures. This methodology is particularly valuable for water utility companies, municipal infrastructure managers, consulting engineers specializing in buried utilities, and remote-sensing practitioners working in pipeline detection and monitoring applications. Full article
(This article belongs to the Special Issue Remote Sensing Applications for Infrastructures)
Show Figures

Graphical abstract

20 pages, 2661 KiB  
Article
Cooperative Jamming for RIS-Assisted UAV-WSN Against Aerial Malicious Eavesdropping
by Juan Li, Gang Wang, Weijia Wu, Jing Zhou, Yingkun Liu, Yangqin Wei and Wei Li
Drones 2025, 9(6), 431; https://doi.org/10.3390/drones9060431 - 13 Jun 2025
Viewed by 419
Abstract
As the low-altitude economy undergoes rapid growth, unmanned aerial vehicles (UAVs) have served as mobile sink nodes in wireless sensor networks (WSNs), significantly enhancing data collection efficiency. However, the open nature of wireless channels and spectrum scarcity pose severe challenges to data security, [...] Read more.
As the low-altitude economy undergoes rapid growth, unmanned aerial vehicles (UAVs) have served as mobile sink nodes in wireless sensor networks (WSNs), significantly enhancing data collection efficiency. However, the open nature of wireless channels and spectrum scarcity pose severe challenges to data security, particularly when legitimate UAVs (UAV-L) receive confidential information from ground sensor nodes (SNs), which is vulnerable to interception by eavesdropping UAVs (UAV-E). In response to this challenge, this study presents a cooperative jamming (CJ) scheme for Reconfigurable Intelligent Surfaces (RIS)-assisted UAV-WSN to combat aerial malicious eavesdropping. The multi-dimensional optimization problem (MDOP) of system security under quality of service (QoS) constraints is addressed by collaboratively optimizing the transmit power (TP) of SNs, the flight trajectories (FT) of the UAV-L, the frame length (FL) of time slots, and the phase shift matrix (PSM) of the RIS. To address the challenge, we put forward a Cooperative Jamming Joint Optimization Algorithm (CJJOA) scheme. Specifically, we first apply the block coordinate descent (BCD) to decompose the original MDOP into several subproblems. Then, each subproblem is convexified by successive convex approximation (SCA). The numerical results demonstrate that the designed algorithm demonstrates extremely strong stability and reliability during the convergence process. At the same time, it shows remarkable advantages compared with traditional benchmark testing methods, effectively and practically enhancing security. Full article
(This article belongs to the Special Issue UAV-Assisted Mobile Wireless Networks and Applications)
Show Figures

Figure 1

20 pages, 5762 KiB  
Article
Multi-Band Unmanned Aerial Vehicle Antenna for Integrated 5G and GNSS Connectivity
by Suguna Gunasekaran, Manikandan Chinnusami, Rajesh Anbazhagan, Karunyaa Sureshkumar and Shreela Sridhar
Telecom 2025, 6(2), 38; https://doi.org/10.3390/telecom6020038 - 3 Jun 2025
Viewed by 502
Abstract
This paper proposes a dual-band antenna to support 5G communication with linear polarization and the global navigation satellite system (GNSS) band with circular polarization. A single inverted T-shaped patch antenna with a defective ground was designed on the Schott Foturan II (Ceramized 560 [...] Read more.
This paper proposes a dual-band antenna to support 5G communication with linear polarization and the global navigation satellite system (GNSS) band with circular polarization. A single inverted T-shaped patch antenna with a defective ground was designed on the Schott Foturan II (Ceramized 560 degrees) substrate. Then, an L-shaped stub and slot were inserted into the ground to achieve the 5G and GNSS bands. The antenna was then designed as a 1 × 2 multiple-input and multiple-output (MIMO) antenna to increase the directivity. A square ring-shaped frequency selective surface (FSS) was intended on the FR-4 substrate to improve the gain of the MIMO antenna. The FSS MIMO antenna increased the 3D gain from 2.8 to 5.4 dBi for the GNSS band and from 4.9 to 6.43 dBi for the 5G n79 band. The proposed antenna can receive and transmit the frequency bands covering sub-6 GHz 5G band n79 (4400–5000 MHz) and GNSS band E6 (1260–1300 MHz), respectively. A multi-port unmanned aerial vehicle antenna was fabricated, and its performance was characterized in terms of bandwidth, axial ratio, and gain. Full article
Show Figures

Figure 1

33 pages, 10200 KiB  
Review
Unmanned Surface Vessels in Marine Surveillance and Management: Advances in Communication, Navigation, Control, and Data-Driven Research
by Zhichao Lv, Xiangyu Wang, Gang Wang, Xuefei Xing, Chenlong Lv and Fei Yu
J. Mar. Sci. Eng. 2025, 13(5), 969; https://doi.org/10.3390/jmse13050969 - 16 May 2025
Cited by 1 | Viewed by 1398
Abstract
Unmanned Surface Vehicles (USVs) have emerged as vital tools in marine monitoring and management due to their high efficiency, low cost, and flexible deployment capabilities. This paper presents a systematic review focusing on four core areas of USV applications: communication networking, navigation, control, [...] Read more.
Unmanned Surface Vehicles (USVs) have emerged as vital tools in marine monitoring and management due to their high efficiency, low cost, and flexible deployment capabilities. This paper presents a systematic review focusing on four core areas of USV applications: communication networking, navigation, control, and data-driven operations. First, the characteristics and challenges of acoustic, electromagnetic, and optical communication methods for USV networking are analyzed, with an emphasis on the future trend toward multimodal communication integration. Second, a comprehensive review of global navigation, local navigation, cooperative navigation, and autonomous navigation technologies is provided, highlighting their applications and limitations in complex environments. Third, the evolution of USV control systems is examined, covering group control, distributed control, and adaptive control, with particular attention given to fault tolerance, delay compensation, and energy optimization. Finally, the application of USVs in data-driven marine tasks is summarized, including multi-sensor fusion, real-time perception, and autonomous decision-making mechanisms. This study aims to reveal the interaction and coordination mechanisms among communication, navigation, control, and data-driven operations from a system integration perspective, providing insights and guidance for the intelligent operations and comprehensive applications of USVs in marine environments. Full article
Show Figures

Figure 1

26 pages, 30245 KiB  
Article
Intelligent Prediction and Numerical Simulation of Landslide Prediction in Open-Pit Mines Based on Multi-Source Data Fusion and Machine Learning
by Li Qing, Linfeng Xu, Juehao Huang, Xiaodong Fu and Jian Chen
Sensors 2025, 25(10), 3131; https://doi.org/10.3390/s25103131 - 15 May 2025
Cited by 2 | Viewed by 579
Abstract
With the increasing mining depth, the stability of open-pit mine slopes has become an increasingly important concern. This study focuses on an open-pit mine in Southwest China and utilizes unmanned aerial vehicle (UAV) technology to gather data from these high and steep slopes. [...] Read more.
With the increasing mining depth, the stability of open-pit mine slopes has become an increasingly important concern. This study focuses on an open-pit mine in Southwest China and utilizes unmanned aerial vehicle (UAV) technology to gather data from these high and steep slopes. First, high-precision digital surface models and digital orthophoto data are collected using UAV terrain-following flight technology. However, two major challenges arise when applying geographic information systems (GISs) to this issue. The first challenge is that the extreme steepness of the slopes causes overlapping lithological layers at the same location, which GISs cannot resolve. The second challenge is that GISs cannot assess the influence of faults on landslides by calculating three-dimensional spatial distances. To overcome these issues, this study proposes the construction of a detailed 3D geological model for the entire mining area. This model allows for a more precise analysis of the lithology and fault spatial distances. A GIS is then applied to analyze the slope, curvature, and slope direction. Multi-source data fusion is employed to link spatial coordinates and create a dataset for further analysis. Five machine learning models for landslide prediction are compared using this dataset. Based on these comparisons, a high-precision random forest and slope boosting coupled method is developed to enhance the landslide prediction accuracy. Finally, a numerical simulation of a regional focus area is conducted, simulating the excavation process of an open-pit mine and analyzing the timing, location, and state of potential landslides. The results indicate that combining machine learning and multi-source data fusion provides a highly accurate, efficient, and straightforward method for landslide prediction in the high and steep slopes of open-pit mines. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

25 pages, 20538 KiB  
Article
Leader-Following-Based Optimal Fault-Tolerant Consensus Control for Air–Marine–Submarine Heterogeneous Systems
by Yandong Li, Longqi Li, Ling Zhu, Zehua Zhang and Yuan Guo
J. Mar. Sci. Eng. 2025, 13(5), 878; https://doi.org/10.3390/jmse13050878 - 28 Apr 2025
Viewed by 389
Abstract
This paper mainly investigates the fault-tolerant consensus problem in heterogeneous multi-agent systems. Firstly, a control model of a leader–follower heterogeneous multi-agent system (HMAS) composed of multiple unmanned aerial vehicles (UAVs), multiple unmanned surface vehicles (USVs), and multiple unmanned underwater vehicles (UUVs) is established. [...] Read more.
This paper mainly investigates the fault-tolerant consensus problem in heterogeneous multi-agent systems. Firstly, a control model of a leader–follower heterogeneous multi-agent system (HMAS) composed of multiple unmanned aerial vehicles (UAVs), multiple unmanned surface vehicles (USVs), and multiple unmanned underwater vehicles (UUVs) is established. Then, for the fault-tolerant control (FTC) consensus problem of heterogeneous systems under partial actuator failures and interruption failures, an optimal FTC protocol for heterogeneous multi-agent systems based on the control allocation algorithm is designed. The derived optimal FTC protocol is applied to the heterogeneous system. The asymptotic stability of the protocol is proved by the Lyapunov stability theory. Finally, the effectiveness of the control strategy is verified through simulation tests. Full article
(This article belongs to the Special Issue The Control and Navigation of Autonomous Surface Vehicles)
Show Figures

Figure 1

23 pages, 10158 KiB  
Article
Navigation and Obstacle Avoidance for USV in Autonomous Buoy Inspection: A Deep Reinforcement Learning Approach
by Jianhui Wang, Zhiqiang Lu, Xunjie Hong, Zeye Wu and Weihua Li
J. Mar. Sci. Eng. 2025, 13(5), 843; https://doi.org/10.3390/jmse13050843 - 24 Apr 2025
Cited by 1 | Viewed by 839
Abstract
To address the challenges of manual buoy inspection, this study enhances a previously proposed Unmanned Surface Vehicle (USV) inspection system by improving its navigation and obstacle avoidance capabilities using Proximal Policy Optimization (PPO). For improved usability, the entire system adopts a fully end-to-end [...] Read more.
To address the challenges of manual buoy inspection, this study enhances a previously proposed Unmanned Surface Vehicle (USV) inspection system by improving its navigation and obstacle avoidance capabilities using Proximal Policy Optimization (PPO). For improved usability, the entire system adopts a fully end-to-end design, with an angular deviation weighting mechanism for stable circular navigation, a novel image-based radar encoding technique for obstacle perception and a decoupled navigation and obstacle avoidance architecture that splits the complex task into three independently trained modules. Experiments validate that both navigation modules exhibit robustness and generalization capabilities, while the obstacle avoidance module partially achieves International Regulations for Preventing Collisions at Sea (COLREGs)-compliant maneuvers. Further tests in continuous multi-buoy inspection tasks confirm the architecture’s effectiveness in integrating these modules to complete the full task. Full article
(This article belongs to the Special Issue The Control and Navigation of Autonomous Surface Vehicles)
Show Figures

Figure 1

Back to TopTop