Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,656)

Search Parameters:
Keywords = multi-ions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1174 KB  
Review
Application of Graphene Oxide Nanomaterials in Crop Plants and Forest Plants
by Yi-Xuan Niu, Xin-Yu Yao, Jun Hyok Won, Zi-Kai Shen, Chao Liu, Weilun Yin, Xinli Xia and Hou-Ling Wang
Forests 2026, 17(1), 94; https://doi.org/10.3390/f17010094 (registering DOI) - 10 Jan 2026
Abstract
Graphene oxide (GO) is a carbon-based nanomaterial explored for agricultural and forestry uses, but plant responses are strongly subject to both the dose and the route of exposure. We summarized recent studies with defined graphene oxide (GO) exposures by seed priming, foliar delivery, [...] Read more.
Graphene oxide (GO) is a carbon-based nanomaterial explored for agricultural and forestry uses, but plant responses are strongly subject to both the dose and the route of exposure. We summarized recent studies with defined graphene oxide (GO) exposures by seed priming, foliar delivery, and root or soil exposure, while comparing annual crops with woody forest plants. Mechanistic progress points to a shared physicochemical basis: surface oxygen groups and sheet geometry reshape water and ion microenvironments at the soil–seed and soil–rhizosphere interfaces, and many reported shifts in antioxidant enzymes and hormone pathways likely represent downstream stress responses. In crops, low-to-moderate doses most consistently improve germination, root architecture, and tolerance to salinity or drought stress, whereas high doses or prolonged root exposure can cause root surface coating, oxidative injury, and photosynthetic inhibition. In forest plants, evidence remains limited and often relies on seedlings or tissue culture. For forest plants with long life cycles, processes such as soil persistence, aging, and multi-seasonal carry-over become key factors, especially in nurseries and restoration substrates. The available data indicate predominant root retention with generally limited root-to-shoot translocation, so residues in edible and medicinal organs remain insufficiently quantified under realistic-use patterns. This review provides a scenario-based framework for crop- and forestry-specific safe-dose windows and proposes standardized endpoints for long-term fate and ecological risk assessment. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
31 pages, 7927 KB  
Review
Research Progress of High-Entropy Ceramic Films via Arc Ion Plating
by Haoran Chen, Baosen Mi, Jingjing Wang, Tianju Chen, Xun Ma, Ping Liu and Wei Li
Coatings 2026, 16(1), 82; https://doi.org/10.3390/coatings16010082 - 9 Jan 2026
Viewed by 10
Abstract
High-entropy ceramic (HEC) thin films generally refer to multi-component solid solutions composed of multiple metallic and non-metallic elements, existing in forms such as carbides, nitrides, and borides. Benefiting from the high-entropy effect, lattice distortion, sluggish diffusion, and cocktail effect of high-entropy systems, HEC [...] Read more.
High-entropy ceramic (HEC) thin films generally refer to multi-component solid solutions composed of multiple metallic and non-metallic elements, existing in forms such as carbides, nitrides, and borides. Benefiting from the high-entropy effect, lattice distortion, sluggish diffusion, and cocktail effect of high-entropy systems, HEC thin films form simple amorphous or nanocrystalline structures while exhibiting high hardness/elastic modulus, excellent tribological properties, and thermal stability. Although the mixing entropy increases with the number of elements in the system, a higher number of elements does not guarantee improved performance. In addition to system configuration, the regulation of preparation methods and processes is also a key factor in enhancing performance. Arc ion plating (AIP) has emerged as one of the mainstream techniques for fabricating high-entropy ceramic (HEC) thin films, which is attributed to its high ionization efficiency, flexible multi-target configuration, precise control over process parameters, and high deposition rate. Through rational design of the compositional system and optimization of key process parameters—such as the substrate bias voltage, gas flow rates, and arc current—HEC thin films with high hardness/toughness, wear resistance, high-temperature oxidation resistance, and electrochemical performance can be fabricated, and several of these properties can even be simultaneously achieved. Against the backdrop of AIP deposition, this review focuses on discussions grounded in the thermodynamic principles of high-entropy systems. It systematically discusses how process parameters influence the microstructure and, consequently, the mechanical, tribological, electrochemical, and high-temperature oxidation behaviors of HEC thin films under various complex service conditions. Finally, the review outlines prospective research directions for advancing the AIP-based synthesis of high-entropy ceramic coatings. Full article
Show Figures

Figure 1

35 pages, 3152 KB  
Review
AI-Resolved Protein Energy Landscapes, Electrodynamics, and Fluidic Microcircuits as a Unified Framework for Predicting Neurodegeneration
by Cosmin Pantu, Alexandru Breazu, Stefan Oprea, Matei Serban, Razvan-Adrian Covache-Busuioc, Octavian Munteanu, Nicolaie Dobrin, Daniel Costea and Lucian Eva
Int. J. Mol. Sci. 2026, 27(2), 676; https://doi.org/10.3390/ijms27020676 - 9 Jan 2026
Viewed by 30
Abstract
Research shows that neurodegenerative processes do not develop from a single “broken” biochemistry process; rather, they develop when a complex multi-physics environment gradually loses its ability to stabilize the neuron via a collective action between the protein, ion, field and fluid dynamics of [...] Read more.
Research shows that neurodegenerative processes do not develop from a single “broken” biochemistry process; rather, they develop when a complex multi-physics environment gradually loses its ability to stabilize the neuron via a collective action between the protein, ion, field and fluid dynamics of the neuron. The use of new technologies such as quantum-informed molecular simulation (QIMS), dielectric nanoscale mapping, fluid dynamics of the cell, and imaging of perivascular flow are allowing researchers to understand how the collective interactions among proteins, membranes and their electrical properties, along with fluid dynamics within the cell, form a highly interconnected dynamic system. These systems require fine control over the energetic, mechanical and electrical interactions that maintain their coherence. When there is even a small change in the protein conformations, the electric properties of the membrane, or the viscosity of the cell’s interior, it can cause changes in the high dimensional space in which the system operates to lose some of its stabilizing curvature and become prone to instability well before structural pathologies become apparent. AI has allowed researchers to create digital twin models using combined physical data from multiple scales and to predict the trajectory of the neural system toward instability by identifying signs of early deformation. Preliminary studies suggest that deviations in the ergodicity of metabolic–mechanical systems, contraction of dissipative bandwidth, and fragmentation of attractor basins could be indicators of vulnerability. This study will attempt to combine all of the current research into a cohesive view of the role of progressive loss of multi-physics coherence in neurodegenerative disease. Through integration of protein energetics, electrodynamic drift, and hydrodynamic irregularities, as well as predictive modeling utilizing AI, the authors will provide mechanistic insights and discuss potential approaches to early detection, targeted stabilization, and precision-guided interventions based on neurophysics. Full article
Show Figures

Figure 1

23 pages, 1378 KB  
Review
Mitochondrial Dysfunction: The Cellular Bridge from Emotional Stress to Disease Onset: A Narrative Review
by Sakthipriyan Venkatesan, Cristoforo Comi, Fabiola De Marchi, Teresa Esposito, Carla Gramaglia, Carlo Smirne, Mohammad Mostafa Ola Pour, Mario Pirisi, Rosanna Vaschetto, Patrizia Zeppegno and Elena Grossini
Biomolecules 2026, 16(1), 117; https://doi.org/10.3390/biom16010117 - 8 Jan 2026
Viewed by 201
Abstract
Severe emotional stress constitutes a significant public-health concern associated with negative health outcomes. Although the clinical effects are well acknowledged, the specific biological mechanisms that translate emotional suffering into systemic disease remain incompletely understood. Psychological stress activates the sympathetic nervous system and hypothalamic–pituitary–adrenal [...] Read more.
Severe emotional stress constitutes a significant public-health concern associated with negative health outcomes. Although the clinical effects are well acknowledged, the specific biological mechanisms that translate emotional suffering into systemic disease remain incompletely understood. Psychological stress activates the sympathetic nervous system and hypothalamic–pituitary–adrenal axis, which directly target mitochondria and alter their bioenergetic and redox capacity. For this reason, this narrative review proposes that mitochondria serve as the primary subcellular link in the mind–body connection, as they play a pivotal role in converting neuroendocrine signals into cellular dysfunction. In particular, we focus on the concept of mitochondrial allostatic load (MALT), a framework explaining how the progressive decline in mitochondrial functions, from their initial adaptive roles in energy production, reactive oxygen species signaling, and calcium regulation, to being sources of inflammation and systemic damage, occurs when stress exceeds regulatory limits. We also, discuss how this transition turns mitochondria from adaptive responders into drivers of multi-organ disease. In subsequent sections, we examine diagnostic potentials related to MALT, including the use of biomarkers, such as growth differentiation factor 15, cell-free mitochondrial desoxyribonucleic acid, and functional respirometry. Furthermore, we evaluate mitochondria-targeted therapeutic strategies, encompassing pharmacological compounds, such as mitoquinone mesylate, Skulachev ions, and elamipretide, alongside lifestyle and psychological interventions. Here, we aim to translate MALT biology into clinical applications, positioning mitochondrial health as a target for preventing and treating stress-related disorders. We propose that MALT may serve as a quantifiable bridge between emotional stress and somatic disease, enabling future precision medicine strategies integrating mitochondrial care. Full article
(This article belongs to the Special Issue Mitochondrial ROS in Health and Disease)
Show Figures

Figure 1

18 pages, 5540 KB  
Article
Numerical and Experimental Study on Jet Flame Behavior and Smoke Pattern Characteristics of 50 Ah NCM Lithium-Ion Battery Thermal Runaway
by Xuehui Wang, Zilin Fan, Zhuo’er Sun, Xin Fu, Mingyu Jin, Yang Shen, Shu Lin and Zhi Wang
Batteries 2026, 12(1), 23; https://doi.org/10.3390/batteries12010023 - 8 Jan 2026
Viewed by 123
Abstract
This paper investigates the flame behavior and smoke pattern characteristics of lithium-ion battery (LIB) fires using an integrated experimental and numerical simulation approach. Based on fire dynamics theory, a jet flame model for LIB thermal runaway (TR) is developed to analyze the flame [...] Read more.
This paper investigates the flame behavior and smoke pattern characteristics of lithium-ion battery (LIB) fires using an integrated experimental and numerical simulation approach. Based on fire dynamics theory, a jet flame model for LIB thermal runaway (TR) is developed to analyze the flame height and dynamic characteristics. The results reveal two distinct regimes in LIB jet flames: momentum-controlled dominance in the early TR stage (lasting approximately 3 s) and buoyancy-controlled dominance in subsequent combustion. The jet flame shifts from a momentum-dominated regime (Fr > 5) to a buoyancy-dominated plume (Fr < 5) as the vent velocity decays below 12 m/s. The simulated flame heights align with experimental measurements and the Delichatsios model, validating the numerical approach. Furthermore, the distribution of flame components (e.g., H2, CO, CO2, CH4, C2H4) is analyzed, highlighting the influence of multi-component gases on combustion heterogeneity. Smoke pattern analysis demonstrates that soot deposition varies significantly between momentum- and buoyancy-controlled stages, with the former producing darker, concentrated deposits and the latter yielding wider, lighter patterns. These findings provide a theoretical basis for forensic fire investigation (accident reconstruction) and targeted suppression strategies for different combustion stages. Full article
(This article belongs to the Special Issue Control, Modelling, and Management of Batteries)
Show Figures

Figure 1

25 pages, 8923 KB  
Review
Mechanisms and Protection Strategies for Concrete Degradation Under Magnesium Salt Environment: A Review
by Xiaopeng Shang, Xuetao Yue, Lin Pan and Jingliang Dong
Buildings 2026, 16(2), 264; https://doi.org/10.3390/buildings16020264 - 7 Jan 2026
Viewed by 105
Abstract
Concrete structures suffering from Mg2+ environments may suffer severe damage, which mainly has something to do with the coupled effect among Cl, SO42−, and Mg2+. Based on a systematic review of Web of Science and [...] Read more.
Concrete structures suffering from Mg2+ environments may suffer severe damage, which mainly has something to do with the coupled effect among Cl, SO42−, and Mg2+. Based on a systematic review of Web of Science and Scopus database (2000–2025), we first summarized the migration behavior, reaction paths, and interaction mechanism of Cl, SO42−, and Mg2+ in cementitious matrices. Secondly, from the perspective of Cl cyclic adsorption–desorption breaking the passivation film of steel bars, SO42− generating expansion products leads to crack expansion, then Mg2+ decalcifies C-S-H and transforms into M-S-H; we analyzed the main damage mechanisms, respectively. In addition, under the coexistence conditions of three kinds of ions, the “fixation–substitution–redissolution” process and “crack–transport” coupling positive feedback mechanism further increase the development rate of damage. Then, some anti-corrosion measures, such as mineral admixtures, functional chemical admixtures, fiber reinforcements, surface coatings, and new binder systems, are summarized, and the pros and cons of different anti-corrosion technologies are compared and evaluated. Lastly, from two aspects of simulation prediction for the coupled corrosion damage mechanism and service life prediction, respectively, we have critically evaluated the advances and problems existing in the current research on the aspects of ion migration-reaction coupled models, multi-physics coupled frameworks, phase-field methods, etc. We found that there is still much work to be conducted in three respects: deepening mechanism understanding, improving prediction precision, and strengthening the connection between laboratory test results and actual projects, so as to provide theoretical basis and technical support for the durability design and anti-corrosion strategies of concrete in complex Mg2+ environments. Full article
Show Figures

Figure 1

26 pages, 4938 KB  
Article
A Fuzzy-Driven Synthesis: MiFREN-Optimized Magnetic Biochar Nanocomposite from Agricultural Waste for Sustainable Arsenic Water Remediation
by Sasirot Khamkure, Chidentree Treesatayapun, Victoria Bustos-Terrones, Lourdes Díaz Jiménez, Daniella-Esperanza Pacheco-Catalán, Audberto Reyes-Rosas, Prócoro Gamero-Melo, Alejandro Zermeño-González, Nakorn Tippayawong and Patiroop Pholchan
Technologies 2026, 14(1), 43; https://doi.org/10.3390/technologies14010043 - 7 Jan 2026
Viewed by 159
Abstract
Arsenic contamination demands innovative, sustainable remediation. This study presents a fuzzy approach for synthesizing a magnetic biochar nanocomposite from pecan shell agricultural waste for efficient arsenic removal. Using a Multi-Input Fuzzy Rules Emulated Network (MiFREN), a systematic investigation of the synthesis process revealed [...] Read more.
Arsenic contamination demands innovative, sustainable remediation. This study presents a fuzzy approach for synthesizing a magnetic biochar nanocomposite from pecan shell agricultural waste for efficient arsenic removal. Using a Multi-Input Fuzzy Rules Emulated Network (MiFREN), a systematic investigation of the synthesis process revealed that precursor type (biochar), Fe:precursor ratio (1:1), and iron salt type were the most significant parameters governing material crystallinity and adsorption performance, while particle size and N2 atmosphere had a minimal effect. The MiFREN-identified optimal material, the magnetic biochar composite (FS7), achieved > 90% arsenic removal, outperforming the least efficient sample by 50.61%. Kinetic analysis confirmed chemisorption on a heterogeneous surface (qe = 12.74 mg/g). Regeneration studies using 0.1 M NaOH demonstrated high stability, with FS7 retaining > 70% removal capacity over six cycles. Desorption occurs via ion exchange and electrostatic repulsion, with post-use analysis confirming structural integrity and resistance to oxidation. Application to real groundwater from the La Laguna region proved highly effective; FS7 maintained selectivity despite competing ions like Na+, Cl,  and SO42. By integrating AI-driven optimization with reusability and real contaminated water, this research establishes a scalable framework for transforming agricultural waste into a high-performance adsorbent, supporting global Clean Water and Sanitation goals. Full article
(This article belongs to the Special Issue Sustainable Water and Environmental Technologies of Global Relevance)
Show Figures

Figure 1

22 pages, 1403 KB  
Review
Review on the Mechanical Properties and Modification Techniques of Coral Concrete
by Hongling Yu, Ao Zhang, Gang Cheng and Jiakun Zhu
Materials 2026, 19(2), 226; https://doi.org/10.3390/ma19020226 - 6 Jan 2026
Viewed by 136
Abstract
Coral aggregate concrete (CAC) serves as a critical material for sustainable development in marine engineering, effectively addressing the shortage of aggregate resources in the construction of offshore islands and reefs. In this paper, the aggregate characteristics, static and dynamic mechanical properties and modification [...] Read more.
Coral aggregate concrete (CAC) serves as a critical material for sustainable development in marine engineering, effectively addressing the shortage of aggregate resources in the construction of offshore islands and reefs. In this paper, the aggregate characteristics, static and dynamic mechanical properties and modification technology of CAC are systematically reviewed. Research indicates that the coral aggregates (CAs), due to its high porosity (approximately 50%), low bulk density (900–1100 kg/m3), and rough, porous surface, results in relatively low static compressive strength (20–40 MPa), insufficient elastic modulus, and significant brittleness in CAC. However, its dynamic performance shows the opposite advantage. Under impact loads, the energy absorption capacity is enhanced by 32.6–140.3%, compared to ordinary concrete (OC) due to the energy dissipation mechanism of pore platic deformation. Through the modification techniques, such as aggregate pre-treatment (acid washing/coating), incorporation of auxiliary cementitious materials (silica fume increases strength by 16.4%), fibre reinforcement (carbon fibres enhance flexural strength by 33.3%), and replacement with novel cementitious materials (magnesium sulphate cement improves chloride ion binding capacity by 90.7%), the mechanical properties and durability of CAC can be significantly optimised. This paper highlights gaps in current research regarding the high strain rate (>200 s−1) dynamic response, multi-factor coupled durability in marine environments, and the engineering application of alkali-activated materials, providing theoretical basis for future research directions. Full article
Show Figures

Graphical abstract

21 pages, 7512 KB  
Article
Controlled Synthesis and Formation Mechanism of Uniformly Sized Spherical CeO2 Nanoparticles
by Jiayue Xie, Kai Feng, Rui Ye, Maokui Wang, Yunci Wang, Xing Fan and Renlong Liu
Materials 2026, 19(1), 211; https://doi.org/10.3390/ma19010211 - 5 Jan 2026
Viewed by 229
Abstract
As the core abrasive in chemical mechanical polishing (CMP) processes, the morphology, size uniformity, and chemical reactivity of CeO2 nanoparticles (NPs) are crucial factors determining the surface precision and yield of devices. In this work, a KNO3–LiNO3 eutectic molten [...] Read more.
As the core abrasive in chemical mechanical polishing (CMP) processes, the morphology, size uniformity, and chemical reactivity of CeO2 nanoparticles (NPs) are crucial factors determining the surface precision and yield of devices. In this work, a KNO3–LiNO3 eutectic molten salt was used as the reaction medium. By systematically adjusting key processing parameters (such as the type of cerium source, the species and dosage of surfactants, and calcination conditions), the regulatory effects of these factors on particle growth mechanisms were clarified. This adjustment enabled the controlled synthesis of spherical CeO2 NPs with customized morphology, particle size, and surface defect states. The multi-stage reaction process of the precursor during calcination was identified by applying thermal analysis techniques, including TG-DSC and TG-FTIR. This process includes dehydration, ion exchange, and thermal decomposition. Microstructural analysis shows that the type and dosage of the cerium source and template agent significantly affect the uniformity of particle size and spherical morphology. Moreover, by using an optimized process with a heating rate of 6 °C/min and maintaining at 400 °C for 3 h, spherical CeO2 NPs with an average particle size of 60 nm, uniform size distribution, and high sphericity were successfully synthesized via a single-step calcination process. Based on these findings, a further proposal was put forward regarding a crystal growth mechanism mediated by micelle-directed assembly and oriented attachment. This method only requires a single calcination step, has mild reaction conditions, and involves a simple process without the need for specialized equipment—features that show great potential for scalable production. It provides both a theoretical basis and experimental support for the controlled preparation of high-performance CeO2 abrasives. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

16 pages, 1936 KB  
Article
L-Shell Photon Excitation Cross Sections for the Chlorine Isonuclear Sequence Clq+ (q=1−4): An Experimental Study
by Jean-Paul Mosnier, Eugene T. Kennedy, Denis Cubaynes, Ségolène Guilbaud and Jean-Marc Bizau
Atoms 2026, 14(1), 3; https://doi.org/10.3390/atoms14010003 - 4 Jan 2026
Viewed by 221
Abstract
We report experimental measurements of the absolute photoionization cross sections for chlorine ions in different stages of ionization, over photon energy ranges corresponding to the L-shell (2s and 2p subshells) excitations. Single, double and triple photoionization channels were investigated for the ions C [...] Read more.
We report experimental measurements of the absolute photoionization cross sections for chlorine ions in different stages of ionization, over photon energy ranges corresponding to the L-shell (2s and 2p subshells) excitations. Single, double and triple photoionization channels were investigated for the ions Cl+, Cl2+, Cl3+ and Cl4+. The measurements were performed on the PLéIADES beamline at the SOLEIL radiation storage ring facility, using the Multi-Analysis Ion Apparatus (MAIA). Resonance energies and line strengths are provided for the isonuclear sequence and the evolution of the inner shell photoionization behaviour is demonstrated for the chlorine ions as the degree of ionization is increased. While dominated by photoionization from the corresponding ground state ions, the photoion yields may also contain contributions from low-lying metastable states. The results provide useful data on these ions for plasma modelling and can serve as benchmarking experimental data for future atomic theoretical calculations. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

38 pages, 6136 KB  
Article
Extreme Ion Beams Produced by a Multi-PW Femtosecond Laser: Acceleration Mechanisms, Properties and Prospects for Applications
by Jan Badziak and Jarosław Domański
Photonics 2026, 13(1), 45; https://doi.org/10.3390/photonics13010045 - 3 Jan 2026
Viewed by 302
Abstract
Laser-driven ion acceleration is a rapidly developing branch of plasma physics and laser science whose primary practical goal is to provide a physical and technological basis for the construction and development of new types of ion accelerators. Laser-driven accelerators can be less complex [...] Read more.
Laser-driven ion acceleration is a rapidly developing branch of plasma physics and laser science whose primary practical goal is to provide a physical and technological basis for the construction and development of new types of ion accelerators. Laser-driven accelerators can be less complex and more compact than currently used RF-driven accelerators, while the intensities, fluences, and powers of laser-accelerated ion beams can potentially exceed those achieved in RF accelerators. This paper focuses on the generation of very intense ion beams driven by a multi-PW femtosecond laser. The acceleration mechanisms enabling the generation of such beams are characterized, and the properties of multi-PW laser-driven uranium ion beams are discussed in detail based on the results of advanced particle-in-cell numerical simulations. The feasibility of generating sub-picosecond, multi-GeV, mono-charge uranium beams with extreme intensities (~>1020 W/cm2) and fluences (~>GJ/cm2) is demonstrated, and methods for controlling the beam parameters are identified. It is shown that using such beams, extreme states of matter with parameters unattainable with ion beams from conventional accelerators can be created. The prospects for applications of ultra-intense laser-driven ion beams in high-energy density physics, inertial confinement nuclear fusion, and in certain areas of nuclear physics are outlined. Full article
(This article belongs to the Special Issue High-Power Ultrafast Lasers: Development and Applications)
Show Figures

Figure 1

18 pages, 3811 KB  
Article
Optimization Design of High-Performance Hybrid Superconducting ECR Ion Source Magnet System Based on Particle Swarm Algorithm
by Manman Xu, Lei Liu, Yongming Liu, Yimin Lu and Huaiyang Wang
Symmetry 2026, 18(1), 82; https://doi.org/10.3390/sym18010082 - 3 Jan 2026
Viewed by 166
Abstract
The development of 18 GHz hybrid superconducting ECR ion sources is constrained by the complex trade-off in magnet system design, where achieving simultaneous excellence in field strength, confinement stability, and resonant coupling remains a formidable challenge. A design automation framework that tightly integrates [...] Read more.
The development of 18 GHz hybrid superconducting ECR ion sources is constrained by the complex trade-off in magnet system design, where achieving simultaneous excellence in field strength, confinement stability, and resonant coupling remains a formidable challenge. A design automation framework that tightly integrates Particle Swarm Optimization (PSO) with COMSOL-based finite element analysis is presented. This synergy enables the global optimization of the permanent magnet hexapole and the superconducting solenoids’ currents as an interconnected system. The optimizer delivers a magnetic field configuration that simultaneously achieves a 2.6 T axial peak, a 4.25 mirror ratio, and a precise minimum-B field of 0.6 T. This synergy creates a stable magnetic cage perfectly resonant at 18 GHz, ensuring superior plasma confinement and efficient microwave-to-plasma energy transfer. This study validates the PSO algorithm as a powerful tool for transcending conventional design paradigms in complex electromagnetic systems. The resulting magnet solution not only meets the stringent demands of next-generation ECR ion sources but also provides a transferable blueprint for optimizing a broad class of symmetric devices governed by multi-physics constraints. Full article
(This article belongs to the Special Issue Meta-Heuristics for Manufacturing Systems Optimization, 3rd Edition)
Show Figures

Figure 1

15 pages, 2095 KB  
Article
Modeling SnC-Anode Material for Hybrid Li, Na, Be, Mg Ion-Batteries: Structural and Electronic Analysis by Mastering the Density of States
by Fatemeh Mollaamin and Majid Monajjemi
Electron. Mater. 2026, 7(1), 2; https://doi.org/10.3390/electronicmat7010002 - 1 Jan 2026
Viewed by 261
Abstract
The increasing demand for next-generation rechargeable batteries that offer high energy density, a long lifespan, high safety, and low cost has led to a need for better electrode materials for lithium-ion batteries. This also involves developing alternative storage systems using common resources such [...] Read more.
The increasing demand for next-generation rechargeable batteries that offer high energy density, a long lifespan, high safety, and low cost has led to a need for better electrode materials for lithium-ion batteries. This also involves developing alternative storage systems using common resources such as sodium-ion batteries, beryllium-ion batteries, or magnesium-ion batteries. Tin carbide (SnC) is highly promising as an anode material for lithium, sodium, beryllium, and magnesium ion batteries due to its ability to form nanoclusters like Sn(Li2)C, Sn(Na2)C, Sn(Be2)C, and Sn(Mg2)C. A detailed study was done using computational methods, including analysis of charge density differences, total density of states, and electron localization function for these hybrid clusters. This research suggests that SnC could be useful in multivalent-ion batteries using Be2+ ions because its properties can match or even exceed those of monovalent ions. The study also shows that the maximum capacity, stability energy, and ion movement in these materials can be understood by looking at atomic-level properties like the coordination between host atoms and ions. Recent findings on using tin carbide in these types of batteries and methods to improve their performance have been discussed. Full article
Show Figures

Figure 1

14 pages, 919 KB  
Article
Involvement of Multiple Ion Channels and Receptors in Mediating the Insecticidal and Repellent Actions of Limonene
by Yuan Li, Wilson Valbon, Felipe Andreazza and Ke Dong
Int. J. Mol. Sci. 2026, 27(1), 416; https://doi.org/10.3390/ijms27010416 - 30 Dec 2025
Viewed by 202
Abstract
R-limonene has been integrated into various pest control practices as a repellent or an insecticide. However, how limonene induces aversion or mortality remains largely unknown. To elucidate the underlying mechanisms, we conducted behavioral, toxicological, and electrophysiological assays in Aedes aegypti, a primary [...] Read more.
R-limonene has been integrated into various pest control practices as a repellent or an insecticide. However, how limonene induces aversion or mortality remains largely unknown. To elucidate the underlying mechanisms, we conducted behavioral, toxicological, and electrophysiological assays in Aedes aegypti, a primary vector of human diseases. To investigate whether limonene acts on voltage-gated sodium channels and/or the Rdl (Resistance to dieldrin) receptor, two major targets of neuroactive insecticides, we characterized the effect of limonene on Ae. aegypti sodium and Rdl channels expressed in Xenopus oocytes. Limonene significantly potentiated GABA-induced chloride currents through Rdl in a concentration-dependent manner but had no effect on sodium channels. For repellency, limonene evoked spatial repellency in wild-type mosquitoes; however, the spatial repellency by limonene was significantly reduced in knockout mutants of Orco−/− (odorant receptor co-receptor) and TRPA1−/− (Transient Receptor Protein, subfamily A and member 1). These results indicate that limonene likely targets the Rdl receptor for insecticidal activity and limonene spatial repellency requires both Orco and TRPA1 channels. Our results reveal the involvement of multiple ion channels and receptors in the mosquito nervous system for limonene’s insecticidal and/or spatial repellency actions, highlighting limonene’s potential as a multi-target neuroactive agent for pest control. Full article
Show Figures

Figure 1

18 pages, 727 KB  
Article
Research on the Reliability of Lithium-Ion Battery Systems for Sustainable Development: Life Prediction and Reliability Evaluation Methods Under Multi-Stress Synergy
by Jiayin Tang, Jianglin Xu and Yamin Mao
Sustainability 2026, 18(1), 377; https://doi.org/10.3390/su18010377 - 30 Dec 2025
Viewed by 235
Abstract
Driven by the dual imperatives of global energy transition and sustainable development goals, lithium-ion batteries, as critical energy storage carriers, have seen the assessment of their lifecycle reliability and durability become a core issue underpinning the sustainable operation of clean energy systems. Grounded [...] Read more.
Driven by the dual imperatives of global energy transition and sustainable development goals, lithium-ion batteries, as critical energy storage carriers, have seen the assessment of their lifecycle reliability and durability become a core issue underpinning the sustainable operation of clean energy systems. Grounded in a multidimensional perspective of sustainable development, this study aims to establish a quantifiable and monitorable battery reliability evaluation framework to address the challenges to lifespan and performance sustainability faced by batteries under complex multi-stress coupled operating conditions. Lithium-ion batteries are widely used across various fields, making an accurate assessment of their reliability crucial. In this study, to evaluate the lifespan and reliability of lithium-ion batteries when operating in various coupling stress environments, a multi-stress collaborative accelerated model(MCAM) considering interaction is established. The model takes into account the principal stress effects and the interaction effects. The former is developed based on traditional acceleration models (such as the Arrhenius model), while the latter is constructed through the combination of exponential, power, and logarithmic functions. This study firstly considers the scale parameter of the Weibull distribution as an acceleration effect, and the relationship between characteristic life and stresses is explored through the synergistic action of primary and interaction effects. Subsequently, a multi-stress maximum likelihood estimation method that considers interaction effects is formulated, and the model parameters are estimated using the gradient descent algorithm. Finally, the validity of the proposed model is demonstrated through simulation, and numerical examples on lithium-ion batteries demonstrate that accurate lifetime prediction is enabled by the MCAM, with test duration, cost, and resource consumption significantly reduced. This study not only provides a scientific quantitative tool for advancing the sustainability assessment of battery systems, but also offers methodological support for relevant policy formulation, industry standard optimization, and full lifecycle management, thereby contributing to the synergistic development of energy storage technology across the economic, environmental, and social dimensions of sustainability. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

Back to TopTop