Changes in Cardiac Function and Exercise Capacity Following Ferric Carboxymaltose Administration in HFrEF Patients with Iron Deficiency
Abstract
1. Introduction
2. Materials and Methods
2.1. Inclusion/Exclusion Criteria
2.2. Study Workflow
2.3. Study Endpoints
2.4. Statistical Analysis
3. Results
3.1. LV Structural and Functional Parameters
3.2. LA Structural and Functional Parameters
3.3. RV Structural and Functional Indices
3.4. Improvement in LV and RV Function as a Mediator of Exercise Capacity Improvement
4. Discussion
- LV form and systolic function improved significantly after iron supplementation, evidenced by a significant reduction in LVEDVi and improvements in LVEF and LV GLS. Additionally, LV end-diastolic pressures significantly improved, as reflected by the overall LV diastolic dysfunction grade, as well as E/e and E/A, which were evaluated separately.
- LA size and mechanics improved, as reflected in changes in LAVi, LAFI, and peak LA strain (reservoir strain).
- RV functional indices improved—a significant reduction in RV EDA and an increase in the median RV free wall strain and RV TDI S’ wave velocity was observed.
- The improvements in LV and RV systolic function (more specifically LVEF, LV GLS, and RV free wall strain) were independent predictors of an increase in the peak VO2.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AF | atrial fibrillation |
CPET | cardiopulmonary exercise testing |
CRT | cardiac resynchronization therapy |
CMR | cardiac magnetic resonance |
CIED | cardiac implantable electronic device |
E/A | ratio of early (E) to late (A) diastolic mitral inflow velocities |
E/e′ | ratio of early mitral inflow velocity to early mitral annular velocity |
ESC | European Society of Cardiology |
FCM | ferric carboxymaltose |
FDR | false discovery rate |
GLS | global longitudinal strain |
HF | heart failure |
HFrEF | heart failure with reduced ejection fraction |
ID | iron deficiency |
ICD | implantable cardioverter-defibrillator |
IRB | institutional review board |
LA | left atrium/atrial |
LAD | left atrial diameter |
LAEF | left atrial emptying fraction |
LAFI | left atrial function index |
LAS | left atrial strain |
LAVi | left atrial volume index |
LV | left ventricle/ventricular |
LVEDVi | left ventricular end-diastolic volume index |
LVEF | left ventricular ejection fraction |
LVMi | left ventricular mass index |
LVOT VTI | left ventricular outflow tract velocity time integral |
NT-proBNP | N-terminal pro-B-type natriuretic peptide |
RA | right atrium/atrial |
RAA | right atrial area |
RER | respiratory exchange ratio |
RV | right ventricle/ventricular |
RV FAC | right ventricular fractional area change |
RV FWS | right ventricular free wall strain |
SD | standard deviation |
TAPSE | tricuspid annular plane systolic excursion |
TDI | tissue doppler imaging |
TSAT | transferrin saturation |
TTE | transthoracic echocardiography |
VO2 | oxygen consumption (often peak VO2 = peak oxygen uptake) |
References
- Murphy, S.P.; Ibrahim, N.E.; Januzzi, J.L. Heart Failure With Reduced Ejection Fraction. JAMA 2020, 324, 488. [Google Scholar] [CrossRef]
- Esteban-Fernández, A.; Anguita-Sánchez, M.; Rosillo, N.; Bernal Sobrino, J.L.; Del Prado, N.; Fernández-Pérez, C.; Rodríguez-Padial, L.; Elola Somoza, F.J. Comprehensive Analysis of Clinical Characteristics, Management, and Prognosis in Patients with Dilated Cardiomyopathy Discharged from Spanish Hospitals. Hell. J. Cardiol. 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, B.; Coats, A.J.S.; Tsutsui, H.; Abdelhamid, C.M.; Adamopoulos, S.; Albert, N.; Anker, S.D.; Atherton, J.; Böhm, M.; Butler, J.; et al. Universal Definition and Classification of Heart Failure: A Report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition o. Eur. J. Heart Fail. 2021, 23, 352–380. [Google Scholar] [CrossRef] [PubMed]
- Rigolli, M.; Anandabaskaran, S.; Christiansen, J.P.; Whalley, G.A. Bias Associated with Left Ventricular Quantification by Multimodality Imaging: A Systematic Review and Meta-Analysis. Open Heart 2016, 3, e000388. [Google Scholar] [CrossRef]
- Modin, D.; Andersen, D.M.; Biering-Sørensen, T. Echo and Heart Failure: When Do People Need an Echo, and When Do They Need Natriuretic Peptides? Echo Res. Pract. 2018, 5, R65–R75. [Google Scholar] [CrossRef] [PubMed]
- Sengeløv, M.; Jørgensen, P.G.; Jensen, J.S.; Bruun, N.E.; Olsen, F.J.; Fritz-Hansen, T.; Nochioka, K.; Biering-Sørensen, T. Global Longitudinal Strain Is a Superior Predictor of All-Cause Mortality in Heart Failure With Reduced Ejection Fraction. JACC Cardiovasc. Imaging 2015, 8, 1351–1359. [Google Scholar] [CrossRef]
- Tan, C.; Rubenson, D.; Srivastava, A.; Mohan, R.; Smith, M.R.; Billick, K.; Bardarian, S.; Thomas Heywood, J. Left Ventricular Outflow Tract Velocity Time Integral Outperforms Ejection Fraction and Doppler-Derived Cardiac Output for Predicting Outcomes in a Select Advanced Heart Failure Cohort. Cardiovasc. Ultrasound 2017, 15, 18. [Google Scholar] [CrossRef]
- Pinamonti, B.; di Lenarda, A.; Sinagra, G.; Camerini, F. Restrictive Left Ventricular Filling Pattern in Dilated Cardiomyopathy Assessed by Doppler Echocardiography: Clinical, Echocardiographic and Hemodynamic Correlations and Prognostic Implications. J. Am. Coll. Cardiol. 1993, 22, 808–815. [Google Scholar] [CrossRef]
- Xie, G.-Y.; Berk, M.R.; Smith, M.D.; Gurley, J.C.; DeMaria, A.N. Prognostic Value of Doppler Transmitral Flow Patterns in Patients with Congestive Heart Failure. J. Am. Coll. Cardiol. 1994, 24, 132–139. [Google Scholar] [CrossRef]
- Hamdan, A.; Shapira, Y.; Bengal, T.; Mansur, M.; Vaturi, M.; Sulkes, J.; Battler, A.; Sagie, A. Tissue Doppler Imaging in Patients with Advanced Heart Failure: Relation to Functional Class and Prognosis. J. Heart Lung Transplant. 2006, 25, 214–218. [Google Scholar] [CrossRef]
- Robinson, S.; Ring, L.; Oxborough, D.; Harkness, A.; Bennett, S.; Rana, B.; Sutaria, N.; Lo Giudice, F.; Shun-Shin, M.; Paton, M.; et al. The Assessment of Left Ventricular Diastolic Function: Guidance and Recommendations from the British Society of Echocardiography. Echo Res. Pract. 2024, 11, 16. [Google Scholar] [CrossRef]
- Goebel, B.; Haugaa, K.H.; Meyer, K.; Otto, S.; Jung, C.; Lauten, A.; Figulla, H.R.; Edvardsen, T.; Poerner, T.C. Early Diastolic Strain Rate Predicts Response to Heart Failure Therapy in Patients with Dilated Cardiomyopathy. Int. J. Cardiovasc. Imaging 2014, 30, 505–513. [Google Scholar] [CrossRef]
- Wierzbowska-Drabik, K.; Kasprzak, J.D.; Haberka, M.; Peteiro, J.; Re, F.; D’Alfonso, M.G.; Mori, F.; Palinkas, E.D.; Agoston, G.; Varga, A.; et al. Left Atrial Volume Changes during Exercise Stress Echocardiography in Heart Failure and Hypertrophic Cardiomyopathy. Hell. J. Cardiol. 2022, 67, 9–18. [Google Scholar] [CrossRef]
- Sargento, L.; Vicente Simões, A.; Longo, S.; Lousada, N.; Palma dos Reis, R. Left Atrial Function Index Predicts Long-Term Survival in Stable Outpatients with Systolic Heart Failure. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 119–127. [Google Scholar] [CrossRef]
- Jia, F.; Chen, A.; Zhang, D.; Fang, L.; Chen, W. Prognostic Value of Left Atrial Strain in Heart Failure: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2022, 9, 935103. [Google Scholar] [CrossRef]
- Thandavarayan, R.A.; Chitturi, K.R.; Guha, A. Pathophysiology of Acute and Chronic Right Heart Failure. Cardiol. Clin. 2020, 38, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Monitillo, F.; di Terlizzi, V.; Gioia, M.I.; Barone, R.; Grande, D.; Parisi, G.; Brunetti, N.D.; Iacoviello, M. Right Ventricular Function in Chronic Heart Failure: From the Diagnosis to the Therapeutic Approach. J. Cardiovasc. Dev. Dis. 2020, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Carluccio, E.; Biagioli, P.; Lauciello, R.; Zuchi, C.; Mengoni, A.; Bardelli, G.; Alunni, G.; Gronda, E.G.; Ambrosio, G. Superior Prognostic Value of Right Ventricular Free Wall Compared to Global Longitudinal Strain in Patients With Heart Failure. J. Am. Soc. Echocardiogr. 2019, 32, 836–844.e1. [Google Scholar] [CrossRef] [PubMed]
- Jankowska, E.A.; Rozentryt, P.; Witkowska, A.; Nowak, J.; Hartmann, O.; Ponikowska, B.; Borodulin-Nadzieja, L.; Banasiak, W.; Polonski, L.; Filippatos, G.; et al. Iron Deficiency: An Ominous Sign in Patients with Systolic Chronic Heart Failure. Eur. Heart J. 2010, 31, 1872–1880. [Google Scholar] [CrossRef]
- Masini, G.; Graham, F.J.; Pellicori, P.; Cleland, J.G.F.; Cuthbert, J.J.; Kazmi, S.; Inciardi, R.M.; Clark, A.L. Criteria for Iron Deficiency in Patients With Heart Failure. J. Am. Coll. Cardiol. 2022, 79, 341–351. [Google Scholar] [CrossRef]
- Klip, I.T.; Comin-Colet, J.; Voors, A.A.; Ponikowski, P.; Enjuanes, C.; Banasiak, W.; Lok, D.J.; Rosentryt, P.; Torrens, A.; Polonski, L.; et al. Iron Deficiency in Chronic Heart Failure: An International Pooled Analysis. Am. Heart J. 2013, 165, 575–582.e3. [Google Scholar] [CrossRef]
- Ebner, N.; Jankowska, E.A.; Ponikowski, P.; Lainscak, M.; Elsner, S.; Sliziuk, V.; Steinbeck, L.; Kube, J.; Bekfani, T.; Scherbakov, N.; et al. The Impact of Iron Deficiency and Anaemia on Exercise Capacity and Outcomes in Patients with Chronic Heart Failure. Results from the Studies Investigating Co-Morbidities Aggravating Heart Failure. Int. J. Cardiol. 2016, 205, 6–12. [Google Scholar] [CrossRef]
- Martens, P.; Nijst, P.; Verbrugge, F.H.; Smeets, K.; Dupont, M.; Mullens, W. Impact of Iron Deficiency on Exercise Capacity and Outcome in Heart Failure with Reduced, Mid-Range and Preserved Ejection Fraction. Acta Cardiol. 2018, 73, 115–123. [Google Scholar] [CrossRef]
- Martens, P. The Effect of Iron Deficiency on Cardiac Function and Structure in Heart Failure with Reduced Ejection Fraction. Card. Fail. Rev. 2022, 8, e06. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Celutkiene, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar] [CrossRef]
- Anghel, L.; Dinu, C.; Patraș, D.; Ciubară, A.; Chiscop, I. Iron Deficiency Treatment in Heart Failure—Challenges and Therapeutic Solutions. J. Clin. Med. 2025, 14, 2934. [Google Scholar] [CrossRef]
- Jankowska, E.A.; Tkaczyszyn, M.; Suchocki, T.; Drozd, M.; von Haehling, S.; Doehner, W.; Banasiak, W.; Filippatos, G.; Anker, S.D.; Ponikowski, P. Effects of Intravenous Iron Therapy in Iron-Deficient Patients with Systolic Heart Failure: A Meta-Analysis of Randomized Controlled Trials. Eur. J. Heart Fail. 2016, 18, 786–795. [Google Scholar] [CrossRef] [PubMed]
- van Veldhuisen, D.J.; Ponikowski, P.; van der Meer, P.; Metra, M.; Böhm, M.; Doletsky, A.; Voors, A.A.; MacDougall, I.C.; Anker, S.D.; Roubert, B.; et al. Effect of Ferric Carboxymaltose on Exercise Capacity in Patients with Chronic Heart Failure and Iron Deficiency. Circulation 2017, 136, 1374–1383. [Google Scholar] [CrossRef] [PubMed]
- Anker, S.D.; Kirwan, B.A.; van Veldhuisen, D.J.; Filippatos, G.; Comin-Colet, J.; Ruschitzka, F.; Lüscher, T.F.; Arutyunov, G.P.; Motro, M.; Mori, C.; et al. Effects of Ferric Carboxymaltose on Hospitalisations and Mortality Rates in Iron-Deficient Heart Failure Patients: An Individual Patient Data Meta-Analysis. Eur. J. Heart Fail. 2018, 20, 125–133. [Google Scholar] [CrossRef]
- Ponikowski, P.; van Veldhuisen, D.J.; Comin-Colet, J.; Ertl, G.; Komajda, M.; Mareev, V.; McDonagh, T.; Parkhomenko, A.; Tavazzi, L.; Levesque, V.; et al. Beneficial Effects of Long-Term Intravenous Iron Therapy with Ferric Carboxymaltose in Patients with Symptomatic Heart Failure and Iron Deficiency. Eur. Heart J. 2015, 36, 657–668. [Google Scholar] [CrossRef]
- Anker, S.D.; Comin Colet, J.; Filippatos, G.; Willenheimer, R.; Dickstein, K.; Drexler, H.; Lüscher, T.F.; Bart, B.; Banasiak, W.; Niegowska, J.; et al. Ferric Carboxymaltose in Patients with Heart Failure and Iron Deficiency. N. Engl. J. Med. 2009, 361, 2436–2448. [Google Scholar] [CrossRef]
- Mototani, R.; Watanabe, A.; Kuno, T.; Briasoulis, A. Effect of Intravenous Iron-Carbohydrate Complexes in Patients with Heart Failure with Reduced Ejection Fraction and Iron Deficiency: A Meta-Analysis of Randomized Controlled Trials. Hell. J. Cardiol. 2023, 72, 67–69. [Google Scholar] [CrossRef]
- Bakogiannis, C.; Briasoulis, A.; Mouselimis, D.; Tsarouchas, A.; Papageorgiou, N.; Papadopoulos, C.; Fragakis, N.; Vassilikos, V. Iron Deficiency as Therapeutic Target in Heart Failure: A Translational Approach. Heart Fail. Rev. 2019, 25, 173–182. [Google Scholar] [CrossRef]
- Mouselimis, D.; Bakogiannis, C.; Tsarouchas, A.; Papadopoulos, C.E.; Theofilogiannakos, E.K.; Pagourelias, E.D.; Antoniadis, A.P.; Vassilikou, A.; Balaska, A.; Fragakis, N.; et al. Ferric Carboxymaltose Reduces the Burden of Arrhythmic Events in Heart Failure with Reduced Ejection Fraction: The Role of the Non-Invasive Arrhythmic Biomarkers. Hell. J. Cardiol. 2024. [Google Scholar] [CrossRef]
- Bakogiannis, C.; Mouselimis, D.; Tsarouchas, A.; Papadopoulos, C.E.; Theofillogiannakos, E.K.; Lechat, E.; Antoniadis, A.P.; Pagourelias, E.D.; Kelemanis, I.; Tzikas, S.; et al. Iron Therapy and Severe Arrhythmias in HFrEF: Rationale, Study Design, and Baseline Results of the RESAFE-HF Trial. ESC Heart Fail. 2023, 10, 1184–1192. [Google Scholar] [CrossRef]
- Rickham, P.P. Human Experimentation: Code of Ethics of W.M.A. BMJ 1964, 2, 177. [Google Scholar] [CrossRef]
- Mitchell, C.; Rahko, P.S.; Blauwet, L.A.; Canaday, B.; Finstuen, J.A.; Foster, M.C.; Horton, K.; Ogunyankin, K.O.; Palma, R.A.; Velazquez, E.J. Guidelines for Performing a Comprehensive Transthoracic Echocardiographic Examination in Adults: Recommendations from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2019, 32, 1–64. [Google Scholar] [CrossRef] [PubMed]
- Pretto, J.J.; Braun, G.W.; Guy, P.A. Using Baseline Respiratory Function Data to Optimize Cycle Exercise Test Duration. Respirology 2001, 6, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F.; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zumbo, B.D.; Wu, A.D. Relative Importance of Predictors in Multilevel Modeling. J. Mod. Appl. Stat. Methods 2014, 13, 2–22. [Google Scholar] [CrossRef]
- Tuckey, M.R.; Li, Y.; Neall, A.M.; Chen, P.Y.; Dollard, M.F.; McLinton, S.S.; Rogers, A.; Mattiske, J. Workplace Bullying as an Organizational Problem: Spotlight on People Management Practices. J. Occup. Health Psychol. 2022, 27, 544–565. [Google Scholar] [CrossRef]
- Okonko, D.O.; Grzeslo, A.; Witkowski, T.; Mandal, A.K.J.; Slater, R.M.; Roughton, M.; Foldes, G.; Thum, T.; Majda, J.; Banasiak, W.; et al. Effect of Intravenous Iron Sucrose on Exercise Tolerance in Anemic and Nonanemic Patients With Symptomatic Chronic Heart Failure and Iron Deficiency. J. Am. Coll. Cardiol. 2008, 51, 103–112. [Google Scholar] [CrossRef]
- Beck-da-Silva, L.; Piardi, D.; Soder, S.; Rohde, L.E.; Pereira-Barretto, A.C.; de Albuquerque, D.; Bocchi, E.; Vilas-Boas, F.; Moura, L.Z.; Montera, M.W.; et al. IRON-HF Study: A Randomized Trial to Assess the Effects of Iron in Heart Failure Patients with Anemia. Int. J. Cardiol. 2013, 168, 3439–3442. [Google Scholar] [CrossRef] [PubMed]
- Martens, P.; Dupont, M.; Dauw, J.; Nijst, P.; Herbots, L.; Dendale, P.; Vandervoort, P.; Bruckers, L.; Tang, W.H.W.; Mullens, W. The Effect of Intravenous Ferric Carboxymaltose on Cardiac Reverse Remodelling Following Cardiac Resynchronization Therapy—The IRON-CRT Trial. Eur. Heart J. 2021, 42, 4905–4914. [Google Scholar] [CrossRef]
- Martens, P.; Dupont, M.; Dauw, J.; Nijst, P.; Bertrand, P.B.; Tang, W.H.W.; Mullens, W. The Effect of Intravenous Ferric Carboxymaltose on Right Ventricular Function–Insights from the IRON-CRT Trial. Eur. J. Heart Fail. 2022, 24, 1106–1113. [Google Scholar] [CrossRef]
- Núñez, J.; Miñana, G.; Cardells, I.; Palau, P.; Llàcer, P.; Fácila, L.; Almenar, L.; López-Lereu, M.P.; Monmeneu, J.V.; Amiguet, M.; et al. Noninvasive Imaging Estimation of Myocardial Iron Repletion Following Administration of Intravenous Iron: The Myocardial-IRON Trial. J. Am. Heart Assoc. 2020, 9, e014254. [Google Scholar] [CrossRef]
- D’Ávila, L.B.O.; de Lima, A.C.G.B.; Milani, M.; Milani, J.G.P.O.; Cipriano, G.F.B.; Le Bihan, D.C.S.; de Castro, I.; Cipriano, G., Jr. Left Ventricular Global Longitudinal Strain and Cardiorespiratory Fitness in Patients with Heart Failure: Systematic Review and Meta-Analysis. Hell. J. Cardiol. 2024, 79, 58–69. [Google Scholar] [CrossRef]
- Shahnazaryan, S.; Pepoyan, S.; Sisakian, H. Heart Failure with Reduced Ejection Fraction: The Role of Cardiovascular and Lung Ultrasound beyond Ejection Fraction. Diagnostics 2023, 13, 2553. [Google Scholar] [CrossRef]
- Barnett, A.G. Regression to the Mean: What It Is and How to Deal with It. Int. J. Epidemiol. 2004, 34, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Lyng Lindgren, F.; Tayal, B.; Bundgaard Ringgren, K.; Ascanius Jacobsen, P.; Hay Kragholm, K.; Zaremba, T.; Holmark Andersen, N.; Møgelvang, R.; Biering-Sørensen, T.; Hagendorff, A.; et al. The Variability of 2D and 3D Transthoracic Echocardiography Applied in a General Population. Int. J. Cardiovasc. Imaging 2022, 38, 2177–2190. [Google Scholar] [CrossRef] [PubMed]
- Mouselimis, D.; Tsarouchas, A.S.; Pagourelias, E.D.; Bakogiannis, C.; Theofilogiannakos, E.K.; Loutradis, C.; Fragakis, N.; Vassilikos, V.P.; Papadopoulos, C.E. Left Atrial Strain, Intervendor Variability, and Atrial Recurrence after Catheter Ablation: A Systematic and Meta-Analysis. Hellenic J. Cardiol. 2020, 61, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Packer, M. Potential Interactions When Prescribing SGLT2 Inhibitors and Intravenous Iron in Combination in Heart Failure. JACC Heart Fail. 2023, 11, 106–114. [Google Scholar] [CrossRef] [PubMed]
Variable | All Patients (n = 86) |
---|---|
Age (y) | 71.8 (10.7) |
Sex (male, %) | 71 (83%) |
BMI (kg/m2) | 29.1 (5.4) |
NYHA Class | |
I | 0 (0%) |
II | 41 (48%) |
III | 40 (46%) |
IV | 5 (5%) |
Ischemic (%) | 44 (51%) |
Pacemaker | 4 (5%) |
ICD | 44 (51%) |
CRT-P | 6 (7%) |
CRT-D | 32 (37%) |
Diabetes | 37 (43%) |
Stroke | 13 (15%) |
CKD | 72 (84%) |
Dyslipidemia | 59 (69%) |
AF | 60 (70%) |
Paroxysmal AF | 35 (58%) |
Permanent AF | 25 (42%) |
ACEi or ARB or ARNi | 63 (73%) |
ACE or ARB only | 20 (23%) |
ARNi | 43 (50%) |
B-blockers | 85 (99%) |
Aldosterone antagonists | 68 (79%) |
SGLT2i | 6 (7%) |
Amiodarone | 41 (48%) |
Variable | Baseline | 12 Months | p-Value |
---|---|---|---|
Ferritin (μg/L) | 56.4 (63.7) | 147.1 (124.6) | <0.001 |
TSAT (%) | 19 (10.8) | 24.4 (12.3) | <0.001 |
Functional Iron Deficiency (%) | 53 (62%) | 28 (33%) | <0.001 |
Absolute Iron Deficiency (%) | 74 (86%) | 26 (30%) | <0.001 |
ESC-defined Iron Deficiency (%) | 86 (100%) | 36 (42%) | <0.001 |
Variable | Baseline | 12 Months | p-Value |
---|---|---|---|
LV anatomical indices | |||
LVEDVi (mL/m2) | 89.9 (39.5) | 87.8 (52.3) | 0.027 |
LVMi (kg/m2) | 119.3 (40.3) | 120.7 (39.7) | 0.82 |
LV systolic function indices | |||
LVEF (%) | 29.3 ± 7.8 | 32.5 ± 10.6 | <0.001 |
LVOT VTI (m) | 15.6 (5.1) | 17.4 (6.6) | <0.001 |
LV GLS (%) | −7.89 (3.8) | −8.62 (4.7) | 0.001 |
LV diastolic function indices | |||
Diastolic dysfunction grade (I/II/III) (n = 59) | 24 (41%)/21 (36%)/14 (23%) | 37 (63%)/12 (20%)/10 (17%) | 0.017 |
E’ wave velocity (cm/s) | 0.78 (0.45) | 0.73 (0.52) | 0.023 |
E-wave deceleration time (msec) | 173 (65) | 188 (86) | 0.001 |
E/A ratio (n = 59) | 15.1 (7.3) | 13 (8.5) | 0.017 |
LV peak early diastolic strain rate (s−1) | 0.43 (0.21) | 0.48 (0.22) | 0.021 |
Variable | Baseline | 12 Months | p-Value |
---|---|---|---|
LAD (mm) | 44.4 ± 7.6 | 43.6 ± 7.5 | 0.117 |
LAVi (mL/m2) | 37.4 (25.1) | 32 (19.7) | <0.001 |
LAEF (%) | 50 (39.8) | 44.8 (34) | 0.096 |
LAFI | 20.4 (30.3) | 21.7 (37) | 0.009 |
LA Strain | 13.9 (12.5) | 15.1 (11.9) | 0.02 |
Variable | Baseline | 12 Months | p-Value |
---|---|---|---|
RV EDA (mm2) | 18.6 (8.2) | 17 (6.5) | <0.001 |
RAA (mm2) | 16.2 (7.3) | 15 (8) | 0.028 |
TAPSE (mm) | 1.64 ± 0.36 | 1.76 ± 0.35 | 0.008 |
RV FAC (%) | 40.1 ± 11.8 | 42.5 ± 12.7 | 0.111 |
RV TDI S’ velocity (cm/s) | 8.2 ± 1.9 | 9.2 ± 2.1 | <0.001 |
RV free wall strain (%) | 16.9 ± 4.5 | 19.4 ± 5.4 | <0.001 |
Model Parameter | Beta Coefficient | Standard Error | t | p-Value | 95% Confidence Intervals | Pratt Index |
---|---|---|---|---|---|---|
LVEF | 0.15 | 0.03 | 4.89 | <0.001 | 0.09–0.21 | 0.15 |
RV free wall strain | 0.19 | 0.05 | 3.74 | <0.001 | 0.09–0.3 | 0.14 |
LV GLS | 0.37 | 0.14 | 2.63 | 0.01 | 0.09–0.65 | 0.06 |
R2 value | Variables excluded through stepwise elimination: | |||||
0.42 | LVOT VTI, E’ wave deceleration time, LAEF, LAFI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsarouchas, A.; Bakogiannis, C.; Mouselimis, D.; Papadopoulos, C.E.; Theofillogiannakos, E.K.; Pagourelias, E.D.; Kelemanis, I.; Boulmpou, A.; Antoniadis, A.P.; Fragakis, N.; et al. Changes in Cardiac Function and Exercise Capacity Following Ferric Carboxymaltose Administration in HFrEF Patients with Iron Deficiency. Diagnostics 2025, 15, 1941. https://doi.org/10.3390/diagnostics15151941
Tsarouchas A, Bakogiannis C, Mouselimis D, Papadopoulos CE, Theofillogiannakos EK, Pagourelias ED, Kelemanis I, Boulmpou A, Antoniadis AP, Fragakis N, et al. Changes in Cardiac Function and Exercise Capacity Following Ferric Carboxymaltose Administration in HFrEF Patients with Iron Deficiency. Diagnostics. 2025; 15(15):1941. https://doi.org/10.3390/diagnostics15151941
Chicago/Turabian StyleTsarouchas, Anastasios, Constantinos Bakogiannis, Dimitrios Mouselimis, Christodoulos E. Papadopoulos, Efstratios K. Theofillogiannakos, Efstathios D. Pagourelias, Ioannis Kelemanis, Aristi. Boulmpou, Antonios P. Antoniadis, Nikolaos Fragakis, and et al. 2025. "Changes in Cardiac Function and Exercise Capacity Following Ferric Carboxymaltose Administration in HFrEF Patients with Iron Deficiency" Diagnostics 15, no. 15: 1941. https://doi.org/10.3390/diagnostics15151941
APA StyleTsarouchas, A., Bakogiannis, C., Mouselimis, D., Papadopoulos, C. E., Theofillogiannakos, E. K., Pagourelias, E. D., Kelemanis, I., Boulmpou, A., Antoniadis, A. P., Fragakis, N., Efthimiadis, G., Karamitsos, T. D., & Vassilikos, V. P. (2025). Changes in Cardiac Function and Exercise Capacity Following Ferric Carboxymaltose Administration in HFrEF Patients with Iron Deficiency. Diagnostics, 15(15), 1941. https://doi.org/10.3390/diagnostics15151941