Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (490)

Search Parameters:
Keywords = mudstone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 32182 KB  
Article
Analysis of Progradational and Migratory Source-to-Sink Systems and Reservoir Characteristics in the Steep-Slope Zone of Wushi Sag, Beibuwan Basin, South China Sea
by Sheng Liu, Hongtao Zhu, Ye Li, Hongyu Yan, Wenhui Zhang, Zhiqiang Li and Xin Yang
J. Mar. Sci. Eng. 2025, 13(10), 1911; https://doi.org/10.3390/jmse13101911 - 5 Oct 2025
Viewed by 68
Abstract
Predicting favorable reservoirs controlled by source-to-sink systems in rift basins is a current research focus. Using seismic, core, drilling, logging, and thin-section data, this paper systematically identifies fan types and their reservoir characteristics controlled by two boundary faults in the southern steep-slope zone [...] Read more.
Predicting favorable reservoirs controlled by source-to-sink systems in rift basins is a current research focus. Using seismic, core, drilling, logging, and thin-section data, this paper systematically identifies fan types and their reservoir characteristics controlled by two boundary faults in the southern steep-slope zone of Wushi Sag, Beibuwan Basin, South China Sea. The analysis compares differences in (1) source–channel–margin–sink systems and (2) diagenetic facies, dividing the sink area into migratory and progradational fans. Results show that migratory fans are associated with denudation. Sediments migrate through wide, deep “V”-shaped valleys, forming fan deltas that are large in area but short in progradation. Lithology is dominated by fine sandstone with siltstone interbeds, reservoirs’ diagenetic evolution is weak, pores are mainly primary, and Type I-II reservoirs are developed. In contrast, progradational fans reflect weaker source area denudation, with sediments prograding through narrow, shallow “U”-shaped valleys. These form broom-shaped fan deltas that are small in area but long in progradation, with lithology dominated by fine sandstone interbedded with mudstone. Reservoirs show strong diagenetic evolution, well-developed secondary porosity, and Type II-III reservoirs. Reservoir prediction models indicate that high-quality migratory reservoirs are large, with excellent physical properties and oil-bearing capacity, mainly in fan stacking zones. High-quality progradational reservoirs are concentrated in the fan midsections, with strong cementation and secondary porosity. These findings provide a theoretical basis for reservoir prediction and oil and gas exploration in the southern steep-slope zone of Wushi Sag. Full article
(This article belongs to the Special Issue Advances in Offshore Oil and Gas Exploration and Development)
17 pages, 5447 KB  
Article
Design and Evaluation of Drilling Fluid Systems for Wellbore Stabilization During Drilling in Deep Coalbed Gas Reservoirs in the Ordos Basin
by Gang Cao, Chaoqun Zhang, Zhenxing Li, Hongliang Ma, Dongsheng Cai, Xin Zhou, Xinchen Zhang, Lu Bai, Peng Zhang and Junjie Zhao
Processes 2025, 13(10), 3150; https://doi.org/10.3390/pr13103150 - 1 Oct 2025
Viewed by 358
Abstract
To overcome wellbore instability problems in deep coalbed gas reservoirs in the Ordos Basin, drilling fluid additives were evaluated and a drilling fluid system was designed. According to the SEM and CT analysis results, there were not only face and butt cleats in [...] Read more.
To overcome wellbore instability problems in deep coalbed gas reservoirs in the Ordos Basin, drilling fluid additives were evaluated and a drilling fluid system was designed. According to the SEM and CT analysis results, there were not only face and butt cleats in the coal rock but also bedding and layered fractures. Potassium chloride (KCl) and Potassium formate (HCOOK) drilling fluid systems were formulated. The recovery rate of shale and coal rock cuttings reached 99%, and the linear swelling rates for coal rock in both types of drilling fluid were less than 0.18%. Measured with a servo-controlled compression frame at a loading rate of 1 mm/min, the uniaxial compression strength of coal rock was 11.74 MPa, and it was 9.13 MPa and 10.35 MPa after immersion in KCl and HCOOK drilling fluid, respectively. This indicates that both systems have good inhibition properties. The invasion depth in packed sand was 15.5 mm for KCl drilling fluid and 8 mm for HCOOK drilling fluid, demonstrating good sealing performance by the systems. Compared to KCl drilling fluid, the HCOOK system exhibited better inhibition and sealing performance. After the removal of the 10 mm deep invasion section of drilling fluid, the permeability of the coal rock recovered by more than 90%, and the drilling fluid caused minimum damage to the reservoir. The optimized drilling fluid exhibits excellent sealing and inhibition capabilities, making it highly effective in addressing wellbore stability challenges in carbonaceous mudstone formations at 4000 m in depth in the deep coalbed methane reservoirs of the Ordos Basin. Full article
Show Figures

Figure 1

20 pages, 10567 KB  
Article
Kinematic and Dynamic Behavior of a Coastal Colluvial Landslide in a Low-Elevation Forest
by Chia-Cheng Fan, Chung-Jen Yang, Tsung-Hsien Wang and Kuo-Wei Huang
Appl. Sci. 2025, 15(19), 10593; https://doi.org/10.3390/app151910593 - 30 Sep 2025
Viewed by 116
Abstract
This study examines the kinematic behavior of a large-scale colluvial landslide in a coastal low-elevation forest, where rainfall, geological formations, and hydrological conditions drive substantial slope displacement. The landslide comprises a colluvial layer overlying mudstone, with downslope movement toward the coastline induced by [...] Read more.
This study examines the kinematic behavior of a large-scale colluvial landslide in a coastal low-elevation forest, where rainfall, geological formations, and hydrological conditions drive substantial slope displacement. The landslide comprises a colluvial layer overlying mudstone, with downslope movement toward the coastline induced by gravitational forces and infiltration. Using GPS surveys, inclinometers, soil moisture sensors, and numerical modeling, the temporal and spatial patterns of displacement were analyzed. Maximum horizontal displacements reach 8.1 cm/year, with deep-seated movements extending over 25 m into the mudstone. Key mechanisms include weakening of the colluvium–mudstone interface and creep within saturated mudstone, while a hydraulic barrier near the coastline restricts subsurface flow. Progressive upslope migration of the freshwater-bearing mudstone zone under annual rainfall further contributes to long-term deformation. These findings provide critical insights into the hydrologically controlled kinematics of coastal colluvial landslides. Full article
(This article belongs to the Special Issue A Geotechnical Study on Landslides: Challenges and Progresses)
Show Figures

Figure 1

17 pages, 4081 KB  
Article
A Novel Method to Determine the Grain Size and Structural Heterogeneity of Fine-Grained Sedimentary Rocks
by Fang Zeng, Shansi Tian, Hongli Dong, Zhentao Dong, Bo Liu and Haiyang Liu
Fractal Fract. 2025, 9(10), 642; https://doi.org/10.3390/fractalfract9100642 - 30 Sep 2025
Viewed by 243
Abstract
Fine-grained sedimentary rocks exhibit significant textural heterogeneity, often obscured by conventional grain size analysis techniques that require sample disaggregation. We propose a non-destructive, image-based grain size characterization workflow, utilizing stitched polarized thin-section photomicrographs, k-means clustering, and watershed segmentation algorithms. Validation against laser granulometry [...] Read more.
Fine-grained sedimentary rocks exhibit significant textural heterogeneity, often obscured by conventional grain size analysis techniques that require sample disaggregation. We propose a non-destructive, image-based grain size characterization workflow, utilizing stitched polarized thin-section photomicrographs, k-means clustering, and watershed segmentation algorithms. Validation against laser granulometry data indicates strong methodological reliability (absolute errors ranging from −5% to 3%), especially for particle sizes greater than 0.039 mm. The methodology reveals substantial internal heterogeneity within Es3 laminated shale samples from the Shahejie Formation (Bohai Bay Basin), distinctly identifying coarser siliceous laminae (grain size >0.039 mm, Φ < 8 based on Udden-Wentworth classification) indicative of high-energy depositional environments, and finer-grained clay-rich laminae (grain size <0.039 mm, Φ > 8) representing low-energy conditions. Conversely, massive mudstones exhibit comparatively homogeneous grain size distributions. Additionally, a multifractal analysis (Multifractal method) based on the S50bi/S50si ratio further quantifies spatial heterogeneity and pore-structure complexity, significantly enhancing facies differentiation and reservoir characterization capabilities. This method significantly improves facies differentiation ability, provides reliable constraints for shale oil reservoir characterization, and has important reference value for the exploration and development of the Bohai Bay Basin and similar petroliferous basins. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

23 pages, 5576 KB  
Article
Accumulation and Exploration Potential of Coalbed Methane Collected from Longtan Formation of Santang Syncline in Zhijin, Guizhou Province
by Shupeng Wen, Shuiqi Liu, Jian Li, Xinzhe Dai, Longbin Lan, Jianjun Hou, Zhu Liu, Junjian Zhang and Yunbing Hu
Processes 2025, 13(10), 3106; https://doi.org/10.3390/pr13103106 - 28 Sep 2025
Viewed by 253
Abstract
Understanding coalbed methane (CBM) enrichment patterns is essential for optimizing production capacity. This study evaluates the CBM reservoir-forming characteristics and exploration potential of the Longtan Formation in the Santang Syncline, Zhijin area, to systematically reveal CBM enrichment and high-production patterns. The investigation integrates [...] Read more.
Understanding coalbed methane (CBM) enrichment patterns is essential for optimizing production capacity. This study evaluates the CBM reservoir-forming characteristics and exploration potential of the Longtan Formation in the Santang Syncline, Zhijin area, to systematically reveal CBM enrichment and high-production patterns. The investigation integrates regional geology, logging, well testing, laboratory analyses, and drainage production data. Results indicate that coal seam vitrinite reflectance (Ro,max) ranges from 3.20% to 3.60%, with metamorphic grade increasing with burial depth. Coal lithotypes consist predominantly of semi-bright coal, with subordinate semi-bright to semi-dull coal and minor semi-dull coal. Coal seam roofs comprise gray-black mudstone and calcareous mudstone, locally developing limestone, while floors consist of bauxitic mudstone. Pore structure analysis reveals greater complexity in coal seams 6 and 14, whereas seams 7 and 16 display simpler structures. Coal seams 5-3 and 6 demonstrate the weakest adsorption capacity and lowest theoretical gas saturation, while other seams exceed 55% gas saturation. Langmuir volume (VL) increases with burial depth, reaching maximum values in coal seam 30. Langmuir pressure (PL) follows a low–high–low trend, with lower values at both ends and higher values in the middle section. Measured gas content is highest in the middle section, moderate in the lower section, and lowest in the upper section. Reservoir condition assessment indicates favorable conditions in coal seams 14, 16, and 21, relatively favorable conditions in seam 7, and unfavorable conditions in seams 6, 30, 32, and 35. Among the three coal groups penetrated, the middle coal group exhibits the most favorable reservoir conditions, followed by the upper and lower groups. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

36 pages, 17646 KB  
Article
Multifractal Characteristics of Heterogeneous Pore-Throat Structure and Insight into Differential Fluid Movability of Saline-Lacustrine Mixed Shale-Oil Reservoirs
by Wei Yang, Ming Xie, Haodong Hou, Zhenxue Jiang, Yan Song, Shujing Bao, Yingyan Li, Yang Gao, Shouchang Peng, Ke Miao and Weihao Sun
Fractal Fract. 2025, 9(9), 604; https://doi.org/10.3390/fractalfract9090604 - 18 Sep 2025
Viewed by 361
Abstract
The root causes forcing the differential pore-throat performances and crude oil recoverability in heterogeneous shale lithofacies of saline-lacustrine fine-grained mixed sedimentary sequences are still debated. Especially application cases of fractal theory in characterizing pore-throat heterogeneity are still lacking and the significance of differential [...] Read more.
The root causes forcing the differential pore-throat performances and crude oil recoverability in heterogeneous shale lithofacies of saline-lacustrine fine-grained mixed sedimentary sequences are still debated. Especially application cases of fractal theory in characterizing pore-throat heterogeneity are still lacking and the significance of differential multifractal distribution patterns on reservoir assessment remains controversial. This present study focuses on the shale-oil reservoirs in saline-lacustrine fine-grained mixed depositional sequences of the Middle Permian Lucaogou Formation (southern Junggar Basin, NW China), and presents a set of new results from petrographical investigation, field-emission scanning electron microscopy (FE-SEM) imaging, fluid injection experiments (low-pressure N2 adsorption and high-pressure mercury intrusion porosimetry (HMIP)), nuclear magnetic resonance (NMR) spectroscopy and T1-T2 mapping, directional spontaneous imbibition, as well as contact angle measurements. Our results demonstrated that the investigated lithofacies are mainly divided into a total of five lithofacies categories: felsic siltstones, sandy dolomitic sandstones, dolarenites, micritic dolomites, and dolomitic mudstones, respectively. More importantly, the felsic siltstone and sandy dolomitic siltstones can be identified as the most advantageous lithofacies categories exhibiting the strongest movable oil-bearing capacity owing to an acceptable complexity and heterogeneity of mesopore-throat structures, as evidenced by the corresponding moderate fractal dimension of mesopores (D2) from HMIP and apparently lower fractal dimension of movable fluids’ pores (D2) from NMR results. Particularly noteworthy is the relatively poor shale-oil movability recognized in the dolarenites, micritic dolomites, and dolomitic mudstones due to heterogeneous and unfavorable pore-throat systems, even though an acceptable micro-connectivity and a more oleophilic interfacial wettability prevails in crucial dolomitic components. Finally, a comprehensive and conceptual model is established for an effective and characteristic parameter system for assessing differential reservoir petrophysical properties, interfacial wettability, and shale-oil movability concerning heterogeneous lithofacies categories. Our achievements can serve as an analog for investigating saline-lacustrine mixed shale-oil reservoirs to gain a more comprehensive understanding of differential recoverability of dessert reservoir intervals, and to guide the assessment of “sweet spots” distribution and optimization of engineering technique schemes for commercial exploitation. Full article
(This article belongs to the Special Issue Analysis of Geological Pore Structure Based on Fractal Theory)
Show Figures

Figure 1

61 pages, 12444 KB  
Article
Time Series Analysis of Influence of Water Cycle on Nitrate Contamination in Miyako Island Ryukyu Limestone Aquifer
by Masayuki Imaizumi
Water 2025, 17(18), 2723; https://doi.org/10.3390/w17182723 - 14 Sep 2025
Cited by 1 | Viewed by 488
Abstract
This study investigates the complex factors influencing groundwater NO3-N concentrations on Miyako Island, which has a geological structure of highly permeable Ryukyu Limestone over less permeable mudstone. The groundwater NO3-N levels peaked at nearly 10 mg/L in 1989 and [...] Read more.
This study investigates the complex factors influencing groundwater NO3-N concentrations on Miyako Island, which has a geological structure of highly permeable Ryukyu Limestone over less permeable mudstone. The groundwater NO3-N levels peaked at nearly 10 mg/L in 1989 and have since declined. Our analysis used agricultural statistics, machine learning, and time-series correlation to elucidate the causes of these changes. We found that the decline in concentrations since 1989 was directly linked to a reduction in sugarcane cultivation. However, the mechanism of increase is more complex. A cross-correlation analysis over 60 years revealed two distinct infiltration mechanisms: a rapid one with zero-time lag, responsible for approximately 70% of the NO3-N concentration, and a slow one with a 15-year lag, accounting for the remaining 30%. The slow infiltration is likely due to temporary nitrogen storage in the clay layer. These findings have significant implications for water quality management. The recent shift from summer planting to ratoon cultivation has increased fertilizer use, and this, combined with the 15-year lag effect, suggests that NO3-N concentrations may begin to rise again in about a decade, possibly exceeding the environmental standard. Therefore, continuous monitoring is crucial to prevent future pollution. The methodology developed in this study is also applicable to other islands with similar environments. Full article
Show Figures

Figure 1

26 pages, 6430 KB  
Article
Enhanced Lithology Recognition in Coal Mining: A Data-Driven Approach with DBO-BiLSTM and Wavelet Denoising
by Jian Cui, Ziwei Ding, Chaofan Zhang, Jiang Liu and Wenxing Zhang
Appl. Sci. 2025, 15(18), 9978; https://doi.org/10.3390/app15189978 - 12 Sep 2025
Viewed by 317
Abstract
This study investigates the relationship between anchor cable drilling parameters and roadway roof strata properties. The goal is to enable rapid and accurate rock type identification. Field-measured drilling data were processed using data cleaning and wavelet transform noise reduction. Four recognition models were [...] Read more.
This study investigates the relationship between anchor cable drilling parameters and roadway roof strata properties. The goal is to enable rapid and accurate rock type identification. Field-measured drilling data were processed using data cleaning and wavelet transform noise reduction. Four recognition models were developed and compared: LSTM (Long Short-Term Memory), BiLSTM (Bidirectional Long Short-Term Memory), DBO-LSTM (Dung Beetle Optimizer), and DBO-BiLSTM. The results demonstrate a strong correlation between vibration, pressure signals and rock strength, enabling the effective differentiation of rock types. All models performed exceptionally for coal seams with distinct features, achieving 100% accuracy, precision, recall, and F1 scores. Model performance improved with increased complexity for strata with subtle differences, such as sandstone and mudstone. The DBO-BiLSTM model outperformed others, showing significant improvements in accuracy, recall, and F1 score compared to LSTM, BiLSTM, and DBO-LSTM models. Specifically, accuracy improved by up to 9%, recall by 12.48%, and F1 score by 13.06%. These findings highlight the DBO-BiLSTM model’s superior recognition capability for roof strata drilling signals. This method provides a robust technical foundation for lithology identification in Measurement While Drilling (MWD) systems. It supports more precise and efficient roadway design in complex geological conditions. Full article
Show Figures

Figure 1

17 pages, 2607 KB  
Article
Migration Behavior of Technetium-99 in Granite, Clay Rock, and Shale: Insights into Anionic Exclusion Effects
by Yunfeng Shi, Song Yang, Wenjie Chen, Aiming Zhang, Zhou Li, Longjiang Wang and Bing Lian
Toxics 2025, 13(9), 760; https://doi.org/10.3390/toxics13090760 - 7 Sep 2025
Viewed by 714
Abstract
One of the key tasks in the geological disposal of radioactive waste is to investigate the blocking ability of different host rocks on nuclide migration in the disposal site. This study conducted experimental and numerical methods to the adsorption, diffusion, and advection–dispersion behavior [...] Read more.
One of the key tasks in the geological disposal of radioactive waste is to investigate the blocking ability of different host rocks on nuclide migration in the disposal site. This study conducted experimental and numerical methods to the adsorption, diffusion, and advection–dispersion behavior of 99Tc in three types of rocks: granite, clay rock, and mudstone shale, with a focus on the influence of anion exclusion during migration. The research results found that the three types of rocks have no significant adsorption effect on 99Tc, and the anion exclusion during diffusion and advection–dispersion processes can block small “channels”, causing some nuclide migration to lag, and accelerate the nuclide migration rate in larger “channels”. In addition, parameters characterizing the size of anion exclusion in different migration behaviors, such as effective diffusion coefficient (De) and immobile liquid region porosity (θim), were fitted and obtained. Full article
(This article belongs to the Special Issue Environmental Transport and Transformation of Pollutants)
Show Figures

Graphical abstract

21 pages, 6516 KB  
Article
Investigation of Borehole Network Parameters for Rock Breaking via High-Pressure Gas Expansion in Subway Safety Passages of Environmentally Sensitive Zones
by Dunwen Liu, Jimin Zhong, Yupeng Zhang and Yuhui Jin
Buildings 2025, 15(17), 3158; https://doi.org/10.3390/buildings15173158 - 2 Sep 2025
Viewed by 488
Abstract
To address the challenge of determining the borehole layout scheme in the practical application of high-pressure gas expansion rock breaking, this study takes the excavation of the safety passage at Kaixuan Road Station on the North Extension Line 2 of Chongqing Metro Line [...] Read more.
To address the challenge of determining the borehole layout scheme in the practical application of high-pressure gas expansion rock breaking, this study takes the excavation of the safety passage at Kaixuan Road Station on the North Extension Line 2 of Chongqing Metro Line 18 as the engineering background. The rock-breaking capacity was evaluated by analyzing the damaged zone volume caused by gas expansion using FLAC3D 6.0 numerical simulation software, and vibration monitoring was conducted for the historical buildings on the surface. This study revealed the following: (1) When the borehole depth is 1.2 m and the charge length is 0.6 m, the optimal angle is 70°, with the optimal vertical and horizontal spacing between holes being 1200 mm and 2000 mm, respectively. (2) The numerical simulations indicated that by adjusting the charge density, the optimized sandstone borehole network parameters could be applied to mudstone strata, and the rock-breaking effect was similar. The difference in the volume of the damaged zones obtained in the two strata was less than 3%. (3) The vibration analysis demonstrated that the peak particle velocity generated by high-pressure gas expansion rock fracturing at the ancient building directly above was 0.06316 cm/s, which was lower than the threshold value of 0.1 cm/s and approximately 67.95% lower than that of explosive blasting. Furthermore, when the tunnel depth exceeded 29 m, the vibration velocity of surface structures remained within the safety range. The results verified the feasibility of applying the same borehole network parameters to different strata, providing theoretical support for the practical application of high-pressure gas expansion rock fracturing technology in engineering projects. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 6798 KB  
Article
Feasibility and Optimization Study on the Replacement of Core Rock Columns with Temporary Steel Supports in the Construction of Large-Section Subway Tunnels in Interbedded Rock Masses
by Dunwen Liu, Yupeng Zhang, Jimin Zhong and Yuhui Jin
Appl. Sci. 2025, 15(17), 9616; https://doi.org/10.3390/app15179616 - 31 Aug 2025
Viewed by 508
Abstract
With the development of subway transportation, how to excavate large-section tunnels and find more convenient and reliable support methods has become an issue that cannot be ignored. This paper addresses issues such as low construction efficiency of core rock columns during the construction [...] Read more.
With the development of subway transportation, how to excavate large-section tunnels and find more convenient and reliable support methods has become an issue that cannot be ignored. This paper addresses issues such as low construction efficiency of core rock columns during the construction of large-section subway tunnels in sandstone–mudstone interbedded geological conditions. It proposes an optimized support scheme that replaces traditional core rock columns with temporary steel supports (steel columns). Finite element analysis was used to compare the deformation of the surrounding rock when retaining the core rock columns, using temporary steel columns to replace the core rock columns, and not providing additional support. Five interlayer positions and four interlayer angles were analyzed to identify the most dangerous geological conditions. Based on this analysis, the reasonable spacing of the temporary steel columns was investigated. The results indicate that temporary steel columns and core rock columns can effectively reduce vertical deformation of the surrounding rock, with steel columns showing slightly better results. Replacing core rock columns with steel columns is feasible. To control tunnel rock mass deformation, this project should ensure that the spacing between temporary steel columns is maintained between 21.88 m and 56.80 m. However, in construction sections with good rock mass conditions, the spacing can be extended as long as safety is ensured. Full article
Show Figures

Figure 1

20 pages, 5108 KB  
Article
Quantitative Evaluation of Hydrocarbon-Generation Intensity of Coal-Measure Mudstones in the Shanxi Formation on the Eastern Margin of the Ordos Basin: A Case Study of the Daning–Jixian Area
by Jinggan Song, Kuaile Zhang, Wei Hou, Yi Du, Futao Qu, Sasa Guo, Chang Xu, Miao Wang and Yijing Zhang
Processes 2025, 13(9), 2786; https://doi.org/10.3390/pr13092786 - 30 Aug 2025
Viewed by 586
Abstract
Hydrocarbon-generation intensity (HGI) is a critical indicator for evaluating shale gas potential in source rocks. This study proposes a practical method to estimate HGI by integrating experimental pyrolysis data, EasyRo-based maturity transformation, kinetic modeling, and geological parameters. Using core samples from the Shanxi [...] Read more.
Hydrocarbon-generation intensity (HGI) is a critical indicator for evaluating shale gas potential in source rocks. This study proposes a practical method to estimate HGI by integrating experimental pyrolysis data, EasyRo-based maturity transformation, kinetic modeling, and geological parameters. Using core samples from the Shanxi Formation in the eastern margin of the Ordos Basin, gold tube pyrolysis experiments were conducted under closed-system conditions to obtain gas yield data. The EasyRo model was applied to transform temperature to maturity, and a kinetic model was constructed to simulate hydrocarbon generation. Total organic carbon (TOC), maturity (Ro), thickness, and true density were used to calculate HGI at different depths. Spatial prediction of HGI was achieved using Kriging interpolation. Results indicate that although carbonaceous mudstones have higher TOC (14.2%) and gas yields (up to 155.84 mg/g TOC), black mudstones exhibit a 24.77% higher HGI due to greater thickness (average 67.2 m). This highlights the dominant role of formation thickness in controlling. Notably, black mudstones in the deeper western subregion exhibit greater gas-generation potential. These findings offer a robust quantitative basis for evaluating deep coal-measure shale gas resources in the Ordos Basin. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

15 pages, 5326 KB  
Article
Study on the Construction of a Nonlinear Creep Constitutive Model of Salt-Gypsum Rock in the Bayan Deep and the Critical Value of Wellbore Shrinkage Liquid Column Pressure
by Penglin Liu, Aobo Yin, Tairan Liang, Wen Sun, Wei Lian, Bo Zhang, Shanpo Jia and Jinchuan Huang
Processes 2025, 13(9), 2747; https://doi.org/10.3390/pr13092747 - 28 Aug 2025
Viewed by 415
Abstract
Aiming at the problems of borehole shrinkage and pipe sticking caused by creep in salt-gypsum rock formations during deep well drilling, multi-field coupling creep experiments on deep salt-bearing gypsum mudstone were carried out. Furthermore, a nonlinear creep constitutive model was constructed based on [...] Read more.
Aiming at the problems of borehole shrinkage and pipe sticking caused by creep in salt-gypsum rock formations during deep well drilling, multi-field coupling creep experiments on deep salt-bearing gypsum mudstone were carried out. Furthermore, a nonlinear creep constitutive model was constructed based on the Drucker–Prager criterion, and the critical value of liquid column pressure for borehole shrinkage was determined through numerical simulation. Experiments show that at 140 °C, salt-gypsum rock is mainly subjected to brittle failure with single shear fracture, while at 180 °C, multiple sets of cross-cutting shear bands form, shifting to plastic flow-dominated composite failure. The coupling effect of confining pressure and deviatoric stress is temperature-dependent; the critical deviatoric stress is independent of confining pressure at 140 °C, but decreases significantly with increasing confining pressure at 180 °C, revealing that salt-gypsum rock is more prone to plastic flow under high temperatures and confining pressure. The creep constitutive equation was further determined, and fitting parameters show that the stress exponent m = 2–5 and the time exponent n decrease linearly with the increase in deviatoric stress, and the model can accurately describe the characteristics of three-stage creep. The numerical simulation found that there is a nonlinear relationship between the drilling fluid density and borehole shrinkage; the shrinkage rate exceeds 1.47% when the density is ≤2.0 g/cm3, and the expansion amount is >1.0 mm when ≥2.4 g/cm3. The critical safe density range is 2.1–2.3 g/cm3, which is consistent with the field data in the Bayan area. The research results provide an experimental basis and quantitative method for the dynamic regulation of drilling fluid density in deep gypsum rock formations, and have engineering guiding significance for preventing borehole wall instability. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

22 pages, 7924 KB  
Article
Confirmation of Significant Iron Formations During “Boring Billion” in Altyn Region, China: A Case Study of the Dimunalike Iron Deposit
by Wencheng Liu, Fanqi Kong, Haibo Ding, Jing Zhang and Mingtian Zhu
Minerals 2025, 15(9), 905; https://doi.org/10.3390/min15090905 - 26 Aug 2025
Viewed by 648
Abstract
It is generally believed that the ancient oceans during the “boring billion” (1.85–0.8 Ga) lacked the capacity to form large-scale iron formations (IFs), though localized small-scale IFs deposition persisted. The Altyn region of China hosts abundant IFs, with the Dimunalike IFs being the [...] Read more.
It is generally believed that the ancient oceans during the “boring billion” (1.85–0.8 Ga) lacked the capacity to form large-scale iron formations (IFs), though localized small-scale IFs deposition persisted. The Altyn region of China hosts abundant IFs, with the Dimunalike IFs being the largest and most representative, characterized by typical banded iron–silica layers. Detailed fieldwork identified a tuff layer conformably contacting the IFs at the roof rocks of IFs and a ferruginous mudstone layer at the floor rocks of IFs in drill core ZK4312. Geochemical and zircon U-Pb-Hf isotopic analyses were performed. The tuff has a typical tuff structure, mostly made of quartz, and contains a significant amount of natural sulfur. It also has high SiO2 content (77.90%–80.49%) and sulfur content (0.78%–3.06%). The ferruginous mudstone has a volcanic clastic structure and is mainly composed of quartz and chlorite, with abundant coeval pyrite. It shows lower SiO2 content (53.83%–60.32%) and higher TFe2O3 content (10.29%–16.24%). Both layers share similar rare earth element (REE) distribution patterns and trace element compositions, with light REE enrichment and negative Eu, Nb, and Ti anomalies, consistent with arc volcanic geochemistry. Zircon U-Pb ages indicate crystallization of the tuff at 1102 ± 13 Ma and maximum deposition of the mudstone at 1110 ± 41 Ma. These data suggest formation during different stages of the same volcanic–sedimentary process. The εHf(t) values (3.60–12.35 for tuff, 2.92–8.19 for mudstone) resemble those of Algoma-type IF host rocks, implying derivation from re-melted new crust. The Dimunalike IFs likely formed in a submarine volcanic–sedimentary environment. In conclusion, although the Mesoproterozoic ocean was generally in a low-oxygen state, which was not conducive to large-scale IF deposition, localized submarine volcanic–hydrothermal activity could still lead to IF formation. Full article
(This article belongs to the Special Issue Geochemical, Isotopic, and Biotic Records of Banded Iron Formations)
Show Figures

Graphical abstract

28 pages, 68775 KB  
Article
Machine Learning Approaches for Predicting Lithological and Petrophysical Parameters in Hydrocarbon Exploration: A Case Study from the Carpathian Foredeep
by Drozd Arkadiusz, Topór Tomasz, Lis-Śledziona Anita and Sowiżdżał Krzysztof
Energies 2025, 18(17), 4521; https://doi.org/10.3390/en18174521 - 26 Aug 2025
Viewed by 663
Abstract
This study presents a novel approach to the parametrization of 3D PETRO FACIES and SEISMO FACIES using supervised and unsupervised learning, supported by a coherent structural and stratigraphic framework, to enhance understanding of the presence of hydrocarbons in the Dzików–Uszkowce region. The prediction [...] Read more.
This study presents a novel approach to the parametrization of 3D PETRO FACIES and SEISMO FACIES using supervised and unsupervised learning, supported by a coherent structural and stratigraphic framework, to enhance understanding of the presence of hydrocarbons in the Dzików–Uszkowce region. The prediction relies on selected seismic attributes and well logging data, which are essential in hydrocarbon exploration. Three-dimensional seismic data, a crucial source of information, reflect the propagation velocity of elastic waves influenced by lithological formations and reservoir fluids. However, seismic response similarities complicate accurate seismic image interpretation. Three-dimensional seismic data were also used to build a structural–stratigraphic model that partitions the study area into coeval strata, enabling spatial analysis of the machine learning results. In the 3D seismic model, PETRO FACIES classification achieved an overall accuracy of 80% (SD = 0.01), effectively distinguishing sandstone- and mudstone-dominated facies (RT1–RT4) with F1 scores between 0.65 and 0.85. RESERVOIR FACIES prediction, covering seven hydrocarbon system classes, reached an accuracy of 70% (SD = 0.01). However, class-level performance varied substantially. Non-productive zones such as HNF (No Flow) were identified with high precision (0.82) and recall (0.84, F1 = 0.83), while mixed-saturation facies (HWGS, BSWGS) showed moderate performance (F1 = 0.74–0.81). In contrast, gas-saturated classes (BSGS and HGS) suffered from extremely low F1 scores (0.08 and 0.12, respectively), with recalls as low as 5–7%, highlighting the model’s difficulty in discriminating these units from water-saturated or mixed facies due to overlapping seismic responses and limited training data for gas-rich intervals. To enhance reservoir characterization, SEISMO FACIES analysis identified 12 distinct seismic facies using key attributes. An additional facies (facies 13) was defined to characterize gas-saturated sandstones with high reservoir quality and accumulation potential. Refinements were performed using borehole data on hydrocarbon-bearing zones and clay volume (VCL), applying a 0.3 VCL cutoff and filtering specific facies to isolate zones with confirmed gas presence. The same approach was applied to PETRO FACIES and a new RT facie was extracted. This integrated approach improved mapping of lithological variability and hydrocarbon saturation in complex geological settings. The results were validated against two blind wells that were excluded from the machine learning process. Knowledge of the presence of gas in well N-1 and its absence in well D-24 guided verification of the models within the structural–stratigraphic framework. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

Back to TopTop