Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (333)

Search Parameters:
Keywords = multi-junction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1259 KiB  
Article
A Novel Multi-Agent-Based Approach for Train Rescheduling in Large-Scale Railway Networks
by Jin Liu, Lei Chen, Zhongbei Tian, Ning Zhao and Clive Roberts
Appl. Sci. 2025, 15(14), 7996; https://doi.org/10.3390/app15147996 - 17 Jul 2025
Abstract
Real-time train rescheduling is a widely used strategy to minimize knock-on delays in railway networks. While recent research has introduced intelligent solutions to railway traffic management, the tight interdependence of train timetables and the intrinsic complexity of railway networks have hindered the scalability [...] Read more.
Real-time train rescheduling is a widely used strategy to minimize knock-on delays in railway networks. While recent research has introduced intelligent solutions to railway traffic management, the tight interdependence of train timetables and the intrinsic complexity of railway networks have hindered the scalability of these approaches to large-scale systems. This paper proposes a multi-agent system (MAS) that addresses these challenges by decomposing the network into single-junction levels, significantly reducing the search space for real-time rescheduling. The MAS employs a Condorcet voting-based collaborative approach to ensure global feasibility and prevent overly localized optimization by individual junction agents. This decentralized approach enhances both the quality and scalability of train rescheduling solutions. We tested the MAS on a railway network in the UK and compared its performance with the First-Come-First-Served (FCFS) and Timetable Order Enforced (TTOE) routing methods. The computational results show that the MAS significantly outperforms FCFS and TTOE in the tested scenarios, yielding up to a 34.11% increase in network capacity as measured by the defined objective function, thus improving network line capacity. Full article
Show Figures

Figure 1

16 pages, 2412 KiB  
Article
Dynamic Network Driver Analysis Identifies Master Factors Associated with Progression of Solar Lentigines
by Deyu Cai, Hong Zhang, Chengming Zhang, Xue Xiao, Xiao Cui, Xuelan Gu and Luonan Chen
Biology 2025, 14(7), 876; https://doi.org/10.3390/biology14070876 - 17 Jul 2025
Abstract
Solar lentigines, commonly caused by prolonged ultraviolet exposure, raise the risk of skin disorders and remain challenging to manage due to their complex mechanisms. Understanding the molecular mechanisms driving the progression of solar lentigines is crucial for developing effective protective strategies. In this [...] Read more.
Solar lentigines, commonly caused by prolonged ultraviolet exposure, raise the risk of skin disorders and remain challenging to manage due to their complex mechanisms. Understanding the molecular mechanisms driving the progression of solar lentigines is crucial for developing effective protective strategies. In this study, we introduced a novel method, Dynamic Network Driver (DND), which identifies upstream regulators that drive disease progression by integrating the Dynamic Network Biomarker (DNB) approach with network control theory. By applying DND to multi-omics data from solar lentigines subjects, we (1) identified the key drivers associated with solar lentigo progression, with their functions involved in differentiation and dermal–epidermal junction; and (2) highlighted ARNT2 and TBX2 as significant master factors supported by in vitro validation in melanocytes and pigmented 3D living skin equivalent models. These results demonstrate the potency of DND for uncovering the molecular mechanisms behind solar lentigines and informing therapeutic strategies. In summary, the DND approach identified novel drivers of solar lentigo progression, acting as new markers for spot mitigation in 3D spot mimic models. Full article
(This article belongs to the Special Issue Physiology and Pathophysiology of Skin)
Show Figures

Figure 1

27 pages, 5846 KiB  
Article
Agrocybe cylindracea Polysaccharides Ameliorate DSS-Induced Colitis by Restoring Intestinal Barrier Function and Reprogramming Immune Homeostasis via the Gut–Liver Axis
by Aamna Atta, Muhammad Naveed, Mujeeb Ur Rahman, Yamina Alioui, Immad Ansari, Sharafat Ali, Eslam Ghaleb, Nabeel Ahmed Farooqui, Mohammad Abusidu, Yi Xin and Bin Feng
Int. J. Mol. Sci. 2025, 26(14), 6805; https://doi.org/10.3390/ijms26146805 - 16 Jul 2025
Viewed by 158
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease driven by immune dysregulation, microbiota imbalance, and intestinal barrier dysfunction. Despite its global burden, effective therapies remain limited. This study explores the therapeutic potential of Agrocybe cylindracea polysaccharides (ACP) in a dextran sulfate sodium [...] Read more.
Ulcerative colitis (UC) is a chronic inflammatory bowel disease driven by immune dysregulation, microbiota imbalance, and intestinal barrier dysfunction. Despite its global burden, effective therapies remain limited. This study explores the therapeutic potential of Agrocybe cylindracea polysaccharides (ACP) in a dextran sulfate sodium (DSS)-induced murine colitis model. High-performance liquid chromatography (HPLC)-characterized ACP was administered orally to BALB/c mice following colitis induction. ACP treatment significantly reduced Disease Activity Index (DAI) scores, preserved colon length, and restored intestinal barrier integrity by upregulating tight junction proteins. Mechanistically, ACP modulated immune homeostasis, suppressing pro-inflammatory cytokines (IL-17, IL-23, CRP) while enhancing anti-inflammatory mediators (IL-4, TGF-β). Furthermore, ACP inhibited hepatic TLR4/MyD88/NF-κB signaling, attenuated systemic inflammation, and reshaped gut microbiota composition by enriching beneficial taxa and reducing pathogenic Bacteroides. These findings demonstrate ACP multi-target efficacy in colitis, positioning it as a promising natural therapeutic for UC. Full article
Show Figures

Figure 1

25 pages, 8033 KiB  
Article
Research on the Damage Evolution Law of Branch Wellbore Based on Damage Mechanics
by Qizhong Tian, Chao Han, Yang Meng, Rongdong Dai, Haocai Huang, Jiaao Chen and Chuanliang Yan
Processes 2025, 13(7), 2172; https://doi.org/10.3390/pr13072172 - 8 Jul 2025
Viewed by 251
Abstract
Multilateral wells can effectively develop complex reservoirs at a lower cost, which, in turn, enhances the overall efficiency of oilfield exploitation. However, drilling branch wells from the main wellbore can disrupt the surrounding formation stresses, leading to secondary stress concentration at the junctions, [...] Read more.
Multilateral wells can effectively develop complex reservoirs at a lower cost, which, in turn, enhances the overall efficiency of oilfield exploitation. However, drilling branch wells from the main wellbore can disrupt the surrounding formation stresses, leading to secondary stress concentration at the junctions, which, in turn, causes wellbore instability. This study established a coupled analysis model for wellbore stability in branch wells by integrating seepage, stress, and damage. The model explained the instability mechanisms of branch wellbores under multi-physics coupling conditions. The results showed that during drilling, the thin, interwall section of branch wells had weak resistance to external loads, with significant stress concentration and a maximum damage factor of 0.267, making it prone to instability. As drilling time progressed, fractures in the surrounding rock mass of the wellbore continuously formed, propagated, and interconnected, causing a sharp increase in the permeability of the damaged area. The seepage direction of drilling fluid in the wellbore tended towards the severely damaged interwall section, leading to a rapid increase in pore pressure there. With increasing distance from the interwall tip, the resistance to external loads strengthened, and the formation damage factor, permeability, pore pressure, and equivalent plastic strain all gradually decreased. When the drilling fluid density increased from 1.0 g/cm3 to 1.5 g/cm3, the maximum equivalent plastic strain around the wellbore decreased from 0.041 to 0.014, a reduction of 65.8%, indicating that appropriately increasing the drilling fluid density can effectively reduce the risk of wellbore instability. Full article
Show Figures

Figure 1

19 pages, 18888 KiB  
Article
Effects of Lactobacillus plantarum-Fermented Feed on Growth and Intestinal Health in Haliotis discus hannai
by Ling Ke, Chenyu Huang, Song Peng, Mengshi Zhao, Fengqiang Lin and Zhaolong Li
Microorganisms 2025, 13(7), 1603; https://doi.org/10.3390/microorganisms13071603 - 8 Jul 2025
Viewed by 313
Abstract
This study multidimensionally investigates the comprehensive effects of Lactobacillus plantarum (LP)-fermented feed on growth performance, intestinal health, and metabolic regulation in Pacific abalone (Haliotis discus hannai). The results demonstrate that LP fermentation significantly alters feed’s physical properties and nutritional profile, softening [...] Read more.
This study multidimensionally investigates the comprehensive effects of Lactobacillus plantarum (LP)-fermented feed on growth performance, intestinal health, and metabolic regulation in Pacific abalone (Haliotis discus hannai). The results demonstrate that LP fermentation significantly alters feed’s physical properties and nutritional profile, softening texture, increasing viscosity, and emitting an acidic aroma. Notably, it enhanced contents of cis-9-palmitoleic acid, α-linolenic acid (ALA), and functional amino acids (GABA, L-histidine, and L-asparagine), indicating that fermentation optimized ω-3 fatty acid accumulation and amino acid profiles through the modulation of fatty acid metabolic pathways, thereby improving feed biofunctionality and stress-resistant potential. Further analyses revealed that fermented feed markedly improved intestinal morphology in abalone, promoting villus integrity and upregulating tight junction proteins (ZO-1, Claudin) to reinforce intestinal barrier function. Concurrently, it downregulated inflammatory cytokines (TNF-α, NF-κB, IL-16) while upregulating anti-inflammatory factors (TLR4) and antioxidant-related genes (NRF2/KEAP1 pathway), synergistically mitigating intestinal inflammation and enhancing antioxidant capacity. Sequencing and untargeted metabolomics unveiled that fermented feed substantially remodeled gut microbiota structure, increasing Firmicutes abundance while reducing Bacteroidetes, with the notable enrichment of beneficial genera such as Mycoplasma. Metabolite profiling highlighted the significant activation of lipid metabolism, tryptophan pathway, and coenzyme A biosynthesis. A Spearman correlation analysis identified microbiota–metabolite interactions (such as Halomonas’ association with isethionic acid) potentially driving growth performance via metabolic microenvironment regulation. In conclusion, LP-fermented feed enhances abalone growth, immune response, and aquaculture efficiency through multi-dimensional synergistic mechanisms (nutritional optimization, intestinal homeostasis regulation, microbiota–metabolome crosstalk), providing critical theoretical foundations for aquafeed development and probiotic applications in aquaculture. Full article
(This article belongs to the Special Issue Microbiome in Fish and Their Living Environment)
Show Figures

Figure 1

45 pages, 4358 KiB  
Article
Parameter Extraction of Photovoltaic Cells and Panels Using a PID-Based Metaheuristic Algorithm
by Aseel Bennagi, Obaida AlHousrya, Daniel T. Cotfas and Petru A. Cotfas
Appl. Sci. 2025, 15(13), 7403; https://doi.org/10.3390/app15137403 - 1 Jul 2025
Viewed by 289
Abstract
In the world of solar technology, precisely extracting photovoltaic cell and panel parameters is key to efficient energy production. This paper presents a new metaheuristic algorithm for extracting parameters from photovoltaic cells using the functionality of the PID-based search algorithm (PSA). The research [...] Read more.
In the world of solar technology, precisely extracting photovoltaic cell and panel parameters is key to efficient energy production. This paper presents a new metaheuristic algorithm for extracting parameters from photovoltaic cells using the functionality of the PID-based search algorithm (PSA). The research includes single-diode (SDM) and double-diode (DDM) models applied to RTC France, amorphous silicon (aSi), monocrystalline silicon (mSi), PVM 752 GaAs, and STM6-40 panels. Datasets from multijunction solar cells at three temperatures (41.5 °C, 51.3 °C, and 61.6 °C) were used. PSA performance was assessed using root mean square error (RMSE), mean bias error (MBE), and absolute error (AE). A strategy was introduced by refining PID parameters and relocating error calculations outside the main loop to enhance exploration and exploitation. A Lévy flight-based zero-output mechanism was integrated, enabling shorter extraction times and requiring a smaller population, while enhancing search diversity and mitigating local optima entrapment. PSA was compared against 26 top-performing algorithms. RTC France showed RMSE improvements of 0.67–2.10% in 3.35 s, while for the mSi model, PSA achieved up to 40.9% improvement in 5.57 s and 22.18% for PVM 752 in 8.52 s. PSA’s accuracy and efficiency make it a valuable tool for advancing renewable energy technologies. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

21 pages, 5488 KiB  
Article
Germinated Spores of the Probiotic Bacterium Bacillus coagulans JBI-YZ6.3 Support Dynamic Changes in Intestinal Epithelial Communication and Resilience to Mechanical Wounding
by Sage V. McGarry, Earvin A. F. Grinage, Krista Sanchez, Dina Cruickshank, Liang Anderson and Gitte S. Jensen
Microorganisms 2025, 13(7), 1466; https://doi.org/10.3390/microorganisms13071466 - 24 Jun 2025
Viewed by 752
Abstract
The spore-forming probiotic Bacillus coagulans JBI-YZ6.3 interacts with the gut epithelium via its secreted metabolites as well as its cell walls, engaging pattern-recognition receptors on the epithelium. We evaluated its effects on human T84 gut epithelial cells using in vitro co-cultures, comparing metabolically [...] Read more.
The spore-forming probiotic Bacillus coagulans JBI-YZ6.3 interacts with the gut epithelium via its secreted metabolites as well as its cell walls, engaging pattern-recognition receptors on the epithelium. We evaluated its effects on human T84 gut epithelial cells using in vitro co-cultures, comparing metabolically active germinated spores to the isolated metabolite fraction and cell wall fraction under unstressed versus inflamed conditions. Germinated spores affected epithelial communication via chemokines interleukin-8, interferon gamma-induced protein-10, and macrophage inflammatory protein-1 alpha and beta after 2 and 24 h of co-culture. Non-linear dose responses confirmed that bacterial density affected the epigenetic state of the epithelial cells. In contrast, the cell wall fraction increased cytokine and chemokine levels under both normal and inflamed conditions, demonstrating that the intact bacterium had anti-inflammatory properties, regulating pro-inflammatory signals from its cell walls. During recovery from mechanical wounding, germinated spores accelerated healing, both in the absence and presence of LPS-induced inflammation; both the metabolite and cell wall fractions contributed to this effect. The release of zonulin, a regulator of tight junction integrity, was reduced by germinated spores after 2 h. These findings suggest that B. coagulans JBI-YZ6.3 modulates epithelial chemokine signaling, supports barrier integrity, and enhances epithelial resilience, highlighting its potential as an efficacious multi-faceted probiotic for gut health. Full article
(This article belongs to the Special Issue Advances in Host-Gut Microbiota)
Show Figures

Figure 1

17 pages, 6771 KiB  
Article
Functional Differentiation Reconfiguration in the Midgut of Nezara viridula (Hemiptera: Pentatomidae) Based on Transcriptomics: Multilayer Enrichment Analysis and Topological Network Interpretation
by Dongyue Yu, Jingyu Liang and Wenjun Bu
Insects 2025, 16(6), 634; https://doi.org/10.3390/insects16060634 - 16 Jun 2025
Viewed by 498
Abstract
The present investigation systematically elucidates the distinct functional specialization within the M1–M3 midgut sections of the significant agricultural pest, Nezara viridula. Employing an integrated transcriptomic analysis, three pivotal discoveries were achieved: (1) each midgut segment possesses unique gene expression signatures; (2) metabolic [...] Read more.
The present investigation systematically elucidates the distinct functional specialization within the M1–M3 midgut sections of the significant agricultural pest, Nezara viridula. Employing an integrated transcriptomic analysis, three pivotal discoveries were achieved: (1) each midgut segment possesses unique gene expression signatures; (2) metabolic and signal transduction pathways exhibit coordinated regulatory patterns; and (3) parallel expression changes occur between neuroreceptor (e.g., TACR/HTR) and metabolic enzyme (e.g., GLA/NAGA) genes within identical midgut segments. These data reveal that the M1 region is primarily enriched in metabolic processes and neural signaling; the M2 region emphasizes cellular junctions and immune responses, while the M3 region is mainly responsible for cellular senescence and renewal. These discoveries advance the understanding of feeding adaptation mechanisms in Hemipteran insects and propose a “metabolism–defense–regeneration” functional model for the midgut. The established multi-level analytical framework provides a robust methodology for subsequent dissection of complex biological systems, identification of key molecular targets for functional validation, and for the development of novel pest control strategies. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

29 pages, 4847 KiB  
Article
Enhancing Power Generation: PIV Analysis of Flow Structures’ Impact on Concentrated Solar Sphere Parameters
by Hassan Abdulmouti
Energies 2025, 18(12), 3162; https://doi.org/10.3390/en18123162 - 16 Jun 2025
Viewed by 289
Abstract
The flow velocity field of the oil-filled acrylic solar sphere is assessed using flow visualization, which includes image processing and Particle Image Velocimetry (PIV) measurements. The temperature, sphere size, and thickness all have an impact on the generated convection flow. The acrylic sphere, [...] Read more.
The flow velocity field of the oil-filled acrylic solar sphere is assessed using flow visualization, which includes image processing and Particle Image Velocimetry (PIV) measurements. The temperature, sphere size, and thickness all have an impact on the generated convection flow. The acrylic sphere, a contemporary concentrated photovoltaic technology, collects solar energy and concentrates it into a small focal region. This focus point is positioned precisely above a multi-junction apparatus that serves as an appliance for concentrator cells. Instead of producing the same amount of electricity as a typical photovoltaic panel (PV), this gadget can generate an enormous power rate directly. There are numerous industrial uses for acrylic spheres as well. This study paper aims to examine the flow properties inside a sphere and investigate the impact of the sphere’s temperature, size, and thickness on the fluid motion’s flow velocity. Furthermore, the goal of this research is to elucidate the correlation between these variables to enhance power-generating performance by achieving higher efficiency. The findings demonstrated that the flow structure value is greatly affected by the sphere size, thickness, and temperature. It is discovered that when the spherical thickness lowers, the velocity rises. As a result, the sphere performs better at lower liquid temperatures (35–40 °C), larger sizes (15–30 cm diameter), and reduced acrylic thickness (3–4 mm), leading to up to a 23% increase in power output and a 35–50% rise in internal flow velocity compared to thicker and smaller configurations. Therefore, reducing the sphere thickness by 1 mm results in approximately a 10% increase in average flow velocity at the top of the sphere, corresponding to an increase of about 0.0001 m/s. Notably, the sphere with a 3 mm thickness demonstrates superior power and efficiency compared to other thicknesses. As the sphere’s thickness decreases, the solar sphere’s output power and efficiency rise. The amount of sunlight absorbed by the acrylic photons increases with decreasing acrylic layer thickness; hence, the greater the output power, the higher the efficiency that follows. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

11 pages, 5318 KiB  
Case Report
Severe Myocardial Involvement and Persistent Supraventricular Arrhythmia in a Premature Infant Due to Enterovirus Infection: Case Report and Literature Review
by Carolina Montobbio, Alessio Conte, Andrea Calandrino, Alessia Pepe, Francesco Vinci, Alessandra Siboldi, Roberto Formigari and Luca Antonio Ramenghi
J. Cardiovasc. Dev. Dis. 2025, 12(6), 228; https://doi.org/10.3390/jcdd12060228 - 14 Jun 2025
Viewed by 698
Abstract
Enterovirus (EV) infections in neonates can be transmitted vertically or horizontally, with symptoms ranging from mild to severe, including myocarditis, meningoencephalitis, and hepatitis. Neonates with EV-induced myocarditis may present severe cardiovascular disease with sudden onset of arrhythmia. Neonatal arrhythmias, particularly in low birth [...] Read more.
Enterovirus (EV) infections in neonates can be transmitted vertically or horizontally, with symptoms ranging from mild to severe, including myocarditis, meningoencephalitis, and hepatitis. Neonates with EV-induced myocarditis may present severe cardiovascular disease with sudden onset of arrhythmia. Neonatal arrhythmias, particularly in low birth weight or critically ill infants, can impair cardiac function and worsen outcomes. EV targets cardiomyocyte receptors, inducing apoptosis pathways and triggering cardiac conduction disturbances. We present an extremely low-birth-weight preterm infant (GW 27 + 6) who developed EV-induced myocarditis, complicated with a sudden onset of supraventricular tachycardia (SVT), pericardial effusion and bi-atrial enlargement. Despite multi-agent regimen, including propranolol, flecainide, and amiodarone, the infant showed persistent junctional rhythm until seven months of age, later transitioning to atrial rhythm with stable cardiac function. A review of previously published rhythm disturbances due to EV-induced myocarditis is presented. Newborns with EV-induced arrhythmia may require a multi-modal treatment such as a multi-agent medical regimen or, in severe non-responsive cases, an electrophysiological approach. EV infections may cause long-term cardiovascular comorbidities (such as left ventricular dysfunction or mitral valve regurgitation), necessitating continuous monitoring through echocardiography and ECG. Collaboration between neonatologists and pediatric cardiologists is crucial for effective treatment and follow-up. Full article
Show Figures

Figure 1

23 pages, 4593 KiB  
Article
Laser-Induced Liquid-Phase Boron Doping of 4H-SiC
by Gunjan Kulkarni, Yahya Bougdid, Chandraika (John) Sugrim, Ranganathan Kumar and Aravinda Kar
Materials 2025, 18(12), 2758; https://doi.org/10.3390/ma18122758 - 12 Jun 2025
Viewed by 391
Abstract
4H-silicon carbide (4H-SiC) is a cornerstone for next-generation optoelectronic and power devices owing to its unparalleled thermal, electrical, and optical properties. However, its chemical inertness and low dopant diffusivity for most dopants have historically impeded effective doping. This study unveils a transformative laser-assisted [...] Read more.
4H-silicon carbide (4H-SiC) is a cornerstone for next-generation optoelectronic and power devices owing to its unparalleled thermal, electrical, and optical properties. However, its chemical inertness and low dopant diffusivity for most dopants have historically impeded effective doping. This study unveils a transformative laser-assisted boron doping technique for n-type 4H-SiC, employing a pulsed Nd:YAG laser (λ = 1064 nm) with a liquid-phase boron precursor. By leveraging a heat-transfer model to optimize laser process parameters, we achieved dopant incorporation while preserving the crystalline integrity of the substrate. A novel optical characterization framework was developed to probe laser-induced alterations in the optical constants—refraction index (n) and attenuation index (k)—across the MIDIR spectrum (λ = 3–5 µm). The optical properties pre- and post-laser doping were measured using Fourier-transform infrared spectrometry, and the corresponding complex refraction indices were extracted by solving a coupled system of nonlinear equations derived from single- and multi-layer absorption models. These models accounted for the angular dependence in the incident beam, enabling a more accurate determination of n and k values than conventional normal-incidence methods. Our findings indicate the formation of a boron-acceptor energy level at 0.29 eV above the 4H-SiC valence band, which corresponds to λ = 4.3 µm. This impurity level modulated the optical response of 4H-SiC, revealing a reduction in the refraction index from 2.857 (as-received) to 2.485 (doped) at λ = 4.3 µm. Structural characterization using Raman spectroscopy confirmed the retention of crystalline integrity post-doping, while secondary ion mass spectrometry exhibited a peak boron concentration of 1.29 × 1019 cm−3 and a junction depth of 450 nm. The laser-fabricated p–n junction diode demonstrated a reverse-breakdown voltage of 1668 V. These results validate the efficacy of laser doping in enabling MIDIR tunability through optical modulation and functional device fabrication in 4H-SiC. The absorption models and doping methodology together offer a comprehensive platform for paving the way for transformative advances in optoelectronics and infrared materials engineering. Full article
(This article belongs to the Special Issue Laser Technology for Materials Processing)
Show Figures

Figure 1

26 pages, 948 KiB  
Review
Fermented Dairy Products as Precision Modulators of Gut Microbiota and Host Health: Mechanistic Insights, Clinical Evidence, and Future Directions
by Yuan Gao, Yanyan Liu, Tingting Ma, Qimeng Liang, Junqi Sun, Xiaomeng Wu, Yinglong Song, Hui Nie, Jun Huang and Guangqing Mu
Foods 2025, 14(11), 1946; https://doi.org/10.3390/foods14111946 - 29 May 2025
Cited by 1 | Viewed by 2049
Abstract
Dairy products—encompassing yogurt, kefir, cheese, and cultured milk beverages—are emerging as versatile, food-based modulators of gut microbiota and host physiology. This review synthesizes mechanistic insights demonstrating how live starter cultures and their fermentation-derived metabolites (short-chain fatty acids, bioactive peptides, and exopolysaccharides) act synergistically [...] Read more.
Dairy products—encompassing yogurt, kefir, cheese, and cultured milk beverages—are emerging as versatile, food-based modulators of gut microbiota and host physiology. This review synthesizes mechanistic insights demonstrating how live starter cultures and their fermentation-derived metabolites (short-chain fatty acids, bioactive peptides, and exopolysaccharides) act synergistically to enhance microbial diversity, reinforce epithelial barrier integrity via upregulation of tight-junction proteins, and modulate immune signaling. Clinical evidence supports significant improvements in metabolic parameters (fasting glucose, lipid profiles, blood pressure) and reductions in systemic inflammation across metabolic syndrome, hypertension, and IBS cohorts. We highlight critical modulatory factors—including strain specificity, host enterotypes and FUT2 genotype, fermentation parameters, and matrix composition—that govern probiotic engraftment, postbiotic yield, and therapeutic efficacy. Despite promising short-term outcomes, current studies are limited by heterogeneous designs and brief intervention periods, underscoring the need for long-term, adaptive trials and integrative multi-omics to establish durability and causality. Looking forward, precision nutrition frameworks that harness baseline microbiota profiling, host genetics, and data-driven fermentation design will enable bespoke fermented dairy formulations, transforming these traditional foods into next-generation functional matrices for targeted prevention and management of metabolic, inflammatory, and neuroimmune disorders. Full article
Show Figures

Figure 1

20 pages, 5246 KiB  
Article
Structural Analysis of a Modular High-Concentration PV System Operating at ~1200 Suns
by Taher Maatallah, Mussad Alzahrani, William Cameron, Katie Shanks, Souheil El Alimi, Tapas K. Mallick and Sajid Ali
Machines 2025, 13(6), 468; https://doi.org/10.3390/machines13060468 - 28 May 2025
Viewed by 379
Abstract
The progression of research in concentration photovoltaic systems parallels the advancement of high-efficiency multi-junction solar cells. To translate the theoretical optical framework into practical experimentation, a modular and structurally validated mechanical configuration for a high-concentration photovoltaic (HCPV) system was developed, incorporating boundary conditions [...] Read more.
The progression of research in concentration photovoltaic systems parallels the advancement of high-efficiency multi-junction solar cells. To translate the theoretical optical framework into practical experimentation, a modular and structurally validated mechanical configuration for a high-concentration photovoltaic (HCPV) system was developed, incorporating boundary conditions and ensuring full system integration. The system incorporates a modular mechanical architecture, allowing flexible integration and interchangeability of optical components for experimental configurations. The architecture offers a high degree of mechanical flexibility, providing each optical stage with multiple linear and angular adjustment capabilities to support precision alignment. To ensure tracking precision, the system was coupled with a three-dimensional sun tracker capable of withstanding torques up to 60 Nm and supporting a combined payload of 80 kg, including counterbalance. The integration necessitated implementation of a counterbalance mechanism along with comprehensive static load analysis to ensure alignment stability and mechanical resilience. A reinforced triangular support structure, fabricated from stainless steel, was validated through simulation to maintain deformation below 0.1 mm under stress levels reaching 5 MN/m2, confirming its mechanical robustness and reliability. Windage analysis confirmed that the tracker could safely operate at 15 m/s wind speed for tilt angles of 35° (counter-clockwise) and −5° (clockwise), while operation at a 80° (counter-clockwise) tilt is safe up to 12 m/s, ensuring compliance with local environmental conditions. Overall, the validated system demonstrates structural resilience and modularity, supporting experimental deployment and future scalability. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

17 pages, 3829 KiB  
Article
Innovative Dual-Functional Photocatalyst Design for Precision Water Remediation
by Yike Li and Xian Liu
Crystals 2025, 15(5), 483; https://doi.org/10.3390/cryst15050483 - 21 May 2025
Viewed by 434
Abstract
This study pioneers the development of a synergistic Ag-doped molecularly imprinted TiO2 photocatalyst (MIP-Ag-TiO2) through a multi-strategy engineering approach, integrating molecular imprinting technology with plasmonic metal modification via a precisely optimized sol–gel protocol. Breaking from conventional non-selective photocatalysts, our material [...] Read more.
This study pioneers the development of a synergistic Ag-doped molecularly imprinted TiO2 photocatalyst (MIP-Ag-TiO2) through a multi-strategy engineering approach, integrating molecular imprinting technology with plasmonic metal modification via a precisely optimized sol–gel protocol. Breaking from conventional non-selective photocatalysts, our material features an engineered surface architecture that combines selective molecular recognition sites with enhanced charge separation capabilities, specifically tailored for the targeted degradation of recalcitrant salicylic acid (SA) contaminants. Advanced characterization (XRD, EPR, FT-IR, TEM-EDS) reveals unprecedented structure–activity relationships, demonstrating how template molecule ratios (Ti:SA = 5:1) and calcination parameters (550 °C) collaboratively optimize both adsorption selectivity and quantum efficiency. The optimized MIP-Ag-TiO2 achieves breakthrough performance metrics: 98.6% SA degradation efficiency at 1% Ag doping, coupled with a record selectivity coefficient R = 7.128. Mechanistic studies employing radical trapping experiments identify a dual •OH/O2-mediated degradation pathway enabled by the Ag-TiO2 Schottky junction. This work establishes a paradigm-shifting “capture-and-destroy” photocatalytic system that simultaneously addresses the critical challenges of selectivity and quantum yield limitations in advanced oxidation processes, positioning molecularly imprinted plasmonic photocatalysts as next-generation smart materials for precision water purification. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
Show Figures

Figure 1

19 pages, 4129 KiB  
Article
Study on an Improved YOLOv7-Based Algorithm for Human Head Detection
by Dong Wu, Weidong Yan and Jingli Wang
Electronics 2025, 14(9), 1889; https://doi.org/10.3390/electronics14091889 - 7 May 2025
Viewed by 663
Abstract
In response to the decreased accuracy in person detection caused by densely populated areas and mutual occlusions in public spaces, a human head-detection approach is employed to assist in detecting individuals. To address key issues in dense scenes—such as poor feature extraction, rough [...] Read more.
In response to the decreased accuracy in person detection caused by densely populated areas and mutual occlusions in public spaces, a human head-detection approach is employed to assist in detecting individuals. To address key issues in dense scenes—such as poor feature extraction, rough label assignment, and inefficient pooling—we improved the YOLOv7 network in three aspects: adding attention mechanisms, enhancing the receptive field, and applying multi-scale feature fusion. First, a large amount of surveillance video data from crowded public spaces was collected to compile a head-detection dataset. Then, based on YOLOv7, the network was optimized as follows: (1) a CBAM attention module was added to the neck section; (2) a Gaussian receptive field-based label-assignment strategy was implemented at the junction between the original feature-fusion module and the detection head; (3) the SPPFCSPC module was used to replace the multi-space pyramid pooling. By seamlessly uniting CBAM, RFLAGauss, and SPPFCSPC, we establish a novel collaborative optimization framework. Finally, experimental comparisons revealed that the improved model’s accuracy increased from 92.4% to 94.4%; recall improved from 90.5% to 93.9%; and inference speed increased from 87.2 frames per second to 94.2 frames per second. Compared with single-stage object-detection models such as YOLOv7 and YOLOv8, the model demonstrated superior accuracy and inference speed. Its inference speed also significantly outperforms that of Faster R-CNN, Mask R-CNN, DINOv2, and RT-DETRv2, markedly enhancing both small-object (head) detection performance and efficiency. Full article
Show Figures

Figure 1

Back to TopTop