Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (13,322)

Search Parameters:
Keywords = morphology change

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1978 KiB  
Article
Fluorescent Peptides Internalize HeLa Cells and Kill Multidrug-Resistant Clinical Bacterial Isolates
by Daniel Castellar-Almonacid, Kelin Johana Cuero-Amu, Jose David Mendoza-Mendoza, Natalia Ardila-Chantré, Fernando José Chavez-Salazar, Andrea Carolina Barragán-Cárdenas, Jhon Erick Rivera-Monroy, Claudia Parra-Giraldo, Zuly Jenny Rivera-Monroy, Javier García-Castañeda and Ricardo Fierro-Medina
Antibiotics 2025, 14(8), 793; https://doi.org/10.3390/antibiotics14080793 (registering DOI) - 4 Aug 2025
Abstract
Palindromic antimicrobial peptides (PAMs) constitute versatile scaffolds for the design and optimization of anticancer agents with applications in therapy, diagnosis, and/or monitoring. In the present study, fluorolabeled peptides derived from the palindromic sequence RWQWRWQWR containing fluorescent probes, such as 2-Aminobenzoyl, 5(6)-Carboxyfluorescein, and Rhodamine [...] Read more.
Palindromic antimicrobial peptides (PAMs) constitute versatile scaffolds for the design and optimization of anticancer agents with applications in therapy, diagnosis, and/or monitoring. In the present study, fluorolabeled peptides derived from the palindromic sequence RWQWRWQWR containing fluorescent probes, such as 2-Aminobenzoyl, 5(6)-Carboxyfluorescein, and Rhodamine B, were obtained. RP-HPLC analysis revealed that the palindromic peptide conjugated to Rhodamine B (RhB-RWQWRWQWR) exhibited the presence of isomers, likely corresponding to the open-ring and spiro-lactam forms of the fluorescent probe. This equilibrium is dependent on the peptide sequence, as the RP-HPLC analysis of dimeric peptide (RhB-RRWQWR-hF-KKLG)2K-Ahx did not reveal the presence of isomers. The antibacterial activity of the fluorescent peptides depends on the probe attached to the sequence and the bacterial strain tested. Notably, some fluorescent peptides showed activity against reference strains as well as sensitive, resistant, and multidrug-resistant clinical isolates of E. coli, S. aureus, and E. faecalis. Fluorolabeled peptides 1-Abz (MIC = 62 µM), RhB-1 (MIC = 62 µM), and Abz-1 (MIC = 31 µM) exhibited significant activity against clinical isolates of E. coli, S. aureus, and E. faecalis, respectively. The RhB-1 (IC50 = 61 µM), Abz-1 (IC50 = 87 µM), and RhB-2 (IC50 = 35 µM) peptides exhibited a rapid, significant, and concentration-dependent cytotoxic effect on HeLa cells, accompanied by morphological changes characteristic of apoptosis. RhB-1 (IC50 = 18 µM) peptide also exhibited significant cytotoxic activity against breast cancer cells MCF-7. These conjugates remain valuable for elucidating the possible mechanisms of action of these novel anticancer peptides. Rhodamine-labeled peptides displayed cytotoxicity comparable to that of their unlabeled analogues, suggesting that cellular internalization constitutes a critical early step in their mechanism of action. These findings suggest that cell death induced by both unlabeled and fluorolabeled peptides proceeds predominantly via apoptosis and is likely contingent upon peptide internalization. Functionalization at the N-terminal end of the palindromic sequence can be evaluated to develop systems for transporting non-protein molecules into cancer cells. Full article
Show Figures

Figure 1

17 pages, 5839 KiB  
Article
Salvianolic Acid A Activates Nrf2-Related Signaling Pathways to Inhibit Ferroptosis to Improve Ischemic Stroke
by Yu-Fu Shang, Wan-Di Feng, Dong-Ni Liu, Wen-Fang Zhang, Shuang Xu, Dan-Hong Feng, Guan-Hua Du and Yue-Hua Wang
Molecules 2025, 30(15), 3266; https://doi.org/10.3390/molecules30153266 - 4 Aug 2025
Abstract
Ischemic stroke is a serious disease that frequently occurs in the elderly and is characterized by a complex pathophysiology and a limited number of effective therapeutic agents. Salvianolic acid A (SAL-A) is a natural product derived from the rhizome of Salvia miltiorrhiza, [...] Read more.
Ischemic stroke is a serious disease that frequently occurs in the elderly and is characterized by a complex pathophysiology and a limited number of effective therapeutic agents. Salvianolic acid A (SAL-A) is a natural product derived from the rhizome of Salvia miltiorrhiza, which possesses diverse pharmacological activities. This study aims to investigate the effect and mechanisms of SAL-A in inhibiting ferroptosis to improve ischemic stroke. Brain injury, oxidative stress and ferroptosis-related analysis were performed to evaluate the effect of SAL-A on ischemic stroke in photochemical induction of stroke (PTS) in mice. Lipid peroxidation levels, antioxidant protein levels, tissue iron content, nuclear factor erythroid 2-related factor 2 (Nrf2), and mitochondrial morphology changes were detected to explore its mechanism. SAL-A significantly attenuated brain injury, reduced malondialdehyde (MDA) and long-chain acyl-CoA synthase 4 (ACSL4) levels. In addition, SAL-A also amplified the antioxidative properties of glutathione (GSH) when under glutathione peroxidase 4 (GPX4), and the reduction in ferrous ion levels. In vitro, brain microvascular endothelial cells (b.End.3) exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) were used to investigate whether the anti-stroke mechanism of SAL-A is related to Nrf2. Following OGD/R, ML385 (Nrf2 inhibitor) prevents SAL-A from inhibiting oxidative stress, ferroptosis, and mitochondrial dysfunction in b.End.3 cells. In conclusion, SAL-A inhibits ferroptosis to ameliorate ischemic brain injury, and this effect is mediated through Nrf2. Full article
Show Figures

Graphical abstract

15 pages, 1636 KiB  
Article
Cytotoxicity Evaluation of Cyprodinil, Potentially Carcinogenic Chemical Micropollutant, for Oxidative Stress, Apoptosis and Cell Membrane Interactions
by Agata Jabłońska-Trypuć, Nina Wiśniewska, Gabriela Sitko, Urszula Wydro, Elżbieta Wołejko, Rafał Krętowski, Monika Naumowicz, Joanna Kotyńska, Marzanna Cechowska-Pasko, Bożena Łozowicka, Piotr Kaczyński and Adam Cudowski
Appl. Sci. 2025, 15(15), 8631; https://doi.org/10.3390/app15158631 (registering DOI) - 4 Aug 2025
Abstract
Fungicides are compounds with potentially toxic effects on the human body, but the molecular mechanisms of their action have not yet been explained. The effect of cyprodinil on cell viability, apoptosis level, cell membrane function, cell morphology and expression of antioxidant enzyme genes [...] Read more.
Fungicides are compounds with potentially toxic effects on the human body, but the molecular mechanisms of their action have not yet been explained. The effect of cyprodinil on cell viability, apoptosis level, cell membrane function, cell morphology and expression of antioxidant enzyme genes in the A-375 and DLD-1 cell lines was examined. The cell lines were selected because they can be an excellent in vitro model of neoplastic changes occurring in the skin and large intestine after exposure to a fungicide. The fungicide selected for the study is commonly used in Poland to protect crops against fungi. Our results showed that the tested compound increased cell viability and proliferation, probably activated by mechanisms related to oxidative stress. Cyprodinil caused an increase in glutathione level (in A-375 by about 37% and in DLD-1 by about 28%) and oxidative stress enzymes activity, but not in apoptosis level. Its membrane interactions and its penetration into cells was concentration dependent. It is worth emphasizing that the novelty of our work lies in the use of non-traditional toxicological methods based on molecular analyses using human cell lines. This allowed us to demonstrate not only the toxicity of a single substance but also its behavior within cellular structures. Our findings suggest that cyprodinil may have tumor-promoting properties in skin and colorectal cancer cells. Full article
(This article belongs to the Special Issue Exposure Pathways and Health Implications of Environmental Chemicals)
Show Figures

Figure 1

3 pages, 468 KiB  
Interesting Images
Fatal Congenital Heart Disease in a Postpartum Woman
by Corina Cinezan, Camelia Bianca Rus, Mihaela Mirela Muresan and Ovidiu Laurean Pop
Diagnostics 2025, 15(15), 1952; https://doi.org/10.3390/diagnostics15151952 - 4 Aug 2025
Abstract
The image represents the post-mortem heart of a 28-year-old female patient, diagnosed in childhood with complete common atrioventricular canal defect. At time of diagnosis, the family refused surgery, as did the patient during her adulthood. Despite being advised against pregnancy, she became pregnant. [...] Read more.
The image represents the post-mortem heart of a 28-year-old female patient, diagnosed in childhood with complete common atrioventricular canal defect. At time of diagnosis, the family refused surgery, as did the patient during her adulthood. Despite being advised against pregnancy, she became pregnant. On presentation to hospital, she was cyanotic, with clubbed fingers, and hemodynamically unstable, in sinus rhythm, with Eisenmenger syndrome and respiratory failure partially responsive to oxygen. During pregnancy, owing to systemic vasodilatation, the right-to-left shunt is increased, with more severe cyanosis and low cardiac output. Echocardiography revealed the complete common atrioventricular canal defect, with a single atrioventricular valve with severe regurgitation, right ventricular hypertrophy, pulmonary artery dilatation, severe pulmonary hypertension and a hypoplastic left ventricle. The gestational age at delivery was 38 weeks. She gave birth to a healthy boy, with an Apgar score of 10. The vaginal delivery was chosen by an interdisciplinary team. The cesarean delivery and the anesthesia were considered too risky compared to vaginal delivery. Three days later, the patient died. The autopsy revealed hepatomegaly, a greatly hypertrophied right ventricle with a purplish clot ascending the dilated pulmonary arteries and a hypoplastic left ventricle with a narrowed chamber. A single valve was observed between the atria and ventricles, making all four heart chambers communicate, also insufficiently developed interventricular septum and its congenital absence in the cranial third. These morphological changes indicate the complete common atrioventricular canal defect, with right ventricular dominance, which is a rare and impressive malformation that requires mandatory treatment in early childhood in order for the condition to be solved. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

21 pages, 2189 KiB  
Article
Effects of Salicylic Acid Application Method and Concentration on the Growth and Ornamental Quality of Poinsettia (Euphorbia pulcherrima Willd.)
by Alessandro Esposito, Alessandro Miceli, Filippo Vetrano, Samantha Campo and Alessandra Moncada
Horticulturae 2025, 11(8), 904; https://doi.org/10.3390/horticulturae11080904 (registering DOI) - 4 Aug 2025
Abstract
In the context of increasing demand for sustainable floriculture, this study evaluated the effects of salicylic acid (SA) on phenotypic traits of poinsettia (Euphorbia pulcherrima Willd.). A factorial experiment was conducted in a commercial glasshouse using rooted poinsettia cuttings treated with three [...] Read more.
In the context of increasing demand for sustainable floriculture, this study evaluated the effects of salicylic acid (SA) on phenotypic traits of poinsettia (Euphorbia pulcherrima Willd.). A factorial experiment was conducted in a commercial glasshouse using rooted poinsettia cuttings treated with three SA concentrations (10−3, 10−4, 10−5 M) applied via foliar or root application. Morphological parameters, colorimetric traits (CIELAB), canopy development, and biomass accumulation were assessed throughout the cultivation cycle. SA had no significant influence on the plant height, leaf number, or biomass of stems, leaves, and roots. However, notable phenotypic changes were observed. Foliar applications, particularly at 10−5 M, induced visible changes in leaf and bract color, including reduced brightness, saturation, and red pigmentation, especially in newly developed tissues. Conversely, root applications had milder effects and were generally associated with a more stable bract color. The 10−4 M root treatment promoted greater bract surface and color saturation. Canopy expansion and dry matter accumulation were also influenced by SA in a dose- and method-dependent manner, with high-dose foliar treatments (10−3 M) exerting suppressive effects. These findings suggest that the application mode and concentration of SA are critical in modulating ornamental quality traits, with low-to-moderate doses—particularly via root application—offering promising strategies to enhance plant performance in sustainable poinsettia cultivation. Full article
(This article belongs to the Section Protected Culture)
Show Figures

Figure 1

19 pages, 6111 KiB  
Article
Impact of Water Conductivity on the Structure and Swelling Dynamics of E-Beam Cross-Linked Hydrogels
by Elena Mănăilă, Ion Călina, Anca Scărișoreanu, Maria Demeter, Gabriela Crăciun and Marius Dumitru
Gels 2025, 11(8), 611; https://doi.org/10.3390/gels11080611 (registering DOI) - 4 Aug 2025
Abstract
Prolonged drought and soil degradation severely affect soil fertility and limit crop productivity. Superabsorbent hydrogels offer an effective solution for improving water retention in soil and supporting plant growth. In this work, we examined the performance of superabsorbent hydrogels based on sodium alginate, [...] Read more.
Prolonged drought and soil degradation severely affect soil fertility and limit crop productivity. Superabsorbent hydrogels offer an effective solution for improving water retention in soil and supporting plant growth. In this work, we examined the performance of superabsorbent hydrogels based on sodium alginate, acrylic acid (AA), and poly (ethylene oxide) (PEO) cross-linked with 12.5 kGy using e-beam irradiation. The hydrogels were assessed in various aqueous environments by examining network characteristics, swelling capacity, and swelling kinetics to evaluate the impact of water’s electrical conductivity (which ranges from 0.05 to 321 μS/cm). Morphological and chemical structure changes were evaluated using SEM and FTIR techniques. The results demonstrated that water conductivity significantly affected the physicochemical properties of the hydrogels. Swelling behavior showed notable sensitivity to electrical conductivity variations, with swelling degrees reaching 28,400% at 5 μS/cm and 14,000% at 321 μS/cm, following first-order and second-order kinetics. FTIR analysis confirmed that structural modifications correlated with water conductivity, particularly affecting the O–H, C–H, and COOH groups sensitive to the ionic environment. SEM characterization revealed a porous morphology with an interconnected microporous network that facilitates efficient water diffusion. These hydrogels show exceptional swelling capacity and are promising candidates for sustainable agriculture applications. Full article
Show Figures

Figure 1

8 pages, 2695 KiB  
Case Report
Double QRS Transition Due to Anodal Capture During Left Bundle Branch Area Pacing: A Case Report
by Angelo Melpignano, Francesco Vitali, Luca Canovi, Jacopo Bonini, Ludovica Rita Vocale and Matteo Bertini
J. Cardiovasc. Dev. Dis. 2025, 12(8), 299; https://doi.org/10.3390/jcdd12080299 - 3 Aug 2025
Abstract
Anodal capture, characterized by a different QRS morphology compared to cathodal capture, is a well-known issue in cardiac resynchronization therapy (CRT). Left bundle branch area pacing (LBBAP), a novel physiological pacing technique, is also used as a bailout strategy following failed conventional CRT [...] Read more.
Anodal capture, characterized by a different QRS morphology compared to cathodal capture, is a well-known issue in cardiac resynchronization therapy (CRT). Left bundle branch area pacing (LBBAP), a novel physiological pacing technique, is also used as a bailout strategy following failed conventional CRT implantation. In LBBAP, QRS transition, defined by a change in paced QRS morphology, serves as a key marker of successful lead placement. This case report is the first to document both high-output anodal capture and LBBAP-induced QRS transition in a single individual receiving LBBAP with an implantable cardioverter–defibrillator (ICD) as a bailout strategy for failed cardiac resynchronization therapy with defibrillator (CRT-D) implantation. Their coexistence underscores unique device optimization challenges in this emerging approach. Full article
(This article belongs to the Special Issue Insights into Left Bundle Branch Pacing Mechanics and Efficacy)
Show Figures

Figure 1

27 pages, 6880 KiB  
Article
IgA Nephropathy in Native Kidneys: Oxford and Banff Classifications Reveal Distinct Profiles and Predict Outcomes in Pediatric and Adult Patients
by Danijel Milivojević, Gorana Nikolić, Björn Tampe, Maja Pecić, Snežana Babac, Dušan Paripović, Gordana Miloševski Lomić, Voin Brković, Marko Baralić, Aleksandar Janković, Petar Đurić, Nataša Stajić, Jovana Putnik, Sanja Radojević Škodrić and Maja Životić
Life 2025, 15(8), 1231; https://doi.org/10.3390/life15081231 - 3 Aug 2025
Abstract
IgA nephropathy is the most common primary glomerulonephritis, with pathohistological changes described by the Oxford classification, while the Banff classification is used in transplant pathology. This study included 253 patients with IgA nephropathy in native kidneys, divided into the pediatric (n = [...] Read more.
IgA nephropathy is the most common primary glomerulonephritis, with pathohistological changes described by the Oxford classification, while the Banff classification is used in transplant pathology. This study included 253 patients with IgA nephropathy in native kidneys, divided into the pediatric (n = 105) and adult (n = 148) groups. It aimed to examine clinical, and Oxford and Banff morphological parameters in relation to age, correlations of clinical data with pathohistological parameters, and predictors of the disease outcome. Pediatric patients more frequently presented with macroscopic hematuria, while adults showed higher urea and creatinine levels, and lower eGFR. Examining Oxford classification parameters, chronic glomerular and tubulointerstitial lesions were more common in adults. Banff parameters revealed more frequent chronically active glomerular, inflammatory, chronic tubulointerstitial, and vascular lesions in adults. All inflammatory, chronic tubulointerstitial, and vascular parameters correlated with serum urea levels, eGFR and CKD stage in adults, while less frequent in pediatric patients. Tubulointerstitial Oxford and Banff parameters were strong predictors of CKD and proteinuria progression in children, while such predictors were fewer in adults; segmental glomerulosclerosis predicted hematuria progression in adults. Banff parameters (cg, t, ti, i, i-IFTA, ptc, cv), not in Oxford classification, significantly predict outcomes and are recommended for incorporation into IgA nephropathy reports. Full article
Show Figures

Figure 1

17 pages, 1724 KiB  
Article
Effects of Eriobotrya japonica (Thunb.) Lindl. Leaf Extract on Zebrafish Embryogenesis, Behavior, and Biochemical Pathways
by Jorge Barros, Irene Gouvinhas, Carlos Venâncio, Daniel Granato, Ana Novo Barros and Luís Félix
Molecules 2025, 30(15), 3252; https://doi.org/10.3390/molecules30153252 - 3 Aug 2025
Abstract
Eriobotrya japonica (Thunb.) Lindl. leaves are rich in polyphenolic compounds, yet their toxicological effects in aquatic models remain poorly understood. This study evaluated the impact of a hydroethanolic E. japonica leaf extract on zebrafish embryos through the use of morphological, behavioral, and biochemical [...] Read more.
Eriobotrya japonica (Thunb.) Lindl. leaves are rich in polyphenolic compounds, yet their toxicological effects in aquatic models remain poorly understood. This study evaluated the impact of a hydroethanolic E. japonica leaf extract on zebrafish embryos through the use of morphological, behavioral, and biochemical parameters. The 96 h LC50 was determined as 189.8 ± 4.5 mg/L, classifying the extract as practically non-toxic, according to OECD guidelines. Thereby, embryos were exposed for 90 h to 75 and 150 mg/L concentrations of the E. japonica leaf extract. While no significant effects were noted at the lowest concentration of 150 mg/L, significant developmental effects were observed, including reduced survival, delayed hatching, underdevelopment of the swim bladder, and retention of the yolk sac. These malformations were accompanied by marked behavioral impairments. Biochemical analysis revealed a concentration-dependent increase in superoxide dismutase (SOD) and catalase (CAT) activity, suggesting the activation of antioxidant defenses, despite no significant change in reactive oxygen species (ROS) levels. This indicates a potential compensatory redox response to a pro-oxidant signal. Additionally, the acetylcholinesterase (AChE) activity was significantly reduced at the highest concentration, which may have contributed to the observed neurobehavioral changes. While AChE inhibition is commonly associated with neurotoxicity, it is also a known therapeutic target in neurodegenerative diseases, suggesting concentration-dependent dual effects. In summary, the E. japonica leaf extract induced concentration-dependent developmental and behavioral effects in zebrafish embryos, while activating antioxidant responses without triggering oxidative damage. These findings highlight the extract’s potential bioactivity and underscore the need for further studies to explore its safety and therapeutic relevance. Full article
(This article belongs to the Special Issue Biological Activities of Traditional Medicinal Plants, 2nd Edition)
24 pages, 2584 KiB  
Article
Precise and Continuous Biomass Measurement for Plant Growth Using a Low-Cost Sensor Setup
by Lukas Munser, Kiran Kumar Sathyanarayanan, Jonathan Raecke, Mohamed Mokhtar Mansour, Morgan Emily Uland and Stefan Streif
Sensors 2025, 25(15), 4770; https://doi.org/10.3390/s25154770 (registering DOI) - 2 Aug 2025
Viewed by 66
Abstract
Continuous and accurate biomass measurement is a critical enabler for control, decision making, and optimization in modern plant production systems. It supports the development of plant growth models for advanced control strategies like model predictive control, and enables responsive, data-driven, and plant state-dependent [...] Read more.
Continuous and accurate biomass measurement is a critical enabler for control, decision making, and optimization in modern plant production systems. It supports the development of plant growth models for advanced control strategies like model predictive control, and enables responsive, data-driven, and plant state-dependent cultivation. Traditional biomass measurement methods, such as destructive sampling, are time-consuming and unsuitable for high-frequency monitoring. In contrast, image-based estimation using computer vision and deep learning requires frequent retraining and is sensitive to changes in lighting or plant morphology. This work introduces a low-cost, load-cell-based biomass monitoring system tailored for vertical farming applications. The system operates at the level of individual growing trays, offering a valuable middle ground between impractical plant-level sensing and overly coarse rack-level measurements. Tray-level data allow localized control actions, such as adjusting light spectrum and intensity per tray, thereby enhancing the utility of controllable LED systems. This granularity supports layer-specific optimization and anomaly detection, which are not feasible with rack-level feedback. The biomass sensor is easily scalable and can be retrofitted, addressing common challenges such as mechanical noise and thermal drift. It offers a practical and robust solution for biomass monitoring in dynamic, growing environments, enabling finer control and smarter decision making in both commercial and research-oriented vertical farming systems. The developed sensor was tested and validated against manual harvest data, demonstrating high agreement with actual plant biomass and confirming its suitability for integration into vertical farming systems. Full article
(This article belongs to the Special Issue Feature Papers in Smart Agriculture 2025)
Show Figures

Figure 1

18 pages, 8702 KiB  
Article
Oxidation Process and Morphological Degradation of Drilling Chips from Carbon Fiber-Reinforced Polymers
by Dora Kroisová, Stepanka Dvorackova, Martin Bilek, Josef Skrivanek, Anita Białkowska and Mohamed Bakar
J. Compos. Sci. 2025, 9(8), 410; https://doi.org/10.3390/jcs9080410 (registering DOI) - 2 Aug 2025
Viewed by 46
Abstract
Carbon fiber (CF) and carbon fiber-reinforced polymers (CFRPs) are widely used in the aerospace, automotive, and energy sectors due to their high strength, stiffness, and low density. However, significant waste is generated during manufacturing and after the use of CFRPs. Traditional disposal methods [...] Read more.
Carbon fiber (CF) and carbon fiber-reinforced polymers (CFRPs) are widely used in the aerospace, automotive, and energy sectors due to their high strength, stiffness, and low density. However, significant waste is generated during manufacturing and after the use of CFRPs. Traditional disposal methods like landfilling and incineration are unsustainable. CFRP machining processes, such as drilling and milling, produce fine chips and dust that are difficult to recycle due to their heterogeneity and contamination. This study investigates the oxidation behavior of CFRP drilling waste from two types of materials (tube and plate) under oxidative (non-inert) conditions. Thermogravimetric analysis (TGA) was performed from 200 °C to 800 °C to assess weight loss related to polymer degradation and carbon fiber integrity. Scanning electron microscopy (SEM) was used to analyze morphological changes and fiber damage. The optimal range for removing the polymer matrix without significant fiber degradation has been identified as 500–600 °C. At temperatures above 700 °C, notable surface and internal fiber damage occurred, along with nanostructure formation, which may pose health and environmental risks. The results show that partial fiber recovery is possible under ambient conditions, and this must be considered regarding the harmful risks to the human body if submicron particles are inhaled. This research supports sustainable CFRP recycling and fire hazard mitigation. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, 4th Edition)
Show Figures

Figure 1

17 pages, 741 KiB  
Article
Changes in Cardiac Function and Exercise Capacity Following Ferric Carboxymaltose Administration in HFrEF Patients with Iron Deficiency
by Anastasios Tsarouchas, Constantinos Bakogiannis, Dimitrios Mouselimis, Christodoulos E. Papadopoulos, Efstratios K. Theofillogiannakos, Efstathios D. Pagourelias, Ioannis Kelemanis, Aristi. Boulmpou, Antonios P. Antoniadis, Nikolaos Fragakis, Georgios Efthimiadis, Theodoros D. Karamitsos and Vassilios P. Vassilikos
Diagnostics 2025, 15(15), 1941; https://doi.org/10.3390/diagnostics15151941 - 2 Aug 2025
Viewed by 61
Abstract
Background/Objectives: Iron deficiency (ID) is a common and prognostically relevant comorbidity in heart failure with reduced ejection fraction (HFrEF). It contributes to reduced functional status, exercise capacity, and survival. Intravenous ferric carboxymaltose (FCM) improves symptoms, but its effect on cardiac structure and function [...] Read more.
Background/Objectives: Iron deficiency (ID) is a common and prognostically relevant comorbidity in heart failure with reduced ejection fraction (HFrEF). It contributes to reduced functional status, exercise capacity, and survival. Intravenous ferric carboxymaltose (FCM) improves symptoms, but its effect on cardiac structure and function remains incompletely understood. The aim of this study was to assess the impact of intravenous FCM on echocardiographic indices of left ventricular (LV), left atrial (LA), and right ventricular (RV) morphology and function in HFrEF patients with ID and determine whether these changes correlate with improvements in exercise capacity. Methods: This sub-analysis of the RESAFE-HF registry (NCT04974021) included 86 HFrEF patients with ID (median age 71.8 years, 83% male). Transthoracic echocardiography was performed at baseline and 12 months post-FCM. Parameters assessed included LV ejection fraction (LVEF), LV global longitudinal strain (GLS), LV diastolic function grade, LAVi, LA strain, TAPSE, and RV free wall strain (FWS). Peak VO2 was measured to assess exercise capacity. Results: LVEF improved from 29.3 ± 7.8% to 32.5 ± 10.6% (p < 0.001), LV GLS from −7.89% to −8.62%, and the LV diastolic dysfunction grade improved (p < 0.001). LAVi, peak LA strain, TAPSE, and RV FWS also showed significant improvement. Peak VO2 increased from 11.3 ± 3.2 to 12.1 ± 4.1 mL/min/kg (p < 0.001). Improvements in LVEF, RV FWS, and LV GLS were independent predictors of VO2 increase (p < 0.001, p < 0.001, and p = 0.01, respectively), explaining 42% of the variance. Conclusions: FCM therapy improves biventricular and atrial function, with echocardiographic gains correlating with an enhanced exercise capacity in HFrEF patients with ID. Full article
(This article belongs to the Section Clinical Diagnosis and Prognosis)
Show Figures

Figure 1

21 pages, 5449 KiB  
Article
Comparisons of the Effects of Polymer and Alcohol Varnishes on Norway Spruce Wood Surface Modifications
by Mariana Domnica Stanciu, Maria Cristina Timar, Mircea Mihalcica, Mihaela Cosnita and Florin Dinulică
Polymers 2025, 17(15), 2131; https://doi.org/10.3390/polym17152131 - 1 Aug 2025
Viewed by 233
Abstract
Spruce wood is a natural polymeric material, consisting of cellulose, lignin, hemicelluloses and other secondary components, which gives it a unique chemical footprint and architecture. Varnishes are used in musical instruments to protect the wood against humidity variations, wood being a hygroscopic material, [...] Read more.
Spruce wood is a natural polymeric material, consisting of cellulose, lignin, hemicelluloses and other secondary components, which gives it a unique chemical footprint and architecture. Varnishes are used in musical instruments to protect the wood against humidity variations, wood being a hygroscopic material, but also to protect the wood from dirt. The varnishes used both to protect the wood from resonance and to ensure a special aesthetic appearance are either polymeric varnishes (nitrocellulose, oil-based) or volatile solvents (spirit). In this study, the color changes, the surface morphology and the chemical spectrum produced by three types of varnishes, applied in 5, 10 and 15 layers, on resonance spruce plates were analyzed. The results revealed significant changes in the color parameters: the lightness decreased by approximately 17% after the first layer, by 50% after 5 layers, by 65% after 10 layers and by 70% after 15 layers. The color parameters are most influenced by the anatomical quality of spruce wood (annual ring width and earlywood/latewood ratio) in the case of oil-based varnishes and least influenced in the case of nitrocellulose varnishes. The chemical fingerprint was determined by FTIR spectrum analysis, which revealed that the most pronounced absorptions were the double band 2926–2858 cm−1, corresponding to aliphatic methylene and methyl groups (asymmetric and symmetrical C-H stretch), and the bands at 1724 cm−1 (oil-based varnish), 1722 cm−1 (nitrocellulose varnish) and 1708 cm−1 (spirit varnish), all assigned to non-conjugated carbonyl groups in either carboxylic acids, esters aldehydes or ketones. The novelty of the study lies in the comparative analysis of three types of varnishes used in the musical instrument industry, applied to samples of spruce resonance wood with different macroscopic characteristics in three different layer thicknesses. Full article
(This article belongs to the Special Issue Advances in Wood Based Composites, 2nd Edition)
Show Figures

Figure 1

21 pages, 4169 KiB  
Article
An Anisotropic Failure Characteristic- and Damage-Coupled Constitutive Model
by Ruiqing Chen, Jieyu Dai, Shuning Gu, Lang Yang, Laohu Long and Jundong Wang
Modelling 2025, 6(3), 75; https://doi.org/10.3390/modelling6030075 (registering DOI) - 1 Aug 2025
Viewed by 138
Abstract
This study proposes a coupled constitutive model that captures the anisotropic failure characteristics and damage evolution of nickel-based single-crystal (SX) superalloys under various temperature conditions. The model accounts for both creep rate and material damage evolution, enabling accurate prediction of the typical three-stage [...] Read more.
This study proposes a coupled constitutive model that captures the anisotropic failure characteristics and damage evolution of nickel-based single-crystal (SX) superalloys under various temperature conditions. The model accounts for both creep rate and material damage evolution, enabling accurate prediction of the typical three-stage creep curves, macroscopic fracture morphologies, and microstructural features under uniaxial tensile creep for specimens with different crystallographic orientations. Creep behavior of SX superalloys was simulated under multiple orientations and various temperature-stress conditions using the proposed model. The resulting creep curves aligned well with experimental observations, thereby validating the model’s feasibility and accuracy. Furthermore, a finite element model of cylindrical specimens was established, and simulations of the macroscopic fracture morphology were performed using a user-defined material subroutine. By integrating the rafting theory governed by interfacial energy density, the model successfully predicts the rafting morphology of the microstructure at the fracture surface for different crystallographic orientations. The proposed model maintains low programming complexity and computational cost while effectively predicting the creep life and deformation behavior of anisotropic materials. The model accurately captures the three-stage creep deformation behavior of SX specimens and provides reliable predictions of stress fields and microstructural changes at critical cross-sections. The model demonstrates high accuracy in life prediction, with all predicted results falling within a ±1.5× error band and an average error of 14.6%. Full article
Show Figures

Graphical abstract

12 pages, 1435 KiB  
Article
Amino Acid Analysis and Cytotoxicity Study of Iraqi Ocimum basilicum Plant
by Omar Hussein Ahmed
Molecules 2025, 30(15), 3232; https://doi.org/10.3390/molecules30153232 - 1 Aug 2025
Viewed by 133
Abstract
Background: This paper deals with the detection of amino acid composition of Iraqi Ocimum basilicum (basil) leaves and evaluation of the cytotoxic effects of the plant leaf extract on human colorectal cancer cells. Methods: Leaves of Ocimum basilicum were collected from Iraq in [...] Read more.
Background: This paper deals with the detection of amino acid composition of Iraqi Ocimum basilicum (basil) leaves and evaluation of the cytotoxic effects of the plant leaf extract on human colorectal cancer cells. Methods: Leaves of Ocimum basilicum were collected from Iraq in November 2024. After drying and powdering, the plant material went through cold methanol extraction. Initial phytochemical screening was conducted to identify the presence of alkaloids, flavonoids, coumarins, and terpenoids. Amino acid analysis was completed by an amino acid analyzer with fluorescence detection. The cytotoxic effect was evaluated via the MTT assay on HRT-18 cell lines. Morphological changes were further tested using dual Propidium Iodide/Acridine Orange assay fluorescent staining. Results: Seventeen amino acids were detected in the plant extract. The extract showed dose-dependent cytotoxic effects on HRT-18 cells, with significant reduction in cell viability at concentrations of more than 25 µg/mL. Morphological alterations of membrane blebbing and cell shrinkage were observed, suggesting apoptotic activity. The IC50 value confirmed strong cytotoxic potential. Conclusions: The extract of Ocimum basilicum leaf cultivated in Iraq shows a rich amino acid profile and significant cytotoxic activity against colorectal cancer cells that highlights its potential effect as a natural source of anticancer compounds. Full article
Show Figures

Figure 1

Back to TopTop