Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (365)

Search Parameters:
Keywords = multi-metric fusion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 650 KiB  
Article
LEMAD: LLM-Empowered Multi-Agent System for Anomaly Detection in Power Grid Services
by Xin Ji, Le Zhang, Wenya Zhang, Fang Peng, Yifan Mao, Xingchuang Liao and Kui Zhang
Electronics 2025, 14(15), 3008; https://doi.org/10.3390/electronics14153008 - 28 Jul 2025
Abstract
With the accelerated digital transformation of the power industry, critical infrastructures such as power grids are increasingly migrating to cloud-native architectures, leading to unprecedented growth in service scale and complexity. Traditional operation and maintenance (O&M) methods struggle to meet the demands for real-time [...] Read more.
With the accelerated digital transformation of the power industry, critical infrastructures such as power grids are increasingly migrating to cloud-native architectures, leading to unprecedented growth in service scale and complexity. Traditional operation and maintenance (O&M) methods struggle to meet the demands for real-time monitoring, accuracy, and scalability in such environments. This paper proposes a novel service performance anomaly detection system based on large language models (LLMs) and multi-agent systems (MAS). By integrating the semantic understanding capabilities of LLMs with the distributed collaboration advantages of MAS, we construct a high-precision and robust anomaly detection framework. The system adopts a hierarchical architecture, where lower-layer agents are responsible for tasks such as log parsing and metric monitoring, while an upper-layer coordinating agent performs multimodal feature fusion and global anomaly decision-making. Additionally, the LLM enhances the semantic analysis and causal reasoning capabilities for logs. Experiments conducted on real-world data from the State Grid Corporation of China, covering 1289 service combinations, demonstrate that our proposed system significantly outperforms traditional methods in terms of the F1-score across four platforms, including customer services and grid resources (achieving up to a 10.3% improvement). Notably, the system excels in composite anomaly detection and root cause analysis. This study provides an industrial-grade, scalable, and interpretable solution for intelligent power grid O&M, offering a valuable reference for the practical implementation of AIOps in critical infrastructures. Evaluated on real-world data from the State Grid Corporation of China (SGCC), our system achieves a maximum F1-score of 88.78%, with a precision of 92.16% and recall of 85.63%, outperforming five baseline methods. Full article
(This article belongs to the Special Issue Advanced Techniques for Multi-Agent Systems)
Show Figures

Figure 1

19 pages, 9218 KiB  
Article
A Hybrid ANN–GWR Model for High-Accuracy Precipitation Estimation
by Ye Zhang, Leizhi Wang, Lingjie Li, Yilan Li, Yintang Wang, Xin Su, Xiting Li, Lulu Wang and Fei Yao
Remote Sens. 2025, 17(15), 2610; https://doi.org/10.3390/rs17152610 - 27 Jul 2025
Abstract
Multi-source fusion techniques have emerged as cutting-edge approaches for spatial precipitation estimation, yet they face persistent accuracy limitations, particularly under extreme conditions. Machine learning offers new opportunities to improve the precision of these estimates. To bridge this gap, we propose a hybrid artificial [...] Read more.
Multi-source fusion techniques have emerged as cutting-edge approaches for spatial precipitation estimation, yet they face persistent accuracy limitations, particularly under extreme conditions. Machine learning offers new opportunities to improve the precision of these estimates. To bridge this gap, we propose a hybrid artificial neural network–geographically weighted regression (ANN–GWR) model that synergizes event recognition and quantitative estimation. The ANN module dynamically identifies precipitation events through nonlinear pattern learning, while the GWR module captures location-specific relationships between multi-source data for calibrated rainfall quantification. Validated against 60-year historical data (1960–2020) from China’s Yongding River Basin, the model demonstrates superior performance through multi-criteria evaluation. Key results reveal the following: (1) the ANN-driven event detection achieves 10% higher accuracy than GWR, with a 15% enhancement for heavy precipitation events (>50 mm/day) during summer monsoons; (2) the integrated framework improves overall fusion accuracy by more than 10% compared to conventional GWR. This study advances precipitation estimation by introducing an artificial neural network into the event recognition period. Full article
Show Figures

Figure 1

24 pages, 2508 KiB  
Article
Class-Discrepancy Dynamic Weighting for Cross-Domain Few-Shot Hyperspectral Image Classification
by Chen Ding, Jiahao Yue, Sirui Zheng, Yizhuo Dong, Wenqiang Hua, Xueling Chen, Yu Xie, Song Yan, Wei Wei and Lei Zhang
Remote Sens. 2025, 17(15), 2605; https://doi.org/10.3390/rs17152605 - 27 Jul 2025
Abstract
In recent years, cross-domain few-shot learning (CDFSL) has demonstrated remarkable performance in hyperspectral image classification (HSIC), partially alleviating the distribution shift problem. However, most domain adaptation methods rely on similarity metrics to establish cross-domain class matching, making it difficult to simultaneously account for [...] Read more.
In recent years, cross-domain few-shot learning (CDFSL) has demonstrated remarkable performance in hyperspectral image classification (HSIC), partially alleviating the distribution shift problem. However, most domain adaptation methods rely on similarity metrics to establish cross-domain class matching, making it difficult to simultaneously account for intra-class sample size variations and inherent inter-class differences. To address this problem, existing studies have introduced a class weighting mechanism within the prototype network framework, determining class weights by calculating inter-sample similarity through distance metrics. However, this method suffers from a dual limitation: susceptibility to noise interference and insufficient capacity to capture global class variations, which may lead to distorted weight allocation and consequently result in alignment bias. To solve these issues, we propose a novel class-discrepancy dynamic weighting-based cross-domain FSL (CDDW-CFSL) framework. It integrates three key components: (1) the class-weighted domain adaptation (CWDA) method dynamically measures cross-domain distribution shifts using global class mean discrepancies. It employs discrepancy-sensitive weighting to strengthen the alignment of critical categories, enabling accurate domain adaptation while maintaining feature topology; (2) the class mean refinement (CMR) method incorporates class covariance distance to compute distribution discrepancies between support set samples and class prototypes, enabling the precise capture of cross-domain feature internal structures; (3) a novel multi-dimensional feature extractor that captures both local spatial details and continuous spectral characteristics simultaneously, facilitating deep cross-dimensional feature fusion. The results in three publicly available HSIC datasets show the effectiveness of the CDDW-CFSL. Full article
Show Figures

Figure 1

30 pages, 92065 KiB  
Article
A Picking Point Localization Method for Table Grapes Based on PGSS-YOLOv11s and Morphological Strategies
by Jin Lu, Zhongji Cao, Jin Wang, Zhao Wang, Jia Zhao and Minjie Zhang
Agriculture 2025, 15(15), 1622; https://doi.org/10.3390/agriculture15151622 - 26 Jul 2025
Viewed by 75
Abstract
During the automated picking of table grapes, the automatic recognition and segmentation of grape pedicels, along with the positioning of picking points, are vital components for all the following operations of the harvesting robot. In the actual scene of a grape plantation, however, [...] Read more.
During the automated picking of table grapes, the automatic recognition and segmentation of grape pedicels, along with the positioning of picking points, are vital components for all the following operations of the harvesting robot. In the actual scene of a grape plantation, however, it is extremely difficult to accurately and efficiently identify and segment grape pedicels and then reliably locate the picking points. This is attributable to the low distinguishability between grape pedicels and the surrounding environment such as branches, as well as the impacts of other conditions like weather, lighting, and occlusion, which are coupled with the requirements for model deployment on edge devices with limited computing resources. To address these issues, this study proposes a novel picking point localization method for table grapes based on an instance segmentation network called Progressive Global-Local Structure-Sensitive Segmentation (PGSS-YOLOv11s) and a simple combination strategy of morphological operators. More specifically, the network PGSS-YOLOv11s is composed of an original backbone of the YOLOv11s-seg, a spatial feature aggregation module (SFAM), an adaptive feature fusion module (AFFM), and a detail-enhanced convolutional shared detection head (DE-SCSH). And the PGSS-YOLOv11s have been trained with a new grape segmentation dataset called Grape-⊥, which includes 4455 grape pixel-level instances with the annotation of ⊥-shaped regions. After the PGSS-YOLOv11s segments the ⊥-shaped regions of grapes, some morphological operations such as erosion, dilation, and skeletonization are combined to effectively extract grape pedicels and locate picking points. Finally, several experiments have been conducted to confirm the validity, effectiveness, and superiority of the proposed method. Compared with the other state-of-the-art models, the main metrics F1 score and mask mAP@0.5 of the PGSS-YOLOv11s reached 94.6% and 95.2% on the Grape-⊥ dataset, as well as 85.4% and 90.0% on the Winegrape dataset. Multi-scenario tests indicated that the success rate of positioning the picking points reached up to 89.44%. In orchards, real-time tests on the edge device demonstrated the practical performance of our method. Nevertheless, for grapes with short pedicels or occluded pedicels, the designed morphological algorithm exhibited the loss of picking point calculations. In future work, we will enrich the grape dataset by collecting images under different lighting conditions, from various shooting angles, and including more grape varieties to improve the method’s generalization performance. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

20 pages, 77932 KiB  
Article
Image Alignment Based on Deep Learning to Extract Deep Feature Information from Images
by Lin Zhu, Yuxing Mao and Jianyu Pan
Sensors 2025, 25(15), 4628; https://doi.org/10.3390/s25154628 - 26 Jul 2025
Viewed by 93
Abstract
To overcome the limitations of traditional image alignment methods in capturing deep semantic features, a deep feature information image alignment network (DFA-Net) is proposed. This network aims to enhance image alignment performance through multi-level feature learning. DFA-Net is based on the deep residual [...] Read more.
To overcome the limitations of traditional image alignment methods in capturing deep semantic features, a deep feature information image alignment network (DFA-Net) is proposed. This network aims to enhance image alignment performance through multi-level feature learning. DFA-Net is based on the deep residual architecture and introduces spatial pyramid pooling to achieve cross-scalar feature fusion, effectively enhancing the feature’s adaptability to scale. A feature enhancement module based on the self-attention mechanism is designed, with key features that exhibit geometric invariance and high discriminative power, achieved through a dynamic weight allocation strategy. This improves the network’s robustness to multimodal image deformation. Experiments on two public datasets, MSRS and RoadScene, show that the method performs well in terms of alignment accuracy, with the RMSE metrics being reduced by 0.661 and 0.473, and the SSIM, MI, and NCC improved by 0.155, 0.163, and 0.211; and 0.108, 0.226, and 0.114, respectively, compared with the benchmark model. The visualization results validate the significant improvement in the features’ visual quality and confirm the method’s advantages in terms of stability and discriminative properties of deep feature extraction. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Graphical abstract

35 pages, 1231 KiB  
Review
Toward Intelligent Underwater Acoustic Systems: Systematic Insights into Channel Estimation and Modulation Methods
by Imran A. Tasadduq and Muhammad Rashid
Electronics 2025, 14(15), 2953; https://doi.org/10.3390/electronics14152953 - 24 Jul 2025
Viewed by 210
Abstract
Underwater acoustic (UWA) communication supports many critical applications but still faces several physical-layer signal processing challenges. In response, recent advances in machine learning (ML) and deep learning (DL) offer promising solutions to improve signal detection, modulation adaptability, and classification accuracy. These developments highlight [...] Read more.
Underwater acoustic (UWA) communication supports many critical applications but still faces several physical-layer signal processing challenges. In response, recent advances in machine learning (ML) and deep learning (DL) offer promising solutions to improve signal detection, modulation adaptability, and classification accuracy. These developments highlight the need for a systematic evaluation to compare various ML/DL models and assess their performance across diverse underwater conditions. However, most existing reviews on ML/DL-based UWA communication focus on isolated approaches rather than integrated system-level perspectives, which limits cross-domain insights and reduces their relevance to practical underwater deployments. Consequently, this systematic literature review (SLR) synthesizes 43 studies (2020–2025) on ML and DL approaches for UWA communication, covering channel estimation, adaptive modulation, and modulation recognition across both single- and multi-carrier systems. The findings reveal that models such as convolutional neural networks (CNNs), long short-term memory networks (LSTMs), and generative adversarial networks (GANs) enhance channel estimation performance, achieving error reductions and bit error rate (BER) gains ranging from 103 to 106. Adaptive modulation techniques incorporating support vector machines (SVMs), CNNs, and reinforcement learning (RL) attain classification accuracies exceeding 98% and throughput improvements of up to 25%. For modulation recognition, architectures like sequence CNNs, residual networks, and hybrid convolutional–recurrent models achieve up to 99.38% accuracy with latency below 10 ms. These performance metrics underscore the viability of ML/DL-based solutions in optimizing physical-layer tasks for real-world UWA deployments. Finally, the SLR identifies key challenges in UWA communication, including high complexity, limited data, fragmented performance metrics, deployment realities, energy constraints and poor scalability. It also outlines future directions like lightweight models, physics-informed learning, advanced RL strategies, intelligent resource allocation, and robust feature fusion to build reliable and intelligent underwater systems. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

25 pages, 6911 KiB  
Article
Image Inpainting Algorithm Based on Structure-Guided Generative Adversarial Network
by Li Zhao, Tongyang Zhu, Chuang Wang, Feng Tian and Hongge Yao
Mathematics 2025, 13(15), 2370; https://doi.org/10.3390/math13152370 - 24 Jul 2025
Viewed by 195
Abstract
To address the challenges of image inpainting in scenarios with extensive or irregular missing regions—particularly detail oversmoothing, structural ambiguity, and textural incoherence—this paper proposes an Image Structure-Guided (ISG) framework that hierarchically integrates structural priors with semantic-aware texture synthesis. The proposed methodology advances a [...] Read more.
To address the challenges of image inpainting in scenarios with extensive or irregular missing regions—particularly detail oversmoothing, structural ambiguity, and textural incoherence—this paper proposes an Image Structure-Guided (ISG) framework that hierarchically integrates structural priors with semantic-aware texture synthesis. The proposed methodology advances a two-stage restoration paradigm: (1) Structural Prior Extraction, where adaptive edge detection algorithms identify residual contours in corrupted regions, and a transformer-enhanced network reconstructs globally consistent structural maps through contextual feature propagation; (2) Structure-Constrained Texture Synthesis, wherein a multi-scale generator with hybrid dilated convolutions and channel attention mechanisms iteratively refines high-fidelity textures under explicit structural guidance. The framework introduces three innovations: (1) a hierarchical feature fusion architecture that synergizes multi-scale receptive fields with spatial-channel attention to preserve long-range dependencies and local details simultaneously; (2) spectral-normalized Markovian discriminator with gradient-penalty regularization, enabling adversarial training stability while enforcing patch-level structural consistency; and (3) dual-branch loss formulation combining perceptual similarity metrics with edge-aware constraints to align synthesized content with both semantic coherence and geometric fidelity. Our experiments on the two benchmark datasets (Places2 and CelebA) have demonstrated that our framework achieves more unified textures and structures, bringing the restored images closer to their original semantic content. Full article
Show Figures

Figure 1

22 pages, 2420 KiB  
Article
BiEHFFNet: A Water Body Detection Network for SAR Images Based on Bi-Encoder and Hybrid Feature Fusion
by Bin Han, Xin Huang and Feng Xue
Mathematics 2025, 13(15), 2347; https://doi.org/10.3390/math13152347 - 23 Jul 2025
Viewed by 135
Abstract
Water body detection in synthetic aperture radar (SAR) imagery plays a critical role in applications such as disaster response, water resource management, and environmental monitoring. However, it remains challenging due to complex background interference in SAR images. To address this issue, a bi-encoder [...] Read more.
Water body detection in synthetic aperture radar (SAR) imagery plays a critical role in applications such as disaster response, water resource management, and environmental monitoring. However, it remains challenging due to complex background interference in SAR images. To address this issue, a bi-encoder and hybrid feature fuse network (BiEHFFNet) is proposed for achieving accurate water body detection. First, a bi-encoder structure based on ResNet and Swin Transformer is used to jointly extract local spatial details and global contextual information, enhancing feature representation in complex scenarios. Additionally, the convolutional block attention module (CBAM) is employed to suppress irrelevant information of the output features of each ResNet stage. Second, a cross-attention-based hybrid feature fusion (CABHFF) module is designed to interactively integrate local and global features through cross-attention, followed by channel attention to achieve effective hybrid feature fusion, thus improving the model’s ability to capture water structures. Third, a multi-scale content-aware upsampling (MSCAU) module is designed by integrating atrous spatial pyramid pooling (ASPP) with the Content-Aware ReAssembly of FEatures (CARAFE), aiming to enhance multi-scale contextual learning while alleviating feature distortion caused by upsampling. Finally, a composite loss function combining Dice loss and Active Contour loss is used to provide stronger boundary supervision. Experiments conducted on the ALOS PALSAR dataset demonstrate that the proposed BiEHFFNet outperforms existing methods across multiple evaluation metrics, achieving more accurate water body detection. Full article
(This article belongs to the Special Issue Advanced Mathematical Methods in Remote Sensing)
Show Figures

Figure 1

15 pages, 1542 KiB  
Article
The Research on Multi-Objective Maintenance Optimization Strategy Based on Stochastic Modeling
by Guixu Xu, Pengwei Jiang, Weibo Ren, Yanfeng Li and Zhongxin Chen
Machines 2025, 13(8), 633; https://doi.org/10.3390/machines13080633 - 22 Jul 2025
Viewed by 183
Abstract
The traditional approach that separates remaining useful life prediction from maintenance strategy design often fails to support efficient decision-making. Effective maintenance requires a comprehensive consideration of prediction accuracy, cost control, and equipment safety. To address this issue, this paper proposes a multi-objective maintenance [...] Read more.
The traditional approach that separates remaining useful life prediction from maintenance strategy design often fails to support efficient decision-making. Effective maintenance requires a comprehensive consideration of prediction accuracy, cost control, and equipment safety. To address this issue, this paper proposes a multi-objective maintenance optimization method based on stochastic modeling. First, a multi-sensor data fusion technique is developed, which maps multidimensional degradation signals into a composite degradation state indicator using evaluation metrics such as monotonicity, tendency, and robustness. Then, a linear Wiener process model is established to characterize the degradation trajectory of equipment, and a closed-form analytical solution of its reliability function is derived. On this basis, a multi-objective optimization model is constructed, aiming to maximize equipment safety and minimize maintenance cost. The proposed method is validated using the NASA aircraft engine degradation dataset. The experimental results demonstrate that, while ensuring system reliability, the proposed approach significantly reduces maintenance costs compared to traditional periodic maintenance strategies, confirming its effectiveness and practical value. Full article
Show Figures

Figure 1

27 pages, 1868 KiB  
Article
SAM2-DFBCNet: A Camouflaged Object Detection Network Based on the Heira Architecture of SAM2
by Cao Yuan, Libang Liu, Yaqin Li and Jianxiang Li
Sensors 2025, 25(14), 4509; https://doi.org/10.3390/s25144509 - 21 Jul 2025
Viewed by 254
Abstract
Camouflaged Object Detection (COD) aims to segment objects that are highly integrated with their background, presenting significant challenges such as low contrast, complex textures, and blurred boundaries. Existing deep learning methods often struggle to achieve robust segmentation under these conditions. To address these [...] Read more.
Camouflaged Object Detection (COD) aims to segment objects that are highly integrated with their background, presenting significant challenges such as low contrast, complex textures, and blurred boundaries. Existing deep learning methods often struggle to achieve robust segmentation under these conditions. To address these limitations, this paper proposes a novel COD network, SAM2-DFBCNet, built upon the SAM2 Hiera architecture. Our network incorporates three key modules: (1) the Camouflage-Aware Context Enhancement Module (CACEM), which fuses local and global features through an attention mechanism to enhance contextual awareness in low-contrast scenes; (2) the Cross-Scale Feature Interaction Bridge (CSFIB), which employs a bidirectional convolutional GRU for the dynamic fusion of multi-scale features, effectively mitigating representation inconsistencies caused by complex textures and deformations; and (3) the Dynamic Boundary Refinement Module (DBRM), which combines channel and spatial attention mechanisms to optimize boundary localization accuracy and enhance segmentation details. Extensive experiments on three public datasets—CAMO, COD10K, and NC4K—demonstrate that SAM2-DFBCNet outperforms twenty state-of-the-art methods, achieving maximum improvements of 7.4%, 5.78%, and 4.78% in key metrics such as S-measure (Sα), F-measure (Fβ), and mean E-measure (Eϕ), respectively, while reducing the Mean Absolute Error (M) by 37.8%. These results validate the superior performance and robustness of our approach in complex camouflage scenarios. Full article
(This article belongs to the Special Issue Transformer Applications in Target Tracking)
Show Figures

Figure 1

26 pages, 8130 KiB  
Article
Research on Multi-Scale Vector Road-Matching Model Based on ISOD Descriptor
by Yu Yan, Ying Sun, Shaobo Wang, Yuefeng Lu, Yulong Hu and Miao Lu
ISPRS Int. J. Geo-Inf. 2025, 14(7), 280; https://doi.org/10.3390/ijgi14070280 - 20 Jul 2025
Viewed by 303
Abstract
In geographic information data processing, the matching of road data at different scales is crucial. Due to scale differences, road features can change, posing a challenge to multi-scale matching. Spatial relationship is the key to matching because it remains stable at different scales. [...] Read more.
In geographic information data processing, the matching of road data at different scales is crucial. Due to scale differences, road features can change, posing a challenge to multi-scale matching. Spatial relationship is the key to matching because it remains stable at different scales. In this paper, we propose an improved summation product of direction and distance (ISOD) descriptor, which combines features such as included angle chain and camber variance with similarity features such as length, direction, and Hausdorff distance to construct an integrated similarity metric model for multi-scale road matching. The experiments proved that the model achieved 94.75% and 93.34% precision and recall in 1:50,000 and 1:10,000 scale road data matching and 86.39% and 94.06% in 1:250,000 and 1:50,000 scale road data matching, respectively. This proves the effectiveness and practicality of the method. The ISOD descriptor and integrated similarity metric model in this paper provide an effective method for multi-scale road data matching, which helps the integration and fusion of geographic information data, and has an important application value in the fields of intelligent transport and urban planning. Full article
Show Figures

Figure 1

28 pages, 7608 KiB  
Article
A Forecasting Method for COVID-19 Epidemic Trends Using VMD and TSMixer-BiKSA Network
by Yuhong Li, Guihong Bi, Taonan Tong and Shirui Li
Computers 2025, 14(7), 290; https://doi.org/10.3390/computers14070290 - 18 Jul 2025
Viewed by 158
Abstract
The spread of COVID-19 is influenced by multiple factors, including control policies, virus characteristics, individual behaviors, and environmental conditions, exhibiting highly complex nonlinear dynamic features. The time series of new confirmed cases shows significant nonlinearity and non-stationarity. Traditional prediction methods that rely solely [...] Read more.
The spread of COVID-19 is influenced by multiple factors, including control policies, virus characteristics, individual behaviors, and environmental conditions, exhibiting highly complex nonlinear dynamic features. The time series of new confirmed cases shows significant nonlinearity and non-stationarity. Traditional prediction methods that rely solely on one-dimensional case data struggle to capture the multi-dimensional features of the data and are limited in handling nonlinear and non-stationary characteristics. Their prediction accuracy and generalization capabilities remain insufficient, and most existing studies focus on single-step forecasting, with limited attention to multi-step prediction. To address these challenges, this paper proposes a multi-module fusion prediction model—TSMixer-BiKSA network—that integrates multi-feature inputs, Variational Mode Decomposition (VMD), and a dual-branch parallel architecture for 1- to 3-day-ahead multi-step forecasting of new COVID-19 cases. First, variables highly correlated with the target sequence are selected through correlation analysis to construct a feature matrix, which serves as one input branch. Simultaneously, the case sequence is decomposed using VMD to extract low-complexity, highly regular multi-scale modal components as the other input branch, enhancing the model’s ability to perceive and represent multi-source information. The two input branches are then processed in parallel by the TSMixer-BiKSA network model. Specifically, the TSMixer module employs a multilayer perceptron (MLP) structure to alternately model along the temporal and feature dimensions, capturing cross-time and cross-variable dependencies. The BiGRU module extracts bidirectional dynamic features of the sequence, improving long-term dependency modeling. The KAN module introduces hierarchical nonlinear transformations to enhance high-order feature interactions. Finally, the SA attention mechanism enables the adaptive weighted fusion of multi-source information, reinforcing inter-module synergy and enhancing the overall feature extraction and representation capability. Experimental results based on COVID-19 case data from Italy and the United States demonstrate that the proposed model significantly outperforms existing mainstream methods across various error metrics, achieving higher prediction accuracy and robustness. Full article
Show Figures

Figure 1

16 pages, 2721 KiB  
Article
An Adapter and Segmentation Network-Based Approach for Automated Atmospheric Front Detection
by Xinya Ding, Xuan Peng, Yanguang Xue, Liang Zhang, Tianying Wang and Yunpeng Zhang
Appl. Sci. 2025, 15(14), 7855; https://doi.org/10.3390/app15147855 - 14 Jul 2025
Viewed by 131
Abstract
This study presents AD-MRCNN, an advanced deep learning framework for automated atmospheric front detection that addresses two critical limitations in existing methods. First, current approaches directly input raw meteorological data without optimizing feature compatibility, potentially hindering model performance. Second, they typically only provide [...] Read more.
This study presents AD-MRCNN, an advanced deep learning framework for automated atmospheric front detection that addresses two critical limitations in existing methods. First, current approaches directly input raw meteorological data without optimizing feature compatibility, potentially hindering model performance. Second, they typically only provide frontal category information without identifying individual frontal systems. Our solution integrates two key innovations: 1. An intelligent adapter module that performs adaptive feature fusion, automatically weighting and combining multi-source meteorological inputs (including temperature, wind fields, and humidity data) to maximize their synergistic effects while minimizing feature conflicts; the utilized network achieves an average improvement of over 4% across various metrics. 2. An enhanced instance segmentation network based on Mask R-CNN architecture that simultaneously achieves (1) precise frontal type classification (cold/warm/stationary/occluded), (2) accurate spatial localization, and (3) identification of distinct frontal systems. Comprehensive evaluation using ERA5 reanalysis data (2009–2018) demonstrates significant improvements, including an 85.1% F1-score, outperforming traditional methods (TFP: 63.1%) and deep learning approaches (Unet: 83.3%), and a 31% reduction in false alarms compared to semantic segmentation methods. The framework’s modular design allows for potential application to other meteorological feature detection tasks. Future work will focus on incorporating temporal dynamics for frontal evolution prediction. Full article
Show Figures

Figure 1

15 pages, 6090 KiB  
Article
Automated Detection of Tailing Impoundments in Multi-Sensor High-Resolution Satellite Images Through Advanced Deep Learning Architectures
by Lin Qin and Wenyue Song
Sensors 2025, 25(14), 4387; https://doi.org/10.3390/s25144387 - 14 Jul 2025
Viewed by 257
Abstract
Accurate spatial mapping of Tailing Impoundments (TIs) is vital for environmental sustainability in mining ecosystems. While remote sensing enables large-scale monitoring, conventional methods relying on single-sensor data and traditional machine learning-based algorithm suffer from reduced accuracy in cluttered environments. This research proposes a [...] Read more.
Accurate spatial mapping of Tailing Impoundments (TIs) is vital for environmental sustainability in mining ecosystems. While remote sensing enables large-scale monitoring, conventional methods relying on single-sensor data and traditional machine learning-based algorithm suffer from reduced accuracy in cluttered environments. This research proposes a deep learning framework leveraging multi-source high-resolution imagery to address these limitations. An upgraded You Only Look Once (YOLO) model is introduced, integrating three key innovations: a multi-scale feature aggregation layer, a lightweight hierarchical fusion mechanism, and a modified loss metric. These components enhance the model’s ability to capture spatial dependencies, optimize inference speed, and ensure stable training dynamics. A comprehensive dataset of TIs across varied terrains was constructed, expanded through affine transformations, spectral perturbations, and adversarial sample synthesis. Evaluations confirm the framework’s superior performance in complex scenarios, achieving higher precision and computational efficiency than state-of-the-art detectors. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

25 pages, 4948 KiB  
Review
A Review of Visual Grounding on Remote Sensing Images
by Ziyan Wang, Lei Liu, Gang Wan, Wei Zhang, Binjian Zhong, Haiyang Chang, Xinyi Li, Xiaoxuan Liu and Guangde Sun
Electronics 2025, 14(14), 2815; https://doi.org/10.3390/electronics14142815 - 13 Jul 2025
Viewed by 363
Abstract
Remote sensing visual grounding, a pivotal technology bridging natural language and high-resolution remote sensing images, holds significant application value in disaster monitoring, urban planning, and related fields. However, it faces critical challenges due to the inherent scale heterogeneity, semantic complexity, and annotation scarcity [...] Read more.
Remote sensing visual grounding, a pivotal technology bridging natural language and high-resolution remote sensing images, holds significant application value in disaster monitoring, urban planning, and related fields. However, it faces critical challenges due to the inherent scale heterogeneity, semantic complexity, and annotation scarcity of remote sensing data. This paper first reviews the development history of remote sensing visual grounding, providing an overview of the basic background knowledge, including fundamental concepts, datasets, and evaluation metrics. Then, it categorizes methods by whether they employ large language models as a pedestal, and provides in-depth analyses of the innovations and limitations of Transformer-based and multimodal large language model-based methods. Furthermore, focusing on remote sensing image characteristics, it discusses cutting-edge techniques such as cross-modal feature fusion, language-guided visual optimization, multi-scale, and hierarchical feature processing, open-set expansion and efficient fine-tuning. Finally, it outlines current bottlenecks and proposes valuable directions for future research. As the first comprehensive review dedicated to remote sensing visual grounding, this work is a reference resource for researchers to grasp domain-specific concepts and track the latest developments. Full article
Show Figures

Figure 1

Back to TopTop